
Grammar Systems With Negated Conditions in Their

Cooperation Protocols

Henning Bordihn
(Fakult�at f�ur Informatik, Otto-von-Guericke-Universit�at,

Postfach 4120, D-39016 Magdeburg, Germany

bordihn@iws.cs.uni-magdeburg.de)

Markus Holzer1

(D�epartement d'I.R.O., Universit�e de Montr�eal, C.P. 6128,

succ. Centre-Ville, Montr�eal (Qu�ebec), H3C 3J7 Canada

holzer@iro.umontreal.ca)

Abstract: The investigation on Boolean operations on the stop conditions of deriva-

tion modes for cooperating distributed grammar systems is continued by considering

the logical negation of such conditions. The focus is on the negation of the t-mode of

derivation, where such non-t-components may stop rewriting only if they still have a

production applicable to the current sentential form. In many cases, hybrid cooperating

distributed grammar systems with non-t-components turn out to give new character-

izations of the class of programmed context-free languages or recurrent programmed

context-free languages, where the latter class coincides with the biologically motivated

family of languages generated by ET0L systems with random context. Thus, the results

presented in this paper can shed new light on some longstanding open problems in the

theory of regulated rewriting.

Key Words: Formal languages, grammar systems, programmed grammars, regulated

rewriting.

Category: F.4.2, F.4.3

1 Introduction

The theory of cooperating distributed grammar systems|for an overview we
refer to [Dassow, P�aun, Rozenberg 1997]|has become a vivid �eld in formal
language theory since its origin in [Csuhaj-Varj�u, Dassow 1990], with forerunner
papers [Meersman, Rozenberg 1978] and [Atanasiu, Mitrana 1989]. Its motiva-
tion is twofold: on the one hand, it is stemming from the syntax of programming
languages since grammar systems can be seen as generalization of two-level sub-
stitution grammars to a multi-level concept. On the other hand, they serve as
formal language description of multi-agent systems due to their close relations to
models in arti�cial intelligence for distributed problem solving like blackboard
models. Furthermore, in recent papers grammar systems have been considered as
sequential counterparts of tabled Lindenmayer systems [Bordihn, Csuhaj-Varj�u,
Dassow 1999]. For applications of grammar systems in various �elds of computer
science we refer, e.g., to [Boldt and J�urgensen 2000] and [Freund and Kelemenova
2000]. In particular we want to mention the use of grammar systems in modeling

1
Part of the work was done while the author was at Wilhelm-Schickard Institut f�ur

Informatik, Universit�at T�ubingen, Sand 13, D-72076 T�ubingen, Germany.

Journal of Universal Computer Science, vol. 6, no. 12 (2000), 1165-1184
submitted: 3/2/00, accepted: 30/8/00, appeared: 28/12/00 Springer Pub. Co.

human-machine interfaces, in particular interfaces between a human and a com-
puter using non-standardized spoken language [Aydin, J�urgensen, and Robbins
2000], in autolexical syntax [Jim�enez-L�opez and Mart��n-Vide 2000], and for the
recognition of hand-written characters [Neubauer and Summerer 2000].

A cooperating distributed grammar system (CDGS, for short) consists of a
�nite set of (context-free) grammars, called components, performing derivation
steps on a common sentential form in turns, according to some cooperation
protocol. Simple such protocols are the so-called �-mode, � k-mode, = k-mode,
or � k-mode, where a component, once started, has to perform an arbitrary
number, at most k, exactly k, or at least k derivation steps, respectively. In terms
of multi-agent systems, the components correspond to the independent problem
solving agents, the sentential form to the current state of the problem solving,
and the generated language represents the set of problem solutions. In many
papers dealing with CDGS's, competence as an important feature of agents
is formalized and used as basis of the cooperation protocol (for a thorough
discussion see, e.g., [Bordihn, Csuhaj-Varj�u 1996]). Mainly, the so-called t-mode
has been considered (cf., e.g., [Csuhaj-Varj�u, Dassow 1990] and [Csuhaj-Varj�u,
Dassow, Kelemen, P�aun 1994]): each component which starts to work on the
sentential form has to perform as many derivation steps as possible, i.e., it has
to continue its work as long as it can contribute to the problem solving by
having a production which is applicable to the current sentential form. Also in
the �rst paper [Meersman, Rozenberg 1978] on grammar systems, a competence
based derivation mode for the work of the components was formulated: when
enabled, a component has to proceed the derivation until and unless it is totally
competent, this means it is able to replace any nonterminal symbol occurring in
the sentential form.

In this paper, we shall investigate CDGS's working according to another
cooperation protocol based on the competence of its components: only competent
components are allowed to interrupt their work and to hand over the sentential
form, more precisely a component must have at least one production which is
still applicable when it stops rewriting. This way it is prevented that one agent
dominates the problem solving what is in line with the concept of fairness in
grammar systems as considered in [Dassow, Mitrana 1996], where it has turned
out that the fairness restriction leads to an increase in the generative power of
the grammar systems in many cases. Clearly, the stop condition for this mode
is nothing else but the logical negation of the stop condition for the t-mode.
From this point of view, we continue the research on Boolean combinations of
the \classical" derivation modes, sometimes referred to as internal hybrid modes.

In [Fernau, Freund, Holzer 1998] and also in [Fernau, Holzer, Freund 1997]
and [Bordihn, Holzer 1999], the Boolean AND combinations are thoroughly in-
vestigated, partially coming to interesting characterizations of language families
determined by grammars with controlled derivations (regulated rewriting), even
involving the �nite index restriction, which is of dynamic nature, by purely
structural means. Moreover, the authors presented new characterizations of the
external hybridization modes of CDGS's introduced by [Mitrana 1993], where
each component may work in its own, speci�c mode. The Boolean OR com-
bination is not worth considering because it trivially leads to external hybrid
modes. In particular, a component working in (f1_f2)-mode corresponds to two
components, one in f1- and the other one in f2-mode. Therefore, the negation
is the only \basic" Boolean function on the predicates formalizing derivation

1166 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

modes which has not yet been investigated. This paper aims to �ll this gap. As
an aside, we shall see that the negation of the other classical derivation modes,
besides the t-mode, is of less interest. Moreover, we also investigate non-t hybrid
modes in the sense of [Fernau, Freund, Holzer 1998] and [Fernau, Holzer, Freund
1997].

Finally, let us mention that, by means of the above sketched non-t-mode, we
shall present further characterizations of typical language families encountered in
the theory of grammars with regulated rewriting such as programmed context-
free grammars and sub-families thereof. Especially, hybrid CDGS's having t-
and non-t-components characterize the family of recurrent programmed context-
free languages, a language class which is of interest because of its relation to
the biologically motivated family of ET0L languages with random context [von
Solms 1976] and since it forms an intermediate class between the families of
context-free random context and programmed context-free languages generated
by grammars without appearance checking [Fernau, W�atjen 1998]. The latter
classes play a role in the present paper when determining the generative power
of hybrid CDGS's with non-t-components in combination with other classical
modes. So we hope that the reader can gain a deeper insight into the nature of
(recurrent) programmed versus random context grammars without appearance
checking such that new light is shed on some longstanding open questions in the
�eld of regulated rewriting.

2 De�nitions

We assume the reader to be familiar with the basic notions of formal languages, as
contained in [Dassow, P�aun 1989]. In general, we have the following conventions:
� denotes inclusion, while � denotes strict inclusion. The set of positive integers
is denoted by IN and the cardinality of a set M by jM j. The empty word is
denoted by �. For x 2 V �, where V is some alphabet, and for W � V , let jxjW
denote the number of occurrences of letters from W in x. If W is a singleton
set fag, we simply write jxja instead of jxjfag. We consider two languages L1

and L2 to be equal if and only if L1 n f�g = L2 n f�g, and we simply write
L1 = L2 in this case.

The families of languages generated by regular, context-free, context-sen-
sitive, general type-0 Chomsky grammars, and ET0L systems are denoted by
L(REG), L(CF), L(CS), L(RE), and L(ET0L), respectively. We attach �� in
our notations if erasing rules are not permitted. Details about these families can
be found in [Dassow, P�aun 1989]. The class of �nite languages is denoted by
L(FIN).

A programmed grammar (see, for instance, [Rosenkrantz 1969]) is a septuple
G = (N;T; P; S; �; �; �), where N , T , and S 2 N are the set of nonterminals, the
set of terminals, and the start symbol, respectively. In the following we use VG
to denote the set N [T . P is the �nite set of productions � ! �, and � is a
�nite set of labels (for the productions in P), such that � can be also interpreted
as a function which outputs a production when being given a label; � and � are
functions from � into the set of subsets of �. For (x; r1) and (y; r2) in V �

G � �
and �(r1) = (�! �), we write (x; r1)) (y; r2) if and only if either x = x1�x2,
y = x1�x2 and r2 2 �(r1), or x = y and rule � ! � is not applicable to x, and
r2 2 �(r1). In the latter case, the derivation step is done in appearance checking

1167Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

mode. The set �(r1) is called success �eld and the set �(r1) failure �eld of r1.

As usual, the reexive transitive closure of) is denoted by
�
). The language

generated by G is de�ned as

L(G) = fw 2 T � j (S; r1)
�
) (w; r2) for some r1; r2 2 � g:

The family of languages generated by programmed grammars containing only
context-free core rules is denoted by L(P;CF; ac). We replace CF by CF � �
in that notation if erasing rules are forbidden. When no appearance checking
features are involved, i.e., �(r) = ; for each label r 2 �, we are led to the families
L(P;CF) and L(P;CF � �). A special variant of programmed grammars are
recurrent programmed grammars introduced in [von Solms 1976]. A programmed
context-free grammar G is a recurrent programmed context-free grammar if for
every p 2 � of G, if �(p) = ;, then p 2 �(p), and if �(p) 6= ;, then p 2
�(p) = �(p). The corresponding language families are denoted by L(RP;CF; ac)
and L(RP;CF� �; ac); when no appearance checking features are involved, i.e.,
�(r) = ; for each label r 2 �, we omit ac in that notation, again.

We use bracket notations like L(P;CF[��]) � L(P;CF[��]; ac) in order to
say that the statement holds both in case of forbidding erasing productions and
in the case of admitting erasing productions (neglecting the bracket contents).

A cooperating distributed grammar system (CDGS) of degree n, with n � 1,
is an (n+ 3)-tuple G = (N;T; S; P1; : : : ; Pn), where N , T are disjoint alphabets
of nonterminals and terminals, respectively, S 2 N , and P1; : : : ; Pn are context-
free rule sets called components. For x; y 2 (N [T)� and 1 � i � n, we write
x)i y if and only if x = x1Ax2, y = x1zx2 for some A ! z 2 Pi. Hence,

subscript i refers to the component to be used. By)�k
i ,)=k

i ,)�k
i ,)�

i we
denote a derivation consisting of at most k steps, exactly k steps, at least k
steps, an arbitrary number of steps, respectively, executed by component Pi.
Furthermore, we write x)t

i y if and only if x)�
i y and there is no z such that

y)i z.
Combining the former three modes with the t-mode requirement we obtain

the modes (t^� k), (t^= k), and (t^� k) which are de�ned as follows (see, e.g.,
[Fernau, Freund, Holzer 1998] and [Fernau, Holzer, Freund 1997]): there exists

a derivation which satis�es both properties in common, e.g., x)
(t^� k)

i y if and
only if there exists an m-step derivation from x to y using Pi such that m � k
and there is no z such that y)i z.

Applying the negation to the non-combined modes leads us to, e.g., x)
�t
i y,

which is de�ned as follows: x)
�t
i y if and only if x)

�
i y and there is a z such that

y)i z. In fact this is the most interesting negated derivation mode, because the
non-� k-, and non-� k-modes are nothing other than synonyms for the � k+1-
and � k � 1-modes, respectively. Moreover, the non-�-mode is useless, because
nothing can be derived with this mode. Finally, any non-= k-component can
be simulated by two identical components, one running in � k � 1-mode, the
other one running in � k+1-mode. Hybrid CDGS's, where each component may
work in its own speci�c mode, have been introduced in [Mitrana 1993] and are
formally de�ned as follows. Let

D = f�; tg [f�tg [f� k;= k;� k j k 2 IN g

[f (t ^ � k); (t ^= k); (t ^� k) j k 2 IN g

[f (�t ^ � k); (�t ^= k); (�t ^� k) j k 2 IN g:

1168 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

A hybrid CDGS is a construct G = (N;T; S; (P1; f1); : : : ; (Pn; fn)), where N ,
T , S, P1; : : : ; Pn are as in a CDGS and fi 2 D, with 1 � i � n. The language
generated by G is

L(G) = fw 2 T � j S)
fi1
i1

w1)
fi2
i2

� � �)
fim�1

im�1
wm�1)

fim
im

wm = w with

m � 1, 1 � ij � n, and 1 � j � m g:

If F � D, then the family of languages generated by [�-free] context-free hy-
brid CDGS's with degree at most n working with modes from F only, is de-
noted by L(HCDn;CF[��]; F). When the number of components is not re-
stricted, we write L(HCD1;CF[��]; F). If F is a singleton ffg, we simply write
L(CDn;CF[��]; f), where n 2 IN [f1g.

Since the negation of the t-mode is the only challenging one among the nega-
tions of the classical modes, we restrict ourselves to the �t-mode|sometimes we
also write non-t-mode instead of �t-mode. Moreover, starting from the non-t-
mode, we may build combined modes as it was done with the usual t-mode. In
this way we obtain the (�t ^ � k)-, (�t ^= k)-, and (�t ^ � k)-mode.

On the other hand, the reader may have observed, that for each n 2 IN[f1g
we have L(CDn;CF[��]; �t) = f;g, since with the non-t-mode it is not possible
to terminate a derivation. Therefore, in the remainder of this paper we only deal
with hybrid CDGS's with non-t-components.

In order to clarify our de�nitions, we give a short example:

Example 1. The hybrid CDGS G = (N;T; S; (P1; �t); (P2; �t); : : : ; (P6; �t); (P7; �))
with nonterminals N = fS;A;B;A0; B0; Fg, terminals T = fa; b; cg, and the
production sets

P1 = fS ! AB;A! Fg;
P2 = fA! aA0b; B ! Fg;
P3 = fB ! B0c; A0 ! Fg;
P4 = fA0 ! A;B0 ! Fg;

P5 = fB0 ! B;A! Fg;
P6 = fA! ab;B ! Fg; and
P7 = fB ! cg;

generates the language L(G) = f anbncn j n � 1 g. This can be seen as follows.
Obviously, it is possible to generate abc via the sentential form AB. Start-

ing from a form akAbkBck, with k � 0, the only applicable tables are P2, P6,
and P7. Note that the use of P1, P3, and P5 is impossible at this moment because
the derivation by these non-t-components would immediately terminate. Anal-
ogously, it is easy to see that in the �rst case, i.e., when applying P2, the rule
A! aA0b has to be used and not B ! F (note that F serves as failure symbol),
and then the system is forced to proceed with P3, P4, and P5 in this order. In
this way, we arrive at ak+1Abk+1Bck+1. In the other case, i.e., after applying P6,
the system can only terminate using P7 generating ak+1bk+1ck+1. In the �nal
case, i.e., after applying P7, the generating process stops, because no component
of G is applicable anymore. This shows that L(G) = f anbncn j n � 1 g.

3 Combining t or (t ^ � k) with �t

In this section we study grammar systems, where the components work, when
enabled, in t-mode ((t ^ � k)-mode) or in non-t-mode. In the �rst part of this

1169Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

section we deal with the combination of t and non-t-components, and in the
second part, with the (t^� k)-mode combined with non-t-components. It turns
out that these two combinations are closely related, and characterize the class
of recurrent programmed context-free languages. Since this class is known to be
equal to the ET0L languages with random context, the main result in the �rst
part of this section can be seen as a natural generalization of

L(CD1;CF[��]; t) = L(ET0L);

which was shown in [Csuhaj-Varj�u, Dassow 1990]. Hence, adding non-t-compo-
nents to a CDGS working in t-mode, behaves like adding random context to an
ET0L system.

Before we come to the �rst theorem, we have to introduce the notion of
ET0L systems with random context. An ET0L system with random context is
a construct G = (�;H; !;�; oc;noc). Here, (�;H; !;�) is an ordinary ET0L
system, where � is the total alphabet, � � � is the terminal alphabet, H is the
set of tables (�nite substitutions from � into ��), and ! 2 �+ is the axiom.
Furthermore, oc and noc are functions from H to the subsets of �. For x and y
in ��, we write x)h y for some h in H if and only if all letters in oc(h) occur
in x, no letter of noc(h) occurs in x, and y 2 h(x). The language generated by G
is de�ned as

L(G) = fw 2 �� j !)hi1
w1)hi2

� � �)him
wm = w with

m � 0, and hij 2 H , for 1 � j � m g:

In [von Solms 1976] it was shown that every language generated by a recurrent
programmed context-free grammar (with appearance checking) is a language
which can be generated by an ET0L system with random context and vice
versa. Obviously, by the proof given there, the results remain valid if �-rules
are forbidden on both sides. Using this characterization we are ready to prove
the following theorem:

Theorem1. L(HCD1;CF[��]; ftg [f�tg) = L(RP;CF[��]; ac).

Proof. First, we show how to simulate a hybrid CDGS

G = (N;T; S; (P1; f1); (P2; f2); : : : ; (Pn; fn))

with fi 2 ft; �tg, Pi = fpi1; pi2; : : : ; pinig, and pij = (Aij ! wij), for 1 � i � n
and 1 � j � ni. We construct a recurrent programmed grammar

G0 = (N [fS0; Fg; T; P; S0; �; �; �);

where S0 and F are new symbols and the production set P as well as the label
set � and the functions � and � are implicitly de�ned below.

The initialization is done by the rule �(init) = (S0 ! S) with the success �eld
�(init) = finitg[f pij j 1 � i � n and 1 � j � ni g and failure �eld �(init) = ;.

For 1 � i � n and 1 � j � ni, a rule pij is simulated by the production
�(pij) = (Aij ! wij). We have to distinguish two cases: in case fi = t the success
and failure �eld for pij is de�ned as �(pij) = fpijg [f pik j 1 � k � ni g [fti1g
and �(pij) = ;. After the simulation of the rules it has to be checked whether the
t-mode condition is met, i.e., it has to be tested whether the actual sentential

1170 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

form does not contain any left hand-side of the production set. This is done by
the rules �(tij) = (Aij ! F) with �(tij) = �(tij) = ftijg[ftij+1g if 1 � j < ni,
and �(tini) = �(tini) = ftinig [f pk` j 1 � k � n and 1 � ` � nk g. In the other
case, i.e, fi = �t, we set �(pij) = fpijg [f pik j 1 � k � ni g [f tik j 1 � k � ni g
and �(pij) = ;. As above, after the simulation, the necessary check for the mode
has to be done. For the non-t-mode this means that in the actual sentential form
has to appear at least one left hand-side of the production set. This check is done
by �(tij) = (Aij ! Aij) with �(tij) = ftijg [f pk` j 1 � k � n and 1 � ` � nk g
and �(tij) = ;.

This completes the description of the equivalent recurrent context-free gram-
mar G0 with appearance checking. Note, that the recurrent programmed gram-
mar has �-productions only if the hybrid CDGS has.

Now we have to show the other inclusion. By a standard argument the in-
volved hybrid CDGS language family is closed under union and embraces the
�nite languages. Let L � T � be in L(RP;CF[��]; ac), then

L =
[

a2T

(a � �a(L)) [(L \ T) [(L \ f�g);

where �a(L) = fw 2 T+ j aw 2 L g. Since L is in L(RP;CF[��]; ac), lan-
guage �a(L) is in L(RP;CF[��]; ac) due to the closure properties of that fam-
ily under derivatives, which can be proved by standard arguments. Thus, it
is su�cient for the proof of the present assertion to show that fag � �a(L) is
in L(HCD;CF[��]; ftg [f�tg) provided that �a(L) is a recurrent programmed
context-free language.

Here we use now the characterization of recurrent programmed context-free
languages in terms of ET0L systems with random context. Let

G = (�;H; !;�; oc;noc)

be an ET0L system with random context generating �a(L). Without loss of
generality assume H = fh1; h2; : : : ; hng and ! = S. Furthermore, let m =
maxf joc(h)j j h 2 H g and ��m is an abbreviation for fw 2 �� j jwj � m g.

The constructed hybrid CDGS has an alphabet of nonterminals

N = fS0; Fg [f pi; [pi; �] j 0 � i � n and � 2 ��m g

[f [A; i] j A 2 � and 0 � i � n g;

the unions being disjoint, an alphabet of terminals T = �, and axiom S0. The
production sets and their modes are given below.

The simulation starts with component

Pinit = fS0 ! [p0; �][S; 0]g;

which runs in t-mode. For 1 � i � n, de�ne the colouring components Pcol;i
which run in t-mode and select a table hi 2 H as follows:

Pcol;i = f[p0; �]! [pi; �]g [f[A; 0]! [A; i] j A 2 � g:

Then, for each table hi in H with oc(hi) = fA1; A2; : : : ; Am0g and m0 � m,
de�ne the non-t-components Pi;j , with 1 � j � m0, which check the occurrence
of Aj in the actual sentential form: Set

Pi;j = f [pi; w]! [pi; wAj] j w 2 �j�1 g [f[Aj ; i]! [Aj ; i]g;

1171Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

Due to the construction of the production sets, grammar G is forced to ap-
ply Pi;1, Pi;2, up to Pi;m0 in sequence. Before the simulation of hi can start its
work, the non-occurrence of the letters in noc(hi) has to be tested. This is done
with the below given t-component:

Pi;m0+1 = f[pi; A1 : : : Am0]! pig [f [A; i]! F j A 2 noc(hi) g:

Now the simulation of hi is done by the t-component

Pi = fpi ! [p0; �]g [f [A; i]! g(w) j w 2 hi(A) g [f[pi; v]! F j v 2 ��mg;

where g is the homomorphism such that g(A) = [A; 0], for A 2 �.
Finally, in order to terminate the derivation process one applies the following

production set which runs in t-mode:

Pterm = f[p0; �]! ag [f [A; 0]! A j A 2 � g [f [A; 0]! F j A 2 � n�g:

This completes the description of G.
The reader may easily verify that the constructed hybrid CDGS simulates

the original ET0L system with random context and generates a ��a(L). Observe,
that the hybrid CDGS has �-productions only if the programmed grammar has.
Thus, the claim follows. ut

Now let us turn our attention to the hierarchy induced by the number of
components. Here we �nd the following situation:

Theorem2. Let n 2 IN [f1g, with n � 4, then we have

L(CF) = L(HCD1;CF[��]; ftg [f�tg) � L(HCD2;CF[��]; ftg [f�tg)

� L(HCD3;CF[��]; ftg [f�tg)

� L(HCDn;CF[��]; ftg [f�tg)

= L(RP;CF[��]; ac):

Proof. The �rst equality and the inclusions are trivial. Finally, four components
can do the job of an arbitrary number of components, which can be proved by
an adaption of the construction given in [Mitrana 1993]. ut

We have not been able to settle the question of which of the above inclusions
are strict ones. Clearly, it is known that

L(ET0L) � L(HCD3;CF[��]; ftg [f�tg)

since any ET0L system can be simulated by a CDGS with three components
working in t-mode of derivation [Csuhaj-Varj�u, Dassow 1990], but it is open
whether or not this inclusion is getting strict when also non-t-components are
allowed. We do not even know whether or not this inclusion still holds if one or
two of the components run in non-t-mode instead of t-mode. We are only able
to prove the following two lemmas.

Lemma3. Any E0L language is generated by a hybrid CDGS with two t-com-
ponents and one non-t-component.

1172 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

Proof. Consider an E0L system G = (�; h; !;�), where � is the total alphabet,
� � � the set of terminals, ! 2 �� the axiom, and h is the production set. Let
�0 = f a0 j a 2 � g and �00 = f a00 j a 2 � g and let g1 and g2 be the following
morphisms: g1(a) = a if a 2 � n�, g1(a) = a0 if a 2 �, and g2(a) = a00 for each
a 2 �.

We construct the hybrid CDGS

H = (� [�0 [�00 [fS; T; T 0; T1; T2; Fg; �; fP1; P2; P3g; S);

the unions being disjoint, having the components

P1 = fT 0 ! T; T1 ! F; T2 ! Fg [f a! F j a 2 � g

[f g1(a)! g2(w) j a! w 2 h g;

P2 = fS ! Tg1(!); T ! T 0; T ! T1; T2 ! �g [fg2(a)! g1(a) j a 2 �g;

and
P3 = fT1 ! T2; T2 ! T2g [f g1(a)! a j a 2 � g;

where P1 and P2 are working in t-mode and P3 in non-t-mode.
The derivation process has to start by applying P2 yielding either T1g1(!)

or T 0g1(!). Whenever a sentential form T1g1(v), with v 2 ��, has been derived
by P2, one can successfully continue the derivation only with component P3,
since F is a failure symbol which can never be rewritten. Then one can reach a
terminal string if and only if v 2 �� by

T1g1(v))
�t
3
T2v)

t
2
v

disregarding useless applications of P2 in intermediate steps.
Starting from a form T 0g1(v), one can simulate one derivation step v) w

in G by the use of P1 and P2 in this sequence leading to Tg1(w). Any further
derivation in H introduces a failure symbol. In conclusion, L(H) = L(G) holds.

ut

Lemma4. There is a hybrid CDGS with one t-component and two non-t com-
ponents generating a non-context-free language.

Proof. We show how to generate the language L = f anbncm j 1 � n � mg.
Let G be a hybrid CDGS with the set of nonterminals N = fS; F;A;A0; B;B0g,
the set of terminals T = fa; b; cg, and the production sets

P1 = fS ! AB;A! aA0b; B ! B0c; A! ab;B ! cg;

P2 = fB0 ! B;A0 ! Fg;

and
P3 = fA0 ! A;B ! Fg;

where the P1 runs in t-mode whereas P2 and P3 are non-t-components.
Observe, that only the �rst component is applicable to the axiom S and

to any sentential form akAbkBc`, with 0 � k � `. Note that derivations of
words in which only one nonterminal occurs cannot be continued to terminating
derivations due to the non-t features of P2 and P3. Thus, we only need to discuss
the cases that P1 yields ak+1bk+1c`+1 2 L or ak+1A0bk+1B0c`+1. In the �rst
case, the derivation is �nished, in the second case only P2 is applicable leading

1173Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

to ak+1A0bk+1Bc`+1. Now, the derivation can be continued either by P3 leading
to ak+1Abk+1Bc`+1 or by P1. In the latter case, by our remarks given above,
only rule B ! B0c can be used, and we have to continue with P2, again. Now,
the reader can readily see that L(G) = L. ut

Now consider the (t^� k)-mode of derivation in combination with the non-t-
mode. For ordinary CDGS's working in (t^� k)-mode it was shown in [Fernau,
Freund, Holzer 1998] that

L(CD1;CF[��]; (t ^ � 1)) = L(ET0L)

and
L(CD1;CF[��]; (t ^ � k)) = L(RP;CF[��]; ac) if k � 2.

Here we show that adding non-t-mode components to CDGS's working in (t ^
� k)-mode for k � 2 does not improve the generating power of the underlying
systems, whereas (t^� 1)-components in combination with non-t-components are
su�cient to simulate the class of recurrent programmed context-free grammars.

Corollary 5. For each k � 1,

L(HCD1;CF[��]; f�tg [f(t ^� k)g) = L(RP;CF[��]; ac):

Proof. Observe, that the (t^� 1)-mode and the ordinary t-mode coincide. More-
over, by the prolongation technique as used in [Fernau, Freund, Holzer 1998] a
component working in (t^� 1)-mode can be simulated by a component working
in (t ^ � k)-mode for arbitrary k � 2. With this, together with Theorem 1, we
already have

L(RP;CF[��]; ac) = L(HCD1;CF[��]; ftg [f�tg)

= L(HCD1;CF[��]; f�tg [f(t ^ � 1)g)

� L(HCD1;CF[��]; f�tg [f(t ^ � k)g):

Finally, combining the simulation of the non-t-components as described in the
proof of Theorem 1, and the (t ^� k)-components as described in [Fernau, Fre-
und, Holzer 1998] via a recurrent programmed context-free grammar leads to
the inclusion

L(HCD1;CF[��]; f�tg [f(t ^� k)g) � L(RP;CF[��]; ac);

which proves our assertion. ut

Remark. Further generalizations of Theorem 1 and Corollary 5 concerning the
non-t-mode are the following. Observe, that the non-t-mode equals the modes
(�t ^� 1), (�t ^=1), and (�t ^� 1). Moreover, the (�t ^� 1)-mode is identical with
the (�t^� k)-mode for arbitrary k � 1. Finally, note that by a simple adaption of
the Pi;j -components from Theorem 1 and the fact that (�t^� k)-components can
be simulated by a recurrent programmed grammar|the simulation of a (�t^� k)-
component is quite similar to a simulation of a (t^� k)-component which can be
found in [Fernau, Freund, Holzer 1998] and [Fernau, Holzer, Freund 1997]|we
obtain that instead of using non-t-components in the result of Theorem 1 and
Corollary 5 one can use modes from the set

f (�t ^ � k) j k 2 IN g [f(�t ^=1)g [f (�t ^� k) j k 2 IN g:

1174 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

We have to leave open the question whether the non-t-mode can be replaced by
the (�t ^= k)-mode for k � 2.

Since the (t ^ � 1)-mode and the ordinary t-mode coincide, the following
result is obvious by Theorem 2. We state the result without proof.

Theorem6. Let n 2 IN [f1g, with n � 4, then we have

L(CF) = L(HCD1;CF[��]; f�tg [f(t ^ � 1)g)

� L(HCD2;CF[��]; f�tg [f(t ^ � 1)g)

� L(HCD3;CF[��]; f�tg [f(t ^ � 1)g)

� L(HCDn;CF[��]; f�tg [f(t ^ � 1)g) = L(RP;CF[��]; ac): ut

Remark. As in the case of Theorem 2 we also have not been able to settle the
question of which of the inclusions in the above given theorem are strict ones.
Obviously, Lemma 3 and 4 remain valid if one uses (t^� 1)-components instead
of t-components.

For general k the situation is only a little bit di�erent.

Theorem7. Let n 2 IN [f1g, with n � 3. For every k 2 IN, with k � 2,

L(CF) = L(HCD1;CF[��]; f�tg [f(t ^� k)g)

� L(HCD2;CF[��]; f�tg [f(t ^� k)g)

� L(HCDn;CF[��]; f�tg [f(t ^� k)g) = L(RP;CF[��]; ac):

Proof. The inclusions themselves are trivial and the �rst equality is obvious. For
the strictness of the inclusion

L(CF) � L(HCD2;CF[��]; f�tg [f(t ^ � k)g)

we restrict ourselves to the case k = 2. The simulation for arbitrary k is quite
similar and left to the reader. Let G be a hybrid CDGS with nonterminals
fS; S0; A;B;A0; B0; Fg, terminals fa; b; cg, axiom S, and the production sets

P1 = fS ! S0; S0 ! AB;A0 ! aAb;B0 ! Bc;A0 ! ab;B0 ! cg

and
P2 = fA! A0; B ! B0; A0 ! F;B0 ! Fg:

Here the production set P1 runs in (t ^ � 2)-mode and P2 in non-t-mode. The
language generated by G is the non-context-free language f anbncn j n � 1 g.

Observe, that F is a failure symbol that one cannot get rid o� whenever it has
been introduced into the sentential form. Thus, in the following argumentation,
we can ignore any derivation leading to a form in which F occurs.

Obviously, it is possible to derive AB via P1, and hence by P2 and P1 again
the word abc. Starting from a sentential form akAbkBck, with k � 0, the only ap-
plicable table is P2, which results in either a

kAbkBck, akA0akBck, akAbkB0ck, or
akA0akB0ck. The only word for which we can successfully continue the derivation
using P1 is akA0akB0ck, which results in the following words ak+1Abk+1Bck+1,
ak+1Abk+1ck+1, ak+1bk+1Bck+1, or ak+1bk+1ck+1. Since ak+1Abk+1ck+1 and
ak+1bk+1Bck+1 only contain one nonterminal, no terminal word can be derived

1175Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

from these words. Thus, the only way to continue the derivation with P2 is to
use ak+1Abk+1Bck+1. This shows that G generates f anbncn j n � 1 g.

Finally, the equality

L(HCDn;CF[��]; f�tg [f(t ^� k)g) = L(RP;CF[��]; ac)

for n � 3 and k � 2 already follows from [Fernau, Freund, Holzer 1998], where it
was shown that every CDGS with an arbitrary number of components working
in (t ^ � k)-mode can be simulated by such a CDGS with three components.
There two components serve as switches between the nonterminal colours and
one component does the actual simulation. ut

4 Combining (t ^= k) or (t ^ � k) with �t

In this section we consider hybrid CDGS's with components working together
according the (t ^ = k) and non-t protocol. Unless stated otherwise, all results
given for the (t ^ = k)-mode are also valid for the (t ^ � k)-mode. For CDGS's
with components only working in the former mode, it was shown in [Fernau,
Holzer, Freund 1997] that for each k 2 IN,

L(CD1;CF[��]; (t ^= k)) = L�n (P;CF[��]);

where L�n (P;CF[��]) denotes the family of languages of �nite index generated
by programmed context-free grammars without appearance checking. Loosely
speaking, the index of a grammar is the maximal number of nonterminals si-
multaneously appearing in a sentential form during a terminating derivation,
considering the most economical derivation for each string. For a precise de�ni-
tion we refer to, e.g., [Dassow, P�aun 1989].

The next theorem shows that adding non-t-components to a CDGS working
in (t ^ = k)-mode skips the �nite index property of the above mentioned result
(and adds the appearance checking feature).

Theorem8. For each k 2 IN, we have

L(HCD1;CF[��]; f�tg [f(t ^= k)g) = L(P;CF[��]; ac):

Proof. The inclusion from left to right is obvious, because arbitrary Boolean com-
binations of derivation modes can be simulated by a programmed context-free
grammar in a straightforward manner. We briey describe the other direction.

By a standard argument the involved hybrid CDGS language family is closed
under union and embraces the �nite languages. Let L � T � be a language in
L(P;CF[��]; ac), then

L =
[

a2T

(a � �a(L) \ L) [(L \ T) [(L \ f�g):

Since L is in L(P;CF[��]; ac), language �a(L) = fw 2 T+ j aw 2 L g is in
L(P;CF[��]; ac) due to the closure properties of that family under derivatives.
Thus, it is su�cient for the proof of the present assertion to show that fag��a(L)
is in L(HCD;CF[��]; ftg [f(t ^ = k)g) provided that �a(L) is a programmed

1176 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

context-free language. In the remainder we restrict ourselves to the case k = 1.
The result generalizes to arbitrary k, by using the prolongation technique.

Let G = (N;T; P; S; �; �; �) be a programmed grammar generating �a(L).
Without loss of generality assume that for all p in �, label p does not belong to
both �(p) and �(p). Further assume that N \ � = ;.

We construct a hybrid CDGS with nonterminals

N 0 = fS0; Fg [N [f p; p0 j p 2 � g [f [A; p] j A 2 N and p 2 � g;

terminals T , and axiom S0. To start the derivation, we use S0 as axiom and the
(t ^=1)-component

Pinit = fS0 ! pS j p 2 � g:

Then for each rule �(p) = (A ! w; �; �) we construct the following production
sets. The below given non-t-components Pp;1 and Pp;2 are only successfully ap-
plicable in the order Pp;1 followed by Pp;2 to a sentential form containing label p
and at least one nonterminal A, i.e., a form p�A�. The components are de�ned
as

Pp;1 = fA! [A; p]; p! Fg and Pp;2 = f p! p0; [A; p]! Fg

Note, that after the application of Pp;1 and Pp;2 some, but at least one, of the A's
in p�A� are replaced by [A; p] symbols.

The simulation of and application of A! w is done with the help of

Pp;3 = f[A; p]! wg [f q ! F j q 2 � g [f q0 ! F j q 2 � n fpg g;

which runs in (t ^ =1)-mode. Since this component runs in (t ^ =1)-mode the
actual sentential form must contain at most one [A; p] nonterminal, i.e., it must
look like p0�[A; p]�. Finally, to get rid o� the primed label symbol again a (t^=1)
component is applied:

Pp;4 = f p0 ! q j q 2 �(p) g [f [B; q]! F j B 2 N and q 2 � g:

Here the rules [B; q]! F forces the hybrid CDGS to use Pp;3 before. Hence, we
�nd

(�A�; p)) (�w�; q) with q 2 �(p) in the programmed grammar G

if and only if

p�A�)
�t
p;1 p�[A; p]�)

�t
p;2 p

0�[A; p]�)
(t^=1)

p;3 p0�w�)
(t^=1)

p;4 q�w�:

In case the considered sentential form p� does not contain A's and [A; q]'s,
the component

Pp;5 = f p! q j q 2 �(p) g [fA! F; [A; q]! F j q 2 � g;

running in (t ^=1)-mode results in q� with q 2 �(p), i.e.,

(�; p)) (�; q) with q 2 �(p) in the programmed grammar G

if and only if p�)
(t^=1)

p;5 q�.

1177Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

To terminate the derivation process the component

Pterm = f p! a j p 2 � g [fA! F; [A; p]! F j A 2 N and p 2 � g;

running in (t ^=1)-mode is used. This completes the description of the hybrid
CDGS. Obviously, the constructed grammar system simulates the original pro-
grammed context-free grammar correctly. Moreover, note that the CDGS has
�-productions only if the programmed grammar has �-productions. ut

Remark. In what concerns a generalization of the above given theorem to com-
ponents other than non-t ones, in sense of the remark given after Corollary 5,
we �nd the following situation. Obviously, non-t is identical to (�t ^ � k) for ar-
bitrary k 2 IN, (�t ^ =1), and (�t ^ � 1). Moreover, slight modi�cations on the
components Pp;1 and Pp;2 in the proof of the above given theorem, shows that
also the (�t ^ = k)- and (�t ^ � k)-modes can be used instead of the non-t-mode
to simulate a programmed grammar. Since programmed grammars can simulate
arbitrary Boolean combinations of derivations modes we �nd that the result of
Theorem 8 still holds if one uses a mode from the set

f (�t ^ � k); (�t ^= k); (�t ^� k) j k 2 IN g

instead of non-t.

Now let us turn our attention to the number of components in a hybrid
CDGS with non-t and (t ^ = k)-components. The easiest case is to have one
component only. By the de�nition of the (t ^ = k)-mode, every derivation has
length exactly k, so that we only get �nite languages.

Lemma9. For every k 2 IN, L(FIN) = L(HCD1;CF[��]; f�tg[f(t^=k)g). ut

For two components, the situation is a little bit more involved, because we
have to distinguish whether the components work in the (t ^ =1)- or in the
(t ^= k)-mode, for k � 2.

Lemma10. For each k 2 IN, L(CF) � L(HCD2;CF[��]; f�tg[f(t^= k)g). The
inclusion is strict if k � 2.

Proof. Let k = 1 and G = (N;T; S; P) be a context-free grammar. We construct
a hybrid CDGS H with nonterminals N [fA0 j A 2 N g [fFg, terminals T ,
axiom S and the production sets

P1 = fA! A0 j A 2 N g [fA0 ! F j A 2 N g

and
P2 = fA0 ! w j A! w is in P g:

Here production set P1 runs in non-t-mode and P2 in (t^=1)-mode. This com-
pletes the description of H . The reader may easily verify that �A�) �w� using

A ! w in P if and only if �A�)
�t
1
�A0�)

(t^=1)

2
�w�. This shows that the

hybrid CDGS H is equivalent to the context-free grammar G. Therefore,

L(CF) � L(HCD2;CF[��]; f�tg [f(t ^=1)g):

1178 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

For arbitrary k, the inclusions follow form the above given construction and
the prolongation technique as used in [Fernau, Freund, Holzer 1998]. For the
strictness of these inclusions we use the hybrid CDGS constructed in the proof
of Theorem 7, but now the �rst component has to run in (t ^ =2)-mode. For
arbitrary k one has to adapt the construction given in Theorem 7 accordingly.
The details are left to the reader. ut

Remark. Obviously, L(CF) � L(HCD2;CF[��]; f�tg [f(t ^ � 1)g). We do not
know whether the above Theorem holds for the (t ^ � k)-mode in general.

5 Combining the remaining classical modes with the �t-mode

As the title of this section indicates, we are going to combine the remaining
classical modes �, �, �, and = with the non-t-mode in a hybrid CDGS.

Before we come to the �rst theorem of this section we have to introduce the
notion of context-free grammar with random context. A context-free grammar
with random context is a construct G = (N;T; P; S; oc;noc). Here, (N;T; P; S)
is an ordinary context-free grammar, where N is the nonterminal alphabet, T
is the terminal alphabet, P is a �nite set of context-free productions, and S 2
N is the axiom. Furthermore, oc and noc are functions from P into the set of
subsets of N . For the sake of simplicity and clarity, we shall write productions
p = (A! w) of a random context grammar in the form (A! w; oc(p);noc(p)).
For x and y in (N [T)�, we write x) y if and only if x = z1Az2, y = z1wz2,
p = (A! w; oc(p);noc(p)) is a rule in P , and all symbols of oc(p) occur in z1z2
but no symbol in noc(p) occurs in z1z2. The language generated by G is de�ned
as

L(G) = fw 2 T � j S
�
) w g;

where
�
) denotes the reexive and transitive closure of the yield relation).

Now we are ready to start our investigations with the �-mode of derivation.
There we �nd the following situation:

Theorem11. L(CF) � L(HCD1;CF[��]; f�g [f�tg) � L(RC;CF[��]).

Proof. The �rst inclusion is trivial and the strictness can be seen by Example 1.
The second inclusion is shown next. Let G be a context-free hybrid CDGS of
arbitrary degree n with components working in �- and non-t-mode. We de�ne
Xi = f [A; i] j A 2 N [T g [f[L; i]g for 1 � i � n and we construct the
context-free random context grammar

H = (N [

n[

i=1

Xi [fS
0g; T; P; S0);

where the unions are being disjoint, and P is the union of the sets Pinit, P1, P2,
and Pterm of random context productions. With

Pinit = f (S0 ! [S; i]; ;; ;) j 1 � i � n g:

1179Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

one may choose a component to be applied �rst. Then

P1 = f (A! w; f[B; i]g; ;) j (A! w) 2 Pi and [B; i] 2 Xi for 1 � i � n g

[f ([A; i]! [a; i]v; ;; ;) j (A! av) 2 Pi, for 1 � i � n,

and av 2 (N [T)+ g

[f ([A; i]! [L; i]; ;; ;) j (A! �) 2 Pi, for 1 � i � n g:

simulates the application of productions in the chosen component that is spec-
i�ed by the colour, i.e., either a nonterminal [A; i] or [L; i] is present in the
sentential form. To change the component to be simulated rules from P2 are
used:

P2 = f ([A; i]! [A; j]; fBg; ;) j [A; i] 2 Xi, [A; j] 2 Xj , 1 � i; j � n,

(B ! w) 2 Pi, and Pi is a �t-component g

[f ([A; i]! [A; j]; ;; ;) j [A; i] 2 Xi, [A; j] 2 Xj , 1 � i; j � n,

(A! w) 2 Pi, and Pi is a �t-component g

[f ([A; i]! [A; j]; ;; ;) j [A; i] 2 Xi, [A; j] 2 Xj , 1 � i; j � n, and

Pi is a �-componentg:

Observe, that the colour that corresponds to a non-t-component can be changed
only if there is still a production of that component applicable whereas the
simulation of �-components can be interrupted at any moment.

To terminate the derivation process use

Pterm = f ([a; i]! a; ;; ;) j a 2 T , 1 � i � n, and Pi is a �-componentg

[f ([L; i]! �; ;; ;) j 1 � i � n and Pi is a �-componentg:

Please note that after deleting a symbol [L; i] by some production in the
last set, no further derivation step can be done. Thus, such deletion completes
a derivation of a terminal string as the �nal step or it blocks the derivation.
Concerning the use of a production of the form ([a; i] ! a; ;; ;), we encounter
the same situations as when deleting a [L; i]. Moreover, whenever H produces
a terminal string by a production of the last group, we must have applied a
production in the previous derivation step which corresponds to a �-component
of G, since non-t-components cannot terminate themselves. By our remarks, the
reader can readily see that L(H) = L(G) holds.

Now, let G be �-free. Then we construct H as above omitting all productions
with a symbol [L; i] on the left-hand or on the right-hand side. Clearly, such
productions are not needed in this case, and we still have L(H) = L(G). ut

Since L(RC;CF[��]) � L(RP;CF[��]), which was shown in [Fernau, W�atjen
1998], we obtain the following corollary:

Corollary 12. L(HCD1;CF[��]; f�g [f�tg) � L(RP;CF[��]). ut

In what concerns the remaining classical modes, the situation is quite similar,
but the upper bound we know is a little bit weaker.

Theorem13. 1. L(CF) � L(HCD1;CF[��]; f�kg [f�tg) � L(P;CF[��]).

1180 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

2. L(CF) � L(HCD1;CF[��]; f=kg [f�tg) � L(P;CF[��]).
3. L(CF) � L(HCD1;CF[��]; f�kg [f�tg) � L(P;CF[��]).

Proof. The strict inclusions of L(CF) in the families generated by the hybrid
CDGS's under consideration can be shown very similarly as in Theorem 11. In
the following, we only prove L(HCD1;CF[��]; f=kg [f�tg) � L(P;CF[��]).
The other inclusions can be shown with similar arguments. Let

G = (N;T; S; (P1; f1); : : : ; (Pn; fn))

be a context-free hybrid CDGS of arbitrary degree n with components working
in = k- and non-t-mode. For 1 � i � n, let Pi = fpi1; pi2; : : : ; pimi

g with pij =
(Aij ! wij), 1 � j � mi. We set T 0 = fa0 j a 2 Tg, de�ne the morphism h by
h(a) = a0 if a 2 T , and h(A) = A if A 2 N . Then we construct the programmed
context-free grammar

H = (N [T 0 [fS0; Lg; T; P; �; �; �; S0);

the unions being disjoint, and P as well as the label set � and the functions �
and � are implicitly de�ned below.

The initialization is done by the rule �(init) = (S0 ! S) with the success
�eld �(init) = f [i; j; 0] j 1 � i � n and 1 � j � mi g and �(init) = ;. With the
rule �(init) going to some label [i; j; 0] one may choose a component and a
production in this component to be applied �rst.

The application of productions in the chosen component is simulated by
the below given rules. We have to distinguish two cases: (1) If fi equals the
= k-mode, we de�ne for pij = (Aij ! wij) 2 Pi and 0 � ` � k the rules
�([i; j; `]) = (Aij ! h(wij)) if wij 6= �, and �([i; j; `]) = (Aij ! L) otherwise.
The successor �elds are �([i; j; `]) = f[i; j0; `+ 1] j 1 � j0 � mig if 0 � ` < k � 1
and �([i; j; k]) = f [i0; j0; 0] j 0 � i0 � n; 1 � j0 � mi0 g [f terma j a 2 T [fLg g.
Finally set �([i; j; `]) = ;, for any occurring i; j, and `. These productions simu-
late the application of productions in the chosen component and allow to leave
any = k-component if it has performed exactly k steps. (2) If fi equals �t, then
de�ne for pij = (Aij ! wij) 2 Pi the rules �([i; j; 0]) = (Aij ! h(wij)) if
wij 6= �, and �([i; j; 0]) = (Aij ! L) otherwise, with success �eld �([i; j; 0]) =
f[i; j0; 0] j 1 � j0 � mig [f ci;B j B is a left-hand side in Pi g and �([i; j; 0]) = ;.

Moreover, for B 2 N set �(ci;B) = (B ! B), de�ne the success �eld to
be �(ci;B) = f [i0; j0; 0] j 0 � i0 � n; 1 � j0 � mi0 g and �(ci;B) = ;. The
former rules simulate the application of productions of the chosen component,
and the latter rules associated with the labels ci;B check whether there is still a
production of the non-t-component applicable.

To terminate the derivation process one uses the rules �(terma) = (a0 ! a)
if a 2 T and �(termL) = (L ! �). The sucessor �eld �(termb) equals the set
f termc j c 2 T [fLg g and �(termb) = ; for b 2 T [fLg.

By our remarks, the reader can readily see that L(H) = L(G) holds. Now,
let G be �-free. Then we construct H as above omitting all productions with
L on the left-hand or on the right-hand side. Clearly, such productions are not
needed in this case, and we still have L(H) = L(G). ut

1181Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

6 Conclusions

We examined the generative power of hybrid cooperating distributed grammar
systems with non-t-components in addition to components working in well-
investigated modes. It turned out that adding the non-t feature to CDGS's with
one speci�c mode strictly enlarges the generative capacity in many cases. More
precisely, we found the relations summarized in [Tab. 1], where at the intersec-
tion of the ith row, marked by a mode fi, and column j, there appears either
a family L which coincides with the family X at the top of the column having
fi-mode components or L1 � � � L2 meaning that L1 � X � L2 holds.

Derivation mode f L(CD1;CF[��]; f) L(HCD1;CF[��]; f�tg [ffg)

� L(CF) � � � L(RC;CF[��])

� k
L(CF)

L(CF) � � � L(P;CF[��])
= k; �k

t; (t ^ � 1) L(ET0L) L(RP;CF[��]; ac)

(t ^ � k); (t ^= k) L�n(P;CF[��]) L(P;CF[��]; ac)

(t ^ � k) with k � 2 L(RP;CF[��]; ac)

Table 1: Results for (hybrid) CDGS's summarized.

Interestingly, several new characterizations of the family of recurrent pro-
grammed languages are given, generated both in case with and in case without
appearance checking. Furthermore, by adding non-t-components to (t^= k)- or
(t ^ � k)-components, a \huge jump" in the generative capacity to the whole
family of programmed languages is observed.

Acknowledgments

This work has partially been supported by Deutsche Forschungsgemeinschaft
(DFG) grant La 618/3-2, by the National Sciences and Engineering Research
Council (NSERC) of Canada grants OGP0089786 and RGPIN 9979-98, and by
the Fonds pour la Formation de Chercheurs et l'Aide �a la Recherche (FCAR) of
Qu�ebec grants 00ER0642 and 91-ER-0642.

References

[Atanasiu, Mitrana 1989] Atanasiu, A., Mitrana, V.: \The modular grammars";
International Journal of Computer Mathematics, 30 (1989), 101{122.

[Aydin, J�urgensen, and Robbins 2000] Aydin, S., H. J�urgensen, and L. Robbins
(2000). Dialogues as co-operating grammars. See Boldt and J�urgensen (2000).

1182 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

[Boldt and J�urgensen 2000] Boldt, O. and H. J�urgensen (Eds.) (2000). Pre-
Proceedings of Descriptional Complexity of Automata, Grammars and Re-
lated Structures, Number Report No. 555, London, Ontario, Canada. De-
partment of Computer Science, The University of Western Ontario.

[Bordihn, Csuhaj-Varj�u 1996] Bordihn, H., Csuhaj-Varj�u, E.: \On competence
and completeness in CD grammar systems"; Acta Cybernetica, 12, 4 (1996),
347{360.

[Bordihn, Csuhaj-Varj�u, Dassow 1999] Bordihn, H., Csuhaj-Varj�u, E., Dassow,
J.: \CD grammar systems versus L systems"; In G. P�aun and A. Salomaa
(Eds.), Grammatical Models of Multi Agent Systems, pp. 18{32. Gordon
and Breach (1999).

[Bordihn, Holzer 1999] Bordihn, H., Holzer, M.: \On a hierarchy of languages
generated by cooperating distributed grammar systems"; Information Pro-
cessing Letters, 69, 2 (1999), 59{62.

[Csuhaj-Varj�u, Dassow 1990] Csuhaj-Varj�u, E., Dassow, J.: \On cooperat-
ing/distributed grammar systems"; J. Inf. Process. Cybern. EIK (formerly
Elektron. Inf.verarb. Kybern.), 26 1/2 (1990), 49{63.

[Csuhaj-Varj�u, Dassow, Kelemen, P�aun 1994] Csuhaj-Varj�u, E., Dassow, J.,
Kelemen. J., P�aun, Gh.: \Strati�ed grammar systems"; Computers and Ar-
ti�cial Intelligence, 13, 5 (1994), 409{422.

[Dassow, Mitrana 1996] Dassow, J., Mitrana, V.: \Fairness in grammar systems";
Acta Cybernetica, 12, 4 (1996), 331{345.

[Dassow, P�aun 1989] Dassow, J., P�aun, Gh.: \Regulated Rewriting in Formal
Language Theory"; Volume 18 of EATCS Monographs in Theoretical Com-
puter Science. Springer (1989).

[Dassow, P�aun, Rozenberg 1997] Dassow, J., P�aun, Gh., Rozenberg, G.: \Gram-
mar systems"; In G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal
Languages, Volume 2, pp. 155{213. Springer (1997).

[Fernau, Freund, Holzer 1998] Fernau, H., Freund, R., Holzer, M.: \Hybrid
modes in cooperating distributed grammar systems: internal versus external
hybridization"; Accepted for publication in Theoretical Computer Science
(1998).

[Fernau, Holzer, Freund 1997] Fernau, H., Holzer, M., Freund, R.: \Bounding
resources in cooperating distributed grammar systems"; In S. Bozapalidis
(Ed.), Proceedings of the 3rd International Conference Developments in Lan-
guage Theory, Aristotle University of Thessaloniki (1997), 261{272.

[Fernau, W�atjen 1998] Fernau, H., W�atjen, D.: \Remarks on regulated limited
ET0L systems and regulated context-free grammars"; Theoretical Computer
Science, 194, 1/2 (1998), 35{55.

[Freund and Kelemenova 2000] Freund, R. and A. Kelemenova (Eds.) (2000).
Proceedings of the International Workshop Grammar Systems 2000, Opava,
Czech Republic. Silesian University.

[Jim�enez-L�opez and Mart��n-Vide 2000] Jim�enez-L�opez, M. D. and C. Mart��n-
Vide (2000). Grammar systems and autolexical syntax: Two theories, one
single idea. See Freund and Kelemenova (2000), pp. 283{296.

[Meersman, Rozenberg 1978] Meersman, R., Rozenberg, G.: \Cooperating gram-
mar systems"; In Proceedings of Mathematical Foundations of Computer
Science, Volume 64 of LNCS, Springer (1978), 364{374.

[Mitrana 1993] Mitrana, V.: \Hybrid cooperating/distributed grammar sys-
tems"; Computers and Arti�cial Intelligence, 12, 1 (1993), 83{88.

1183Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

[Neubauer and Summerer 2000] Neubauer, M. and M. Summerer (2000). A graph
controlled array grammar system with prede�ned teams for the recognition
of hand-written characters. See Freund and Kelemenova (2000), pp. 309{328.

[Rosenkrantz 1969] Rosenkrantz, D. J.: \Programmed grammars and classes of
formal languages"; Journal of the Association for Computing Machinery, 16,
1 (1969), 107{131.

[von Solms 1976] von Solms, S. H.: \Some notes on ET0L-languages"; Interna-
tional Journal of Computer Mathematics, 5, A (1976), 285{296.

1184 Bordihn H., Holzer M.: Grammar Systems with Negated Conditions ...

