
Incompleteness in Linear Time

Salvatore Caporaso
(Dipartimento di Informatica dell'Universit�a di Bari

caporaso@di.uniba.it)

Giovanni Pani
(Dipartimento di Informatica dell'Universit�a di Bari

pani@di.uniba.it)

Emanuele Covino
(Dipartimento di Informatica dell'Universit�a di Bari

covino@di.uniba.it)

Abstract: A class LT 0 of functions computable in a proper sub-class of Lintime is
de�ned, and formalized in a system LT0 of monadic and atomic (quanti�er-free) logic.
In spite of its poor computational complexity power and logical apparatus, this system
has enough power to describe its own proof-predicate. Therefore it might qualify as
smallest known system in which G�odel-like diagonalization can be applied. A proof is
given that the identically true functions of LT 0 are productive. Hence this incomplete-
ness phenomenon doesn't depend on the technicalities adopted to show it.

Key Words: Incompleteness, Linear time, Computational Complexity

Category: F.4.1

1 Introduction

While the earlier proofs of the �rst G�odel theorem were involving Grzegorczyk classes
En at the elementary level 3 or above, the time complexity of the syntactic algorithms in
Rose [Rose, 84] and Smullyan [Smullyan, 61] is exponential. The former uses a system
of polyadic, atomic logic for the (possibly proper, according to an old open problem)
sub-class L of E2, which is obtained by replacing limited PR with limited summation.
The latter works with the so-called rudimentary relations, a word free algebra with
limited quanti�cation and concatenation, which is known to be, in turn, a (possibly
proper too) sub-class of L. Incompleteness of an inference system DL, based on lists
instead of numbers or notations, has been proved by N. Jones, by showing, via the
halting problem, that the true formul� of DL are not recursively enumerable. An ex-
ponential time complexity is implicit in an existential quanti�cation of the computation
traces (see [Jones, 97, p.201-203], for a contrast between this approach and traditional
incompleteness proofs, which partially applies to this paper too).
We introduce here a class LT 0 of (de�nitions of) unary functions f(x) on the elements
(lists) of a tree free algebra, which can be simulated in time an+b and in space n+c, for
some numerical constants a; b; c. This class, whose naturalness is defended in Note 10,
is essentially a fragment of Lisp, obtained by a rather drastic restriction to recursion,
and by reducing to 1 the number of the atoms. A system LT0 of monadic and atomic
(quanti�er-free) logic follows. All functions in LT 0 can be list-wise represented in LT0.

An analogue of Hilbert syntactic condition D1 (d `S A implies `S prov(dde;dAe)) holds
for LT0, and its incompleteness follows. We believe that this system might qualify as
smallest system known in which G�odel-like diagonalization can be applied.
The class of (the codes for) all f(x) identically true is proved to be productive, and,
therefore, not axiomatizable. Hence this result doesn't depend on the particular (and
perhaps slightly odd) system LT0, or on the peculiarities of our codes.

Journal of Universal Computer Science, vol. 6, no. 12 (2000), 1185-1196
submitted: 17/3/00, accepted: 12/10/00, appeared: 28/12/00 Springer Pub. Co.

We feel that the incompleteness of LT0 concerns, in its present form, several formal
systems. Indeed, on one hand, the language and deductive machinery of many �rst-
order theories S can be represented in a Polish pre�x form; and condition D1 for any
such S can be implemented in LT0. On the other hand, LT0, because of its poor
logic and computational complexity, is, in a sense, a natural sub-system of most formal
systems.
Let us observe that the present result implies that the no-man's land between Pres-
burger and G�odel domains is, from the point of view of a mere evaluation of the com-
putational power involved, a sub-class of the linear-time functions which lies between,
on one side, addition and words as data-type and, on the other side, trees, addition,
con/de-structors and the present restricted boolean recursion.
A historical remark. Sometimes people talking about Leibnitz appear to forget that
all his work has been carried out in monadic logic, and that he was maintaining that
all n-ary relations are reducible to unary properties (\A is larger than B" means that
\A is big insofar as B is small" | see Kneale [Kneale, 62, Ch.5.2]). In the context of
speculations of this kind, one might observe that the computation resources taking the
complete and decidable monadic pure logic into an incomplete theory is rather modest
| a time complexity below an, where a is a constant which can be expressed with two
decimal digits (with three tapes and a ternary alphabet). See Note 33 for a justi�cation
of \modest", on the grounds of a result by Jones [Jones, 93].

2 A class of linear time functions

De�nition 1. 1. 0 is a (ternary) list ; all other lists are in the form [X; Y;Z], where
X;Y and Z are lists.

2. The destructors x1; x2; x3 return respectively the head , the body , and the tail of x.
That is:
0i =df 0 (i = 1; 2; 3); [X;Y; Z]1 =df X; [X; Y; Z]2 =df Y ; [X; Y; Z]3 =df Z:

3. Notation. U; : : : ; Z are generic lists. x is our only informal variable de�ned on
the lists. Subscripts appended to U; : : : ; Z and x are always meaning conveying
information. In particular, xij is (xi)j .
[U; Y] is short for [U; Y; 0], and [U] for [U; 0; 0].

4. The unary numerals n are given by 0 =df 0; n+ 1 =df [0;n].
The truth-values are 0 (true) and 1 (false).

De�nition 2. The basic functions are x1, x21 and x31 (see Note 10 for the rationale of
this choice). The initial functions are the closure of the basic ones under the destructors.

Complex functions are usually built-up from simpler ones by substitution. For example,
having previously de�ned a function EQ(y; z) for equality, one moves by substitution
to EQ(y+ u; z+ u). Since this wouldn't work with unary functions, we use (a) a �nite
basis of de�ned schemes (see Def. 4); and (b) a potential in�nity of compiled schemes
(see Def. 5).
Notation 3. An n-ary scheme �n takes n functions f1; : : : ; fn into a new function
�n(f1; : : : ; fn)(x). Sometimes f(x)�g(x) stands for �(f; g)(x), and �f(x) for �(f)(x)
(cf. for example schemes or , ', and not below).

De�nition 4. The basic schemes are: (a) the assignment of the constant Y to x in
f(x); and (b) the equality , the negation, and the disjunction, such that

f(x) ' g(x) =df 0 i� f(x) = g(x);
f(x) ' g(x) =df 1 i� f(x) 6= g(x);

not f(x) =df 0 i� f(x) 6= 0;
not f(x) =df 1 i� f(x) = 0;

f(x) or g(x) =df 0 i� f(x) = 0 or g(x) = 0;
f(x) or g(x) =df 1 i� f(x) 6= 0 and g(x) 6= 0:

1186 Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

De�nition 5. 1. For each Y , de�ne the constant function \Y "(x) by assignment of
the constant [Y] to function x1.
Notation. We identify the constant functions with their values, writing Y for \Y "(x).
f(Y) is the closed function obtained from a given f (not necessarily closed) by assign-
ment of Y to x.
2. De�ne, by schemes not and or in f; g; 0;1, the compiled scheme impl (f; g) by
f(x) impl g(x) =df not f(x) or g(x).
De�ne in a similar way f(x) and g(x), f(x) i� g(x).

De�nition 6. Given a function g(x) and an initial function h(x) = x:::, function f =
R(g; h) is de�ned by the (boolean) recursion scheme R in the step-function g and in
the substituted function h if we have(

f�(x) = 0 if x is 0
f�(x) = g(x) and f(x2) and f(x3) otherwise;
f(x) = f�(h(x)):

Note 7. 1. The occurrences of x2 and x3 in last de�nition are just ways to show the
values for the recursive calls, not functions of x (which don't belong to LT 0).
2. Let I denote the identity function. For the sake of perspicuity, some de�nitions by
recursion will be given in two steps: in the �rst, we put f(x) =df R(g; I)(x); in the
second, we use f in the form f(x:::). However, since I doesn't belong to the class LT 0

de�ned below, this will stand for a single de�nition of the form f = R(g; h)(x), where
h(x) = x:::.

Example 1. Let us call tape a not empty word over f0; 1g. De�ne the code T of T by

0T =df [1; T]; 1T =df [2; T];

where if T is absent, then T is absent too. Thus we have for example 110 = [2; [2; [1]]].
Tapes are recognized by

tp(x) = ((x1 ' 1 or x1 ' 2) and (x21 ' 1 or x21 ' 2 or x21) and x31)
and tp(x2) and tp(x3):

To satisfy our syntax (cf. Note 7) we may use tp only in expressions like tp(x1); tp(x2111,
etc. (cf. proof of Lemma 13).

De�nition 8. 1. Class LT cf
0 (read: cons-free LT 0) is the closure of the initial func-

tions under the basic and the recursion schemes.
2. De�ne the constructors by consY;Z(x) =df [Y; x; Z].

3. LT 0 is the closure under the basic schemes of LT cf
0 plus all functions cons.

4. A function f(x) is closed if it begins with an assignment, or if it is built-up from
closed functions.

5. TRUE(LT 0) is the class of all f(x) 2 LT 0 such that f(Y) = 0 for all Y .

De�nition 9. The height ht(X) and length jXj of X are given by

ht(0) =df 0; ht([X;Y; Z]) =df 1 +max(ht(X); ht(Y); ht(Z));
j0j =df 1; j[X; Y; Z]j =df 1 + jXj+ jY j+ jZj:

The length lh(f) of f is the number of schemes occurring in its de�nition, plus the
overall length of the constants occurring in its assignments.

Note 10. 1. By induction on lh(f) (using the fact that R is a boolean scheme) one
shows that jf(X)j � lh(f) + jXj for all f 2 LT 0 and X.
2. When proving that LT 0 is contained in Lintime, we shall use the fact that every
f 2 LT 0 is obtained either from a function g(u; y; z) by de�ning f(x) = g(x1; x21; x31);
or else from a recursive function g(y) by de�ning f(x) = g(x:::).
3. Let us represent a binary tree � by a list x of the form [root, left sub-tree, right
subtree]. The role of x1; x21 and x31 is then important since they return the three

1187Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

lowest nodes of � . When designing LT 0 our purpose was to allow an easy description
of linear time algorithms based on breadth �rst visits to binary trees described in this
way. An obvious generalization of LT 0 to n-ary trees is obtained by: de�ning n�3 new
basic functions x41; : : : ; xn1, and by allowing the recursive calls x4; : : : ; xn in de�nition
of scheme R.

We place here next section in order to supply further examples of our functions.

3 Recognition of terminating computations

A variant of TM's. When complexity doesn't matter, we may restrict ourselves,
without any loss of generality (see our [Caporaso, 79]), to structured TM's M with a
single (in�nite to the right) semi-tape over the binary alphabet B, generated by the
following grammar

htmi := ljrjwjejhtmihtmij(htmi);

where l; r; w; e are elementary TM's (meaning: move l-eft, r-ight, w-rite 1, e-rase); where
M1M2 is the sequence composition of M1 (executed �rst) with M2; and where (M) is
the repetition of M while the observed symbol is 1.
Notation 11. 1. T1; T2; : : : are not-empty words over alphabet B.
2. Given T1 and T2, we write T1T2 for the contents of the �rst jT1T2j cells of a tape,

whose observed symbol is the leftmost bit of T2, and whose other cells contain a
zero.

3. An instantaneous description (ID) is a triple T1;M; T2, which is said to be terminal
if M is absent. When M is not absent, it says that M is placed over T1T2.

4. An atom is in the form T1 M T2 j= T �
1 M� T �

2 . It means that M , by input T1 T2,
yields the same output as M� by input T �

1 T
�
2 ; when M

� is absent, it says that M
by input T1 T2 yields T

�
1 T

�
2 .

We may represent the behaviour of our structured TM's by means of the following rules
(the idea is that the leftmost elementary TM or (M) is executed �rst, and cancelled;
in rules 5, (M1) is executed by copying M1 at the left of (M1) if the observed symbol
is 1)

1a T1b lM T2 j= T1 M bT2 (b 2 B);
1b b lM T2 j= 0M bT2;
2a T1 rM bT2 j= T1b M T2;
2b T1 rM b j= T1b M 0;
3 T1 wM bT2 j= T1 M 1T2;
4 T1 eM bT2 j= T1 M 0T2;
5a T1 (M1)M 1T2 j= T1 M1(M1)M 1T2;
5b T1 (M1)M 0T2 j= T1 M 0T2:

De�nition 12. A computation of M taking T1 T2 into T
�
1 T

�
2 is a sequence C = I1; : : : ;

In of ID's, such that I1 = T1 M T2; In = T �
1 T

�
2 ; and for all i < n we have Ii j= Ii+1,

by one of the rules above. I1 is the initial ID of C.
Codes. 0ur codes are based on the following method:
(a) a terminal alphabet T is adopted, and an arity 0 � ari(L) � 2 is assigned (tacitly
when obvious) to its letters;
(b) all expressions E to be coded are translated into elements E� of a context-free
language TP in Polish pre�x form over T;
(c) L =df i codes the i-th letter L of T , while 0 codes an absent expression;

(d) if E� is L E�
1 : : : E

�
n, then E = E� =df [L;E�

1 ; E
�
2].

To code the computations, de�ne M =df f0; 1; l; r; w; e;while; �g. The code for the TM

M is then [M] if M is one of the four elementary machines; is [while;M1] if M is (M1)

and is [�;M1;M2] if M is M1M2.

1188 Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

Following a method dating back to [Hao Wang, 57], we de�ne the code for the ID

I = T1 M T2 by I =df [T1;M; TR
2], where the code for the binary words has been

introduced in Ex. 1, and where WR denotes, as usual, word W read in reverse order.
We may now code the computations by

(ID1; : : : ; IDn) =df [[ID1; [ID2; [: : : ; [IDn] : : :]]]]:

Lemma13. A recognizer cm for the computations may be de�ned in LT 0.

Proof. The following function recognizes the TM codes

tm(x) = ((x1 ' while and not x21 and x31)
or (x1 ' � and not x21 and not x31)

or (x1 ' l; r; w; e and x21 and x31)) and tm(x2) and tm(x3):

The ID's are recognized by id(x) =df tm(x2) and tp(x1) and tp(x3), where tp was
de�ned in Ex. 1. We may now de�ne a function nx which accepts all X in the form
[I; [J; U];W] such that I j= J by one of the rules 1a-5b above.

nx(x) = id(x1) and id(x21) and (st1a(x) or : : : or st5b(x));

and for example a recognizer for rule 1a is de�ned by

st1a(x) = x121 ' l and x122 ' x212 and x112 ' x211
and x13 ' x2132 and x111 ' x2131:

(Notice that the syntax of R is respected in our use of function tp, because all occur-
rences of tp (via function id) in nx are in the form xI for I = 11; 13; 211; 213 | cf.
Note 7). The result follows by de�ning cm0(x)=nx(x) and cm0(x2) and cm0(x3), and
cm(x) = cm0(x1) (cf. Notat. 7 for the reason of the distinction between cm0 and cm).

Note 14. Clauses like not x21 and x31 (in the �rst line of the de�nition of function tm
and at many other places throughout this paper) check that the arity of the current

terminal letter (while, in this case) is respected.

4 The formal system LT0

4.1 Language

Let f(x) be obtained by substitution of g(x) for x in h(x). If we write f in the usual
explicit form which is obtained by replacing all occurrences of x in h by g, we have
that substitution cannot be performed in linear time, since jf(x)j is bounded above
by jg(x)jjh(x)j. In our formal system functions are separated from their arguments, by
following G�odel's implicit presentation [G�odel, 34] of the PR functions (see also Rose
[Rose, 84, Ch. 6] or Kleene [Kleene, 52, p. 221]). The same di�culty is met if formal
variables for the functors are used, and the related substitution rule is postulated.
Hence we give to F;G; : : : the status of syntactic variables de�ned on the functors. An
expression in which F;G; : : : occur is a syntactic or metamathematical scheme, which
yields a formal object when F;G; : : : are assigned with a system of (formal) functors.

De�nition 15. 1. The (formal) constants are _0 and all expressions of the form [_X; _Y ;
_Z], where _X; _Y ; _Z are constants.

2. The basic functors are D1;D21;D31; C
b
Y;Z . The functor schemes �n are: H; B; T;

Cs
Y;Z ; N;AY , for n = 1; E;D;R, for n = 2. (mnemonic: D-estructor, B-ody,

H-ead, T -ail, C-onstruction, N -egation, A-ssignment, E-quality, D-isjunction, R-
ecursion).

3. A functor F;G;H; : : : is a basic functor, or is an expression of the form �n(F1; : : : ;
Fn), submitted to Restriction 6 below.

1189Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

4. a is the only formal variable. The terms are in the form F (a).
5. De�ne the intended interpretation = in the most obvious way.
6. Restriction. (a) The initial functors are built-up from the basic functors by means

of the destructors. Only initial functors may occur in the scope of a destructor.
(b) G should be cons-free, and H should be an initial functor in all R(G;H).

Note 16. In principle, we derive terms; in practice, the form of such terms is E(F;G)(a),
and their interpretation is f(X) ' g(X) for all X, and for f = =(F); g = =(G).

Notation 17. 1. F stands for F (a) if there is no room for confusion between terms
and atoms. We write F = G for E(F;G) when we believe that the scope and the
formal status of the indicated equality are clear.

2. F (_Y) is short for AY (F).
3. We write :F and F_G for N(F) andD(F;G). F^G; F ! G; F $ G are the func-

tor compiled schemes corresponding to and , impl , i� . F 6= G is N(E(F;G)).
We often omit the parentheses redundant with respect to the following priorities:
=; 6=;:;^;_;!;$.

4.2 Derivations

Proper axioms. The proper axioms of system LT0 are obtained by assigning in the
following proper axiom schemes any constant to the syntactic variables X; Y; Z, and
any functor to F;G;H;K

name axiom
:

De-0 H(_0); B(_0); T (_0)

De-st H([_X; _Y ; _Z]) = _X ; B([_X; _Y ; _Z]) = _Y ; T ([_X; _Y ; _Z]) = _Z

C Cb
Y;Z(_X) = [_Y ; _X; _Z]

R-0 H ! R(G;H)
R-st :H ! (R(G;H) = (G(H(H)) ^R(G;B(H)) ^R(G; T (H))))

Zero F $ (_0 = F)

N (: _0) = _1
Eq G = H $ ((G ^H) _ (:G ^ :H^

H(G) = H(H) ^B(G) = B(H) ^ T (G) = T (H)))
Trans (F = G ^ F = H)! G = H

A-�1 F = _X ! �1(F) = �1(_X)

A-�2 (F = _X ^G = _Y)! �2(F;G) = �2(_X; _Y)

A-Q F ! F (_Y)

Logic. We adapt the sentential fragment of the system in Introduction to Metamath-
ematics. Thus, modus ponens is the only rule, and the logic axioms are all instances
of the following axiom schemes:

1 F ! (G! F) 2 (F ! G)! ((F ! (G! H))! (F ! H))
3 F ! F _G 4 F ! G _ F
5 F ! (G! F ^G) 6 (F ! H)! ((G! H)! (F _G! H))
7 F ^G! F 8 F ^G! G
9 ::F ! F 10 (F ! G)! ((F ! :G)! :F):

We take for granted that all proper axioms are true under =, and that, therefore, our
deductive machinery yields a consistent system.
Lemma18. 1. Reexivity and symmetry of equality can be derived in LT0.

2. We have ` (E(_X; _Y) = _1)$:E(_X; _Y).
3. All functions f 2 LT 0 are list-wise representable. That is, for all g; k 2 LT 0, there
are G and K such that for all Y; Z we have

=(G) = g;=(K) = k; and g(Y) = k(Z) implies ` G(_Y) = K(_Z):

1190 Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

Proof. 1. Reexivity. By logic from the instance _0 = F ! (_0 = F ! F = F) of axiom

Trans, and from the instance (_0 = F)! (_0 = F) of law G! G.
Symmetry. (F = G) ! (G = F) follows by logic from F = F and from instance
(F = G) ^ (F = F)! (G = F) of Trans.
In what follows justi�cations \by logic" will include the laws of equality.

2. We have ` E(_X; _Y) = _1! :(E(_X; _Y)) = : _1 (axiom A-N)! :E(_X; _Y) = _0 (axiom

N) ! :E(_X; _Y) (axiom Zero).

Moreover, we have :E(_X; _Y) ! :E(_X; _Y) = _0 (axiom Zero) ! ::E(_X; _Y) = _1

(axioms A-N, N and logic) ! E(_X; _Y) = _1 (axiom 9, logic).
3. Induction on lh(k) + lh(g), and on ht(Y) or ht(Z) if g or k begins with R. We may
assume that g(Y) is e(Y) ' k(Y) and that k is, say, \1", since in all other cases the
proof is like the standard proofs of numeralwise representability in number theory. We
have to prove

` E(G(_Y); K(_Y)) = _1: (1)

The hypothesis (e(Y) ' k(Y)) = 1 implies that we have e(Y) = U; k(Y) = W and
U 6=W for some U;W . By the ind. hyp. there are E;K such that =(E) = e;=(K) = k,

(a) ` G(_Y) = _U ; (b) ` K(_Y) = _W ; (c) ` E(_U; _W) = _1: (2)

From the law of equality a = b ^ c = d ^ a = c! b = d, we obtain

` ((G(_Y) = _U) ^ (K(_Y) = _W) ^ (G(_Y) = K(_Y)))! E(_U; _W): (3)

From (2)(a),(b) and (3), modus ponens (twice), and contraposition, we obtain

` :(E(_U; _W)! :(E(G(_Y); K(_Y))): (4)

The result now follows, since we have ` E(_U; _W) = _1 ! :(E(G(_Y); K(_Y))) (by (4)

and part 2); ` :(E(G(_Y); K(_Y))) by (2)(c); ` E(G(_Y); K(_Y)) = _1 (by the other half
of part 2).

5 Codes and syntactic functions

To code the elements of LT0 we use the terminal alphabet

T =df f�; :; y; 0; D1; D21; D31;H; B; T; C
s
; N;A;R;D;E;Ad;!; 6=; Jig;

where: (a) �; :; y are special symbols used to force the ternary lists in an essentially
binary coding system; (b) Ji is the name of the i-th axiom scheme; and (c) Ad;!; 6=
are used for the special codes de�ned below.
De�nition 19. 1. The code L for the i-th letter L of T is i.
2. The code X for the constant _X is [0] if X is _0, and is [�; [:; U]; [y; Y ; Z]] if X is

[_U; _Y ; _Z].

3. [F] codes functor F if it is: (a) one of the basic functors D1;D21;D31; (b) an initial
functor not occurring in the scope of a destructor; (c) a C-free functor occurring in the
scope of a C.

4. [[Ct; Y ; Z]; F] (t = b; s) codes Ct
Y;Z(F), with F absent for s = b; [[A; Y]; F] codes

F (Y).

5. [�;F] codes �(F) for � = H; B; T;N .

6. [�;G;H] codes �(G;H) for � = E;D;R.

7. For every F , [Ad; F] codes the diagonal assignment A
F
(F) (cf. Lemma 23).

8. To have easier syntactic algorithms [!; H; G] codes G ! H, and [6=; H;G] codes
G 6= H.

1191Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

9. [[F ; Ji]] codes the derivation consisting of the instance F of axiom scheme Ji.
10. If derivation d yields F and ends with a modus ponens whose major and minor

premisses are respectively the conclusions of d1 and d2, then d = [F ; d1; d2].

Example 2. [E; [D1]; [[Cs; Y ; Z]; [[H; [H; [D21]]]]]] codes C
s
Y;Z(a2111) = D21.

The di�erent ways of parenthesising the two H's is due to the fact that the last one
has no particular status, while the �rst concludes the construction of an initial functor,
which, as a whole, is regarded as a leaf in the construction of the code (cf. clause 3(b)
in last De�nition).

De�nition 20. Function f 2 LT 0 recognizes a class S of syntactic entities E if we
have ` f(E) i� E 2 S.

Lemma21. A recognizer de for the derivations of LT0 can be de�ned in LT 0.

Proof. By coding in our language (cf. Note 14) a number of rather standard syntactic
algorithms, we may de�ne the following functions which respectively recognize: the
constants, the initial functors, the cons-free functors, and the functors

co(x) = c0(x) and x1 ' 0 or x1 ' �; where

c0(x) = ((x1 ' 0 and x21 and x31) or

(x1 ' � and x21 ' : and x31 ' y) or
(x1 ' : and x21 ' � and x31) or

(x1 ' y and x21 ' � and x31 ' �)) and c0(x2) and c0(x3)

in(x) = ((x1 ' D1; D21; D31 and x21 and x31) or (x1 ' H; B; T and x31))
and in(x2) and in(x3)

cf(x) = ((in(x1) and x21 and x31) or (x11 ' A ^ co(x12)) or

(x1 ' N;Ad and x31) or (x1 ' E;D;!; 6=)

or (x1 ' R and in(x31))) and cf(x2) and cf(x3)

fc(x) = ((cf(x1) and x21 and x31) or (x11 ' A and co(x12))

or (x1 ' N;Ad and x31)

or (x1 ' E;D;!; 6=)) and fc(x2) and fc(x3):

We may now de�ne (recall that [!; G; F] codes F ! G)

de(x) = ((x1 ' x212 and x213 ' x31 and x211 ' !)
(or axm(x1) and x21 and x31)) and de(x2) and de(x3));

where the �rst line checks the inferences by modus ponens, and where

ax(x1) = fc(x11) and x13 and (ax-1(x1) or : : : or ax-D(x1)));

and for example the instances of Kleene's axiom scheme 1 are recognized by

ax-1(x1) = (x111 ' x1121 ' !) and x1122 ' x113 and x12 ' J1:

6 Diagonalization

Notation 22. Hereinafter, to have less baroque symbolsX will stand, in formal contexts,

for
_
X. To improve readability, we write hY; f(a); Zi for consY;Z(f(a)).

If =(F) = f then F is the code f for f .

Lemma23. 1. For every functor F there is a functor G such that

` G(a)$ (F (a)! H(a) 6= G):

2. For all f(x) 2 LT 0 there is g(x) 2 LT 0 such that

(g(x) i� (f(x) impl not x11 ' g)) 2 TRUE(LT 0):

1192 Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

Proof. We show part 1 only, since the proof of part 2 is similar and easier.

De�ne sb(x) =df hAd; x; 0i (cf. Notat. 22). By part 7 of Def. 19 we have

sb(K) = [Ad;K] = K(K); for all functors K (1)

and, by Lemma 18, there exists a functor SB such that

` SB(K) = K(K); for all functors K: (2)

Given F , de�ne function sbF by

sbF (x) =df h!; h6=; hA; x; SBi;Hi; F i: (3)

By part 8 of Def. 19, we have sbF (K) = F ! H 6= SB(K). By (1) and again by
Lemma 18 there exists a functor SBF such that we have

` SBF (K) = F ! H 6= SB(K); for all functors K. (4)

Now de�ne
G =df F ! H 6= SB(SBF): (5)

By (4) we have

` SB(SBF) = F ! H 6= SB(SBF);

that is, by (5),

` SB(SBF) = G: (6)

From (6), by repeated applications of axioms A-� we may now replace SB(SBF) in

` G $ G (that is in ` G $ F ! H 6= SB(SBF)) with G. This yields ` G $ (F !

H 6= G).

7 Incompleteness

De�nition 24. Let DE be the functor which, by Lemma 18, represents function de in
LT0. Functor GOE is the \G" associated with DE by Lemma 23.

Theorem25. Functor GOE is underivable though true.

Proof. By de�nition of GOE and last lemma we have

` GOE(a)$ (DE(a)! H(a) 6= GOE): (1)

Thus we have
GOE(a) 2 TRUE(LT 0) i� not ` GOE(a): (2)

Assume (ad absurdum) d ` GOE for some derivation d. We have

` DE(d) ^H(d) = GOE ` GOE, def. of DE, Lemma 18

` DE(a)! H(a) 6= GOE (1), ` GOE, logic

` DE(d)! H(d) 6= GOE axiom A-Q, with d as _Y

` (H(d) 6= GOE) ^ (H(d) = GOE) logic.

Contradiction with the consistency of LT0 (see the assertion before Lemma 18).

1193Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

8 Productivity

The incompleteness of last section does not depend on the peculiarities of LT0, since
we now show that no axiomatizable system can exhaust TRUE(LT 0).
Notation 26. 1. For every Z coding a (structured) TM M , WZ is the set of all lists Y
such that M by input Y 0 stops operating.

2. De�ne TR =df ff : f(x) 2 TRUE(LT 0)g.

Lemma27. For all Z a function pZ 2 LT 0 can be de�ned such that

X 2WZ i� pZ(U) = 0 and U11 = X for some U:

Proof. De�ne pZ(x) =df cm(x) and x12 ' Z. If X 2 WZ there exists a computation
code U = [[X;Z; 0]; : : :] which is accepted by co and by pZ .

De�nition 28. For all Z, qZ 2 LT 0 is the function (associated by Lemma 23 with
function pZ(x) of last lemma) such that

(qZ(x) i� (pZ(x) impl not (x11 ' qZ))) 2 TRUE(LT 0): (1)

Theorem29. (The set of all codes of the elements of) TR is productive.

Proof. Let WZ � TR be given. We show that we have qZ 2 TR nWZ .
1. Assume �rst (ad absurdum) qZ(Y) = 1 for some Y . By (1) we then have

pZ(Y) = 0 and (Y11 ' qZ) = 0: (2)

However (2) implies (by Lemma 27) qZ 2WZ | a contradiction with the hyp. ad abs.,
since we have WZ � TR. Thus we actually have qZ 2 TR.
2. To obtain qZ 62 WZ , assume now (again ad absurdum) qZ 2 WZ. By lemma 27 we
then have pZ(U) = 0 and U11 = qZ for some U . By (1) this implies qZ(U) = 1 | a
contradiction, since qZ 2 TR was proved in the �rst part of this proof.

9 Complexity

We restrict ourselves to tm's with 3 semi-tapes Ti over the alphabet � which, besides
the blank symbol �, consists of the following four symbols: zero, brackets, comma.
Notation 30. u; v; w; y; z are words (possibly empty) over � . Ti = u " w means that
cells 1; : : : ; juwj of Ti contain uw, cell juj+1 is observed, and all other cells are blank.
We omit " when in the rightmost position.

De�nition 31. M by input y standard computes (s-computes) F (y) within time T (n)
and space S(n) if for all u; v; w; y we have that M (a) starts operating with

T1 = u�y; T2 = v; T3 = w;

(b) stops operating with

T1 = u�y�F (y); T2 = v; T3 = w;

(c) after T (jyj) steps, without ever visiting cells juj+ S(jyj); jvj+ S(jyj); jwj+ S(jyj)).

LTSC0 is the class of all functions which are standard computed by a tm in the form
above within time an+ b and space n+ c, for some constants a; b; c.

Example 3. 1. Let UR stand for U read in reverse order, and let U (i) denote the i-th
occurrrence of U in a given word. The form of every instance W of Kleene'axiom 1 is

in the form [X(1); : : : ; Y; : : : ; X(2); : : :], where the ellipses stand for constant patterns
of connectives and brackets that we omit for simplicity. They are standard decided in
time 2n and space n by a tm which: (a) moving from right to left on T1 and from left

to right on T2, writes X
(2) R on T2 (using T3 to record and balance the brackets); (b)

1194 Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

moving back from the left end of W checks for equality X(1) with X(2) R and, in the

meantime, erases X(2) R.
2. The instances W of axiom 2 are in the form (again we omit all connectives and some
brackets)

[X
(1)
; : : : ; Y

(1)
; : : : ; X

(2)
; : : : ; Y

(2)
; : : : ; Z

(1)
; : : : ; X

(3)
; : : : ; Z

(2)
; : : :]:

They are standard decided in time 2n and space n by a tm which:

(a) moving from right to left on T1, writes Z
(2) RY (2) R in T2, and X

(3) R in T3;

(b) writes X(2) R in T2, and, in the mean time, checks for equality X(2) R with X(3) R

and erases X(3) R in T3; thus entering a con�guration of the form

T1 = u1�[X; Y; " X; Y;Z;X; Z]; T2 = u2�Z
R
�Y

R
�X

R
" �; T3 = u3 " �;

(c) moving back from the left end ofW , checks for equality X(1); Y (1); Z(1) with X(2) R;

Y (2) R; Z(2) R, and, in the mean time, erases the indicated reversed copies from T2 and
T3.
3. One sees that this procedure (with the same time and space complexities) can be
applied in order to s-recognize the other axioms and the inferences by modus ponens.

Theorem32. LT 0 � LTSC0.

Proof. Let f be given, and assume �rst f 2 LT
cf
0 . De�ne y = x if f begins with R

and y = x1; x21; x31 otherwise. We show that there is a tm Mf which, by input y
s-computes f(x) in time ajxj and space jxj, for some a. Induction on lh(f).

Construction of Mf . Case 1. f is an initial function, consisting of some destructors
applied to x1, or to x21, or to x31; or f is g ' h, where g and h are initial functions.
De�ne Mf by methods like in Ex. 3.
Case 2. f doesn't begin with R and is not like under case 1. Assume for example that
f is g(x) or h(x). A tm Mf can be decided, which: (a) applies the tm Mg (associated
with g by the inductive construction); (b) stores in its �nite control the truth-value
corresponding to the value of g(x), and erases g(x) from T1; (c) appliesMh; (d) replaces
the value of h(x) in T1 by f(x).
Case 3. f = R(g; h). A tm can be de�ned which behaves in the following way

z := h(y); q := true ;
while z not empty and q do MAINCYCLE
if q then accept else reject,

where procedure maincycle is described in next �gure by means of some re-write rules
(Mg accepts/rejects is short for g accepts/rejects the three rightmost elements of T1)

T1 T2 Mg) T1 T2 q

u z " [Xw) u�X z " w

u z "; 0w) u�0 z " w

u z "; [Xw) u�X z " w

u�X�Y �Z z accepts) u�X z

u�X�Y �Z z rejects) u�X z false

Assume given an argument X for f , and de�ne Y = h(X).Mf scans and erases Y from
left to right; in the meantime, it uses T1 as a stack of arguments for Mg. To see the
algorithm, imagine that Y is a binary tree � , represented in the way outlined under
Note 10. At each " [U , Mf understands that U is a parent , and stores it in T1; at each
"; V , Mf takes V as a son, and stores it in T1 too. When a] is met, a sub-tree of U has
been entirely visited and Mg can be applied to check the relation parent-sons among
the last three elements U; V;W in T1. If Mg accepts, Mf may forget the sons, though
the parent U has still to be checked in its role of son of a node stored at its left in T1.

1195Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

Complexity of Mf Assume that f begins by R, since else the result follows imme-
diately by the ind. hyp. Time for Mf may be estimated by summing-up the amounts
required for: (a) computing h(x) in T3; (b) push and pop operations on T1; (c) calls
to Mg. Time for part (a) is 2n. Time for part (b) is 2n too, since every symbol of x is
pushed into and popped from T1 at most once. By the ind. hyp. runtime for Mg is an
for some constant a; hence, since every symbol of x is processed by Mg at most twice
(the �rst in the role of son, the second as parent) time for part (c) is 2an. The overall
time complexity of Mf is, therefore, 2(a+ 1)n.

Conclusion of the proof The theorem is proved by the arguments above for all f be-

ginning with R. If f 2 LT
cf
0 doesn't begin with R, the result follows by considering

the amount of time 2jxj, needed to take x into y = x1; x21; x31. Trivial adaptations to

the arguments above prove the result for all f 2 LT 0 n LT
cf
0 .

Note 33. Let lh0(f) denote the length of f if the constants occurring in its cons and
assignments are ignored; and let nr(f) denote the level of nesting of its recursions. By
an easy, though cumbersome, analysis of last proof one proves that the time complexity

of Mf is lh0(n)2
nr(f). By Ex. 3 and considering that the level of recursion nesting in

de is 4, this yields a rough estimate of 100n for the time complexity of de. Thus our
syntactic algorithms are in Jones class lin(cn) for c approximatively equal to 100. We
report this fact because hierarchy lin(abn) (i) is proper for a constant b; and (ii) is
based on a time measure more \faithful to current programming practice", than the
trick of obtaining a linear speed-up by an increase in the tape alphabet. These two
points give sense to our claim that completeness is lost when a modest amount of
computational resources is added to the sum operator.

References

[Caporaso, 79] S. Caporaso, Consistency proof without trans�nite induction for a for-
mal system for Turing machines. Arch. Math. Logik u. G. 19(1979)157-164.

[G�odel, 34] K.G�odel, On undecidable propositions of formal mathematical systems. In
Fefermann et alii (eds)Collected papers, vol. I (Oxford University Press, 1986).

[Jones, 93] N.D. Jones, Constants time factors do matter . In S. Homer(Ed.) STOC93,
Symposium on Theory of Computing. (ACM Press, 1993)

[Jones, 97] N.D. Jones, Computability and Complexity from a programming perspective.
(MIT Press, 1997)

[Kleene, 52] S.C. Kleene, Introduction to Metamathematics. (North-Holland, Amster-
dam, 1952).

[Kneale, 62] W.Kneale, and M. Kneale, The development of logic. (Clarendon Press,
Oxford, 1962).

[Rose, 84] H.E. Rose, Subrecursion: Functions and hierarchies . (Oxford University
Press, Oxford, 1984).

[Smullyan, 61] R.M.Smullyan, Theory of formal systems. Annals of mathematical stud-
ies 47. (Princeton University Press, 1961).

[Hao Wang, 57] Hao Wang, A variant to Turing's theory of computing machines. Jour-
nal of the ACM 4.1(1957).

1196 Caporaso S., Pani G., Covino E.: Incompleteness in Linear Time

