
�
0RGHOLQJ�,QIRUPDWLRQ�6\VWHP�%HKDYLRU�ZLWK�'\QDPLF�

5HODWLRQV�1HWV�

Laurent Allain
(Institut Supérieur d’Electronique du Nord, Département Informatique, Lille, France

laurent.allain@isen.fr)

Pascal Yim
(Ecole Centrale de Lille, LAIL UPRESA8021, Villeneuve d’Ascq, France

pascal.yim@ec-lille.fr)

$EVWUDFW� In this paper we highlight three main qualities for a processing model: processing
abstraction, dynamic behavior and graphical representation. We define a model closely related
to high-level Petri Nets. Dynamic Relations Nets (DRN) allow the specification of data,
processing, events and constraints within a unique graphical representation. Annotations of the
net use a set based abstract language. Constraints arise from three levels: from places (related to
the notion of abstract type), from markings (we can then express global constraints between
places), and from transitions (in order to specify processing as state transformations). The DRN
formalism has been successfully applied to a number of case studies. In this paper, we develop
the standard ‘IFIP case’, which has been handled with a lot of modeling methods. A DRN
specification has a well defined operational semantics. Therefore a DRN can also be viewed as
an executable specification of information systems. We briefly introduce a tool designed to
operate an application developed with DRNs, namely NetSpec, based on the use of an active
database management system. This tool allows an automated code generation (C/SQL) from a
DRN specification.

.H\�:RUGV� Petri nets, constraints, dynamic behavior, code generation, information systems.
&DWHJRULHV� D.2.2, D.3.4, H.4.2

��,QWURGXFWLRQ�

Information system specifications and design are a central problem in computer
engineering today. Most usual methods (such as UML, HOOD, OMT, ...) propose
different models to specify data (conceptual data model, class diagrams, ...), events
(control automaton, Petri Nets, ...) and processing (pseudo-code, object description,
...). As a matter of fact, processing description is often closer to the design phase than
to the specification phase. On the other hand, formal languages such as VDM, Z, or B
allow the making of an abstract description of processing, generally based on logic and
set theory. Moreover, these formal languages have proofs (types, invariants,)
related to specifications. Unfortunately, it is often difficult to have a global view from
such a specification since every processing is specified separately from one another. In

Journal of Universal Computer Science, vol. 6, no. 11 (2000), 1109-1130
submitted: 9/6/00, accepted: 19/9/00, appeared: 28/11/00 Springer Pub. Co.

addition, integration of such formalisms into other models (for example graphical
ones) means hard work on adaptation problems.

Petri Nets [Murata 1989] allow to take into account the dynamic behavior of a
system, and are used in models such as Merise. Petri Nets also provide a graphical
formalism (more precise and formal than Data Flow Diagrams for example). In order
to bring more expressive power, Predicate-Transitions Nets are often preferred in
database modeling (especially distributed databases [Jensen, Rosenberg 1991]).
[Bastide et al. 1993] describes an object-oriented Petri Net, closely related to object-
oriented, and leads to a concrete implementation. [Heuser et al. 1993] presents a
conceptual modeling approach by mixing entity-relationship diagrams and high-level
Petri Nets. Nevertheless, high-level Petri Nets fail to model set based transformations
of information systems.

By using an homogeneous formalism, the power of the '\QDPLF�5HODWLRQV�1HWV
approach lies in the integration of both static and dynamic aspects of an information
system. Place constraints, markings and transitions precisely and fully describe both
structure and behavior of the system. Abstraction of this new formalism is guaranteed
by a purely formal description of the system behavior by using a semantics based on
set theory.

��'\QDPLF�5HODWLRQV�1HWV�

In practice, a '\QDPLF�5HODWLRQV�1HW ('51) is a graphical tool where places depicted
as circles, are used to represent availability of resources, transitions depicted as bars
or rectangles, model the events, and edges indicate the relationship between places
and transitions. Tokens in places and their flow regulated by fired transitions add
dynamics to the '51.

����'HILQLWLRQ�

Before starting the definition of a '51, we assume to have a set of EDVLF� W\SHV (a
basic type is a set of values, such as the set of integers or strings). Let / be a first-
order language including set operators (union, intersection, set difference, ...) and set
expressions, and let 9 (resp. Σ,)) the set of all variables (resp. expressions, formulas)
defined by /. A '51 is defined by a tuple (3, 7, (, 1, ', *, :, 0

�
) where:

– 3, 7, and (are finite and disjoined sets of SODFHV, WUDQVLWLRQV, and HGJHV,
– 1 : (→ (3 × 7) ∪ (7 × 3) is a function mapping each edge to an LQSXW�QRGH

and to an RXWSXW�QRGH,
– ' : (→ { SURGXFWLRQ, FRQVXPSWLRQ, LQIRUPDWLRQ, QHJDWLYH�LQIRUPDWLRQ } is a

function associating a sort to each edge,
– * : 7 →) is a function associating a formula to each transition, also called a
JXDUG,

– 7\SH is a function mapping each place to a cartesian product of basic types,
– : : (→ Σ is a function mapping each edge to a set expression so that:

1110 Allain L., Yim P.: Modeling Information System Behavior ...

– the set expressions :(S, W) and :(W, S) denote a finite set of elements in
7\SH(S)

– each free variable occurring in :(S, W) and :(W, S) also occurs in *(W)
– an edge of sort QHJDWLYH�LQIRUPDWLRQ is annotated by a finite set of variables

– 0
�
 is a function mapping each place to a finite set of tuples (LQLWLDO�PDUNLQJ).

������0DUNLQJV�

The marking of a place is a finite set of WXSOHV, i.e. a UHODWLRQ. It is useful to note the
tokens as VWUXFWXUHG�UHFRUGV. We note the definition of the type bound to a place as:

7\SH(S) = <�ILHOG
�
 : 6

�
, ... , ILHOG

Q
 : 6

Q
 >

This declaration expresses that the type of the place S is the product of basic types

6
�
 × ... × 6

Q
. Then, if H belongs to such a type, the notation H.ILHOG

L
 denotes the

projection of H on the LWK component. We extend this notation to a set of expressions V,
each element of which belongs to the type of S: V.ILHOG = { H.ILHOG • H ∈ V }.

������(GJHV�DQG�WUDQVLWLRQV�

Usually, the set expressions mapped to edges are a finite set of variables { [

�
, ... , [

Q
 }

or a single variable V used to define a set by a formula in the guard of the transition.
See [Fig. 1] for some graphical examples of edges and annotations.

The validation of a transition W is conditioned by some explicit constraints bound to
the annotations :(S, W) on edges. Indeed, each element of the set denoted by :(S, W),
where (S, W) is an edge of sort LQIRUPDWLRQ or FRQVXPSWLRQ, has to belong to the
marking of S. If we note ψ(S, W) such an implicit constraint, we have then
ψ(S, W) = (:(S, W) ⊆ 0(S)). This implicit constraint allows to ensure that any
intentionally defined sets denote finite sets. On the other hand, for a QHJDWLYH�
LQIRUPDWLRQ edge annotated by a singleton { H }, we have an implicit constraint
ψ(S, W) = (H ∉ 0(S)).

)LJXUH����*UDSKLFDO�UHSUHVHQWDWLRQ�RI�WKH�HGJHV�DQQRWDWHG�E\�VHWV�RI�YDULDEOHV�
(�^�[�`�RU�^�[��\�`�)�RU�E\�D�YDULDEOH�GHQRWLQJ�DQ�LQWHQWLRQDOO\�GHILQHG�VHW�(�V�)��

S� W�{ [, y }

FRQVXPSWLRQ�HGJH�

S� W�V

LQIRUPDWLRQ�HGJH�

W� S�{ [}

SURGXFWLRQ�HGJH�

S� W�{ [}

QHJDWLYH�LQIRUPDWLRQ�HGJH�

1111Allain L., Yim P.: Modeling Information System Behavior ...

The constraint ψ(W) is called the firing constraint for the transition W. If a
substitution θ exists, so that θψ(W) is valid, then the transition W is validated for θ with
the marking 0. The resulting marking 0¶ after the firing of the transition becomes:

0¶(S) = 0(S) − θ((S,W)
 if (S,W) is a consumption edge and (W,S) is not a production edge
0¶(S) = 0(S) ∪ θ((W,S)
 if (S,W) is not a consumption edge and (W,S) is a production edge
0¶(S) = (0(S) − θ((S,W)) ∪ θ((W,S)
 if (S,W) is a consumption edge and (W,S) is a production edge
0¶(S) = 0(S)
 otherwise

����([DPSOHV�DQG�XVHIXO�VKRUWFXWV�

Before developing a case study discussed later in [Section 3 The IFIP case], some
simple examples will clarify the behavior of a '51. Hereafter we describe two
examples and we introduce useful abbreviations that do not exist in the definition of a
'51. For these examples, we assume that all the token fields are of the basic type
LQWHJHU.

������([DPSOH����0DUNLQJ�FRQVWUDLQWV�

This example discusses the implementation of marking constraint and key constraint,
which are related to markings and which must be satisfied to validate a transition.

Consider a '51 with three places $, %, & and one transition 7 [see Fig. 2] so that:

– 7\SH($) = 〈 [〉, 7\SH(%) = 〈 \ 〉, 7\SH(&) = 〈], W 〉,
– 0�

($) = { 1, 2, 3 }, 0
�
(%) = { 3 }, 0

�
(&) = ∅, where ∅ denotes the empty set,

– each edge is annotated by a singleton: :($, 7) = { D }, :(%, 7) = { E }, and
:(7, &) = { F },

– *(7) = (D.[< 4) ∧ (E.\ > 0) ∧ (F.] = E.\) ∧ (F.W = D.[), where ∧ is the
boolean DQG operator.

According to the specification of such a '51, 〈1〉 will be removed from $ and

〈3,1〉 will be produced into &, then 〈2〉 will be removed from $ and 〈3,2〉 will be
produced into &, then 〈3〉 will be removed from $ and 〈3,3〉 will be produced into &. %
remains unchanged because the edge between % and 7 is an information edge. The
order of productions into & depends on the choice made in the selection of a token
from $.

1112 Allain L., Yim P.: Modeling Information System Behavior ...

)LJXUH��� $�YHU\�VLPSOH�H[DPSOH�RI�D�'51��

Now suppose that we don’t want to produce a token into &, so that its two fields]
and W receive the same value. We can add a PDUNLQJ�FRQVWUDLQW (SODFH�FRQVWUDLQW) to
*(7): (F.] ≠ F.W), so 〈3,3〉 will not be produced. For convenience, this marking
constraint may be specified by extending the type of &:

7\SH(&) = 〈], W 〉 •] ≠ W.

Now suppose that we don’t want to produce tokens into & with the same values for
] only. A negative information edge from & to 7 must be added to the
'51 [see Fig. 3] and *(7) must be completed (anded) with the term (E.\ = G.])
which expresses the absence of a token with a specific value for] inside &. So if 〈3,1〉
has already been produced into & from the initial marking, the transition 7 will not be
crossed any more. This constraint is called a NH\� FRQVWUDLQW and may be implicitly
specified (so without adding the negative information edge to the '51) by underlining
the correct field in the type of &:

7\SH(&) = 〈], W 〉

)LJXUH��� 8VH�RI�DQ�H[SOLFLW�QHJDWLYH�LQIRUPDWLRQ�HGJH�WR�LPSOHPHQW�D�NH\�FRQVWUDLQW�

������([DPSOH����,QWHQWLRQDOO\�GHILQHG�VHW�

This example discusses the possibility to annotate an edge with a variable denoting an
intentionally defined set (a finite set), so that each element satisfies a given constraint.

$� %�

&�

7�

{ D } { E }

{ F } { G }

$� %�

&�

7�

{ D } { E }

{ F }

1113Allain L., Yim P.: Modeling Information System Behavior ...

It is important to notice that we cannot know anything about the cardinality of such a
set at design time. However, it will be the greatest possible at run time.

Consider a '51 with only one place $ and one transition 7 [see Fig. 4] so that:

– 7\SH($) = 〈 [〉,
– 0

�
($) = { -1, 0, 1, 2 },

– the edge is annotated by the variable D denoting a set,
– *(7) = (D.[> 0)

)LJXUH��� 8VH�RI�D�YDULDEOH�GHQRWLQJ�DQ�LQWHQWLRQDOO\�GHILQHG�VHW�

According to the specification of such a '51, the set of two tokens { 〈1〉,〈2〉 } will
be removed from $ when the transition is fired, since the field [of the other tokens is
not strictly positive.

��7KH�,),3�FDVH�

The ‘IFIP case’ summarizes the functionality of a paper submission processing with a
view to a congress organized by the International Federation for Information
Processing. This case study has already been handled with a lot of modeling
methods [Sibertin-Blanc 1991] [Pascot, Ridjanovic 1991].

The text below summarizes the specifications of the IFIP case:

– Clause C1: When a purpose letter or a paper is received, if the authors are not
already known by the scientific organization, they are registered.

– Clause C2: Only purpose letters and papers received before the deadline for
paper submission will be retained, except in the case of a derogation granted by
the program committee.

– Clause C3: Paper projects (purpose letters or temporary version of a paper) are
distributed to the committee members, who become referees for the papers
which are assigned to them.

– Clause C4: In case of a purpose letter, if the temporary version of the paper is
not received during the month following the deadline for paper submission, the
communication project is canceled.

– Clause C5: Program committee members have to mark the papers which have
been assigned to them: with a mark ranging from 0 to 10; for the following
criteria: paper interest, paper quality, references quality.

$�

7�

D

1114 Allain L., Yim P.: Modeling Information System Behavior ...

– Clause C6: After the marking, papers are classified into 3 categories: accepted
papers, rejected papers, and balloted papers. The classification rules are defined
by the program committee of each conference. It is recommended that these
rules are recorded by the information system, to be able to classify the papers by
means of a computational process. The classification rules type is a balanced
average: average mark=a1×(average mark from criteria 1)+...+an×(average mark
from criteria n), so that a1+...+an=1. According to the paper category, this one is
accepted, accepted with reserve (required corrections, and submitted to the
decision of the program committee), or rejected.

– Clause C7: Accepted papers can be presented in a session. The program
committee meets to: finally select the papers, plan the sessions, define the
session program (assign the papers), appoint the session chairmen, plan other
conference activities.

– Clause C8: The program committee will see that the paper speaker is its author.
– Clause C9: Notice that the referee of a paper cannot be the author or co-author.

But the program committee members can submit communication projects.
– Clause C10: The program committee requests invited papers. The invited papers

are not reviewed by the referees, however a deadline for submission is
negotiated with each author. If the requirements are not met, the invited paper
will not be programmed. An invited paper corresponding to the required
conditions to be programmed, will be programmed according to the same rules
as an accepted paper.

– Clause C11: If a paper was marked by less than 3 referees, it must be assigned to
one or more new referees.

– Clause C12: If this happens to a great number of papers, the program committee
meeting date could be postponed to a few days according to a decision of the
program committee.

– Clause C13: If the author of an accepted paper does not send the final version of
his paper before a given deadline, then the paper can be refused after the
program committee decision.

– Clause C14: The final version of a paper must include corrections required by
the program committee. The correction requests are established on the basis of
the temporary version of a paper. Final papers might be reviewed by the
program committee if necessary. A general rule is established for each
conference.

A '51 has been designed with a graph containing 21 places, 19 transitions, 56

edges, and only four pages for the annotations [See Appendix]. In this section, we
develop only two representative parts of the '51, showing the power of the approach.

����0DLO�DQG�DXWKRUV�

Considering the subsystem related to mails and authors, it is obvious (clauses C1, C2,
C4, and C13) that a token in place PDLO is composed of an DXWKRU� QDPH, a UHFHLSW�
GDWH, and a YHUVLRQ, the types of which are clear (we consider here that the basic types

1115Allain L., Yim P.: Modeling Information System Behavior ...

are integers (resp. reals, strings) and are noted ≤ (resp. ∞,)). However, as these three
attributes are not sufficient to determine a given mail, we are induced to create a
fourth attribute as a UHIHUHQFH, which must be unique for that mail. We also have to
associate a place constraint, because the version of the paper must belong to the set
{‘ OHWWHU’,’ WHPSRUDU\’,’ ILQDO’}. As unknown authors must be registered, a place DXWKRU
must be created, with the unique attribute QDPH, which becomes a constraint key (it is
not necessary to register the same author more than once). To complete the subsystem,
the transition UHJLVWHUBDXWKRU takes place between places PDLO and DXWKRU, which
allows the registration. Edges are of types information from PDLO and production to
DXWKRU, and the transition constraint may be�DXWKRU�QDPH� �PDLO�DXWKRUBQDPH, which
is sufficient to take the correct action. The graph of this subsystem is summarized in
[Fig. 5] and the annotations can be found in [Tab. 1].

3ODFH� 7\SH�3ODFH��
mail 〈 UHI : ≤,

DXWKRUBQDPH : ,
UHFHLSWBGDWH : ,
YHUVLRQ : • YHUVLRQ ∈ { ’letter’, ’temporary’, ’final’ } 〉

author 〈 QDPH : 〉
7UDQVLWLRQ� *�7UDQVLWLRQ��

register_author DXWKRU�QDPH� �PDLO�DXWKRUBQDPH

7DEOH��� $QQRWDWLRQV�RI�WKH�VXEV\VWHP�UHODWHG�WR�PDLO�DQG�DXWKRUV�

)LJXUH��� *UDSK�RI�WKH�VXEV\VWHP�UHODWHG�WR�PDLO�DQG�DXWKRUV�

����5HDSSRLQWPHQW�RI�UHIHUHHV�

A transition constraint may be more complicated, as in the example of the transition
UHDSSRLQWBUHIHUHH (clause C11). When the HQG�RI�PDUNLQJ is active (condition 1) and
the SDSHU has received less than three marks (condition 2) and a UHIHUHH has not given
his mark (condition 3) and this paper can be assigned to a QHZ�UHIHUHH�(condition 4),
we have to reappoint the referee (condition 5), as shown in the subsystem described

PDLO

DXWKRU

UHJLVWHUBDXWKRU

{ PDLO }

{ DXWKRU }

1116 Allain L., Yim P.: Modeling Information System Behavior ...

in [Fig. 6] and in [Tab. 2], which illustrates the use of negative information edge and
intentionally defined set:

– condition 1: HQGBRIBPDUNLQJ.VWDWH�= ‘yes’
– condition 2: PDUN¶.UHI = UHIHUHH.UHI ∧ &DUG(PDUN¶) < 3
– condition 3: UHIHUHH.UHI = PDUN.UHI ∧ UHIHUHH.QDPH = PDUN.UHIHUHHBQDPH
– condition 4: UHDSSRLQWPHQW.UHI�= UHIHUHH.UHI�∧

UHDSSRLQWPHQW.ROGBUHIHUHHBQDPH = UHIHUHH.QDPH�
– condition 5: DSSRLQWPHQW.UHI = UHDSSRLQWPHQW.UHI ∧

DSSRLQWPHQW.UHIHUHHBQDPH = UHDSSRLQWPHQW.QHZBUHIHUHHBQDPH

The meaning of the second and third conditions is: for a given set of marks for a
paper (PDUN¶.UHI in condition 2) so that its cardinality is less than 3, we try to find a
referee for the paper (UHIHUHH.UHI in condition 2), and we bind that referee (UHIHUHH.UHI
and UHIHUHH.QDPH in condition 3) to a mark (PDUN.UHI and PDUN.UHIHUHHBQDPH in
condition 3) by means of a negative information edge, to see if there is no mark for
him.

3ODFH� 7\SH�3ODFH��
referee 〈 UHI : ≤,

QDPH : 〉
appointment 〈 UHI : ≤,

UHIHUHHBQDPH : 〉
reappointment� 〈 UHI : ≤,

ROGBUHIHUHHBQDPH : ,
QHZBUHIHUHHBQDPH : 〉�

end_of_marking 〈 VWDWH : • VWDWH ∈ { ’yes’, ’no’ } 〉
mark 〈 UHI : ≤,

UHIHUHHBQDPH : ,
VXEMHFW : ∞ • VXEMHFW ∈ [0..10],
TXDOLW\ : ∞ • TXDOLW\ ∈ [0..10],
UHIHUHQFHV : ∞ • UHIHUHQFHV ∈ [0..10]〉

7UDQVLWLRQ� *�7UDQVLWLRQ��
Reappoint_referee HQGBRIBPDUNLQJ.VWDWH�= ‘yes’

∧ UHDSSRLQWPHQW.UHI�= UHIHUHH.UHI
∧ UHDSSRLQWPHQW.ROGBUHIHUHHBQDPH = UHIHUHH.QDPH
∧ UHIHUHH.UHI = PDUN.UHI
∧ UHIHUHH.QDPH = PDUN.UHIHUHHBQDPH
∧ PDUN¶.UHI = UHIHUHH.UHI
∧ Card(PDUN¶) < 3
∧ DSSRLQWPHQW.UHI = UHDSSRLQWPHQW.UHI
∧ DSSRLQWPHQW.UHIHUHHBQDPH =
 UHDSSRLQWPHQW.QHZBUHIHUHHBQDPH

7DEOH��� $QQRWDWLRQV�RI�WKH�VXEV\VWHP�UHODWHG�WR�WKH�UHDSSRLQWPHQW�RI�UHIHUHHV�

1117Allain L., Yim P.: Modeling Information System Behavior ...

)LJXUH��� *UDSK�RI�WKH�VXEV\VWHP�UHODWHG�WR�WKH�UHDSSRLQWPHQW�RI�UHIHUHHV�

��,PSOHPHQWDWLRQ�LVVXHV�

We have decided to implement our complete system designed to operate an
application developed with '51V, namely 1HW6SHF, on the basis of an DFWLYH�GDWDEDVH�
PDQDJHPHQW�V\VWHP (ADBMS) layered architecture. It means, using an existing non-
active DBMS (in our case DB2 from IBM) and adding a monitor layer that is
responsible for providing active features.

����(&$�UXOHV�LQ�$'%06�

In this section, we recall some concepts related to ADBMS since the reader may find
other explanations in the literature ([Dittrich et al. 1995] to give just one example).

In an active database system, (&$�UXOHV ((YHQW�&RQGLWLRQ�$FWLRQ) usually take the
form:

RQ�HYHQW�
LI�FRQGLWLRQ�
WKHQ�DFWLRQ�

An HYHQW happens instantaneously at specific points in time. For example, in a

relational model, database events are related to actions such as LQVHUW, GHOHWH, and

PDUN�

UHDSSRLQWBUHIHUHH�

{ PDUN }

PDUN¶�

HQGBRIBPDUNLQJ�

{ HQGBRIBPDUNLQJ }

UHIHUHH
{ UHIHUHH }�

UHDSSRLQWPHQW�

{ UHDSSRLQWPHQW }

DSSRLQWPHQW�

{ DSSRLQWPHQW }�

1118 Allain L., Yim P.: Modeling Information System Behavior ...

XSGDWH. Temporal events are related to a clock, and may be absolute or relative.
Finally, explicit events are those events that are detected along with their parameters
by application programs. All these types of events are SULPLWLYH events and can be
combined together with event operators to form FRPSRVLWH events
[Chakravarty et al. 1993].

A FRQGLWLRQ is a simple query over the database. In other words, a condition
returns a boolean value, that is true if the query has produced a set containing at least
one row of data.

An DFWLRQ is executed if the condition is satisfied. The action part of the rule
usually inserts, deletes, or updates data.

If the event part of the rule does not exist, we call such a rule SDWWHUQ�EDVHG, and if
the condition part does not exist, we call such a rule HYHQW�EDVHG.

ECA-rules are usually processed using the following algorithm, derived from the
UHFRJQL]H�DFW cycle of expert systems [Brownston et al. 1985]:

LQLWLDO�PDWFK������H[HFXWH�UXOH�FRQGLWLRQV�
UHSHDW�XQWLO�QR�UXOH�FRQGLWLRQV�SURGXFH�WXSOHV�
����SHUIRUP�FRQIOLFW�UHVROXWLRQ������SLFN�D�WULJJHUHG�UXOH�
����DFW������H[HFXWH�WKH�UXOH�DFWLRQ�IRU�DOO�WXSOHV�SURGXFHG�E\�WKH�FRQGLWLRQ�
����PDWFK������WHVW�UXOH�FRQGLWLRQV�
HQG�

In the PDWFK phase, rule patterns are matched against data to determine which rules

are triggered and for which instantiations. The entire set of triggered rule instantiations
is called the FRQIOLFW�VHW, and one instantiation is chosen from this set using a conflict
resolution strategy. In the DFW phase, the selected rule action is executed for all tuples
of the selected instantiation, then the cycle repeats.

The choice of which rule to execute when multiple rules are triggered is called
conflict resolution. In many active database systems this choice is made more or less
arbitrarily: random [Agrawal, Gehani 1989], numeric priorities [Hanson 1992], partial
order [Widom et al. 1991], based on coupling modes [Gatziu et al. 1994], concurrent
execution [Chakravarthy 1989].

Each time a rule is fired, there is an LQVWDQWLDWLRQ associated with that execution: a
data item, or combination of items, that matches the rule pattern. At execution time,
the values of the instantiated items can be referenced in the rule action through the use
of variables specified in the rule pattern. That is, at run-time, variables are ERXQG in
the pattern and passed to the action.

&RXSOLQJ�PRGHV [McCarthy, Dayal 1989] determine how rule events, conditions,
and actions relate to database transactions. Generally, rule conditions are evaluated
and actions are executed in the same transaction, but it is not always the case.
Associated with each rule is an (�& coupling mode and a &�$ coupling mode, where
(, &, $ denote the events, conditions and actions respectively. Each coupling mode is
either LPPHGLDWH, indicating immediate execution, GHIHUUHG, indicating execution at
the end of the current transaction, or GHFRXSOHG (detached), indicating execution in a
separate transaction. For each of the combinations of coupling modes, it is relatively

1119Allain L., Yim P.: Modeling Information System Behavior ...

easy to construct an active database application for which the behavior seems most
appropriate [Hanson, Widom 1992].

����6SHFLDO�&RQVLGHUDWLRQV�

Although '51V have not primarily been created to model ECA-rules, we can easily
use them to do that. However, special considerations must be understood if we want to
model ECA-rules by means of 1HW6SHF:

– Events are not managed as in the definition of ECA-rules because the existence

(the absence) of a token, as well as its attribute values, can be specified directly
in the condition. So, ECA-rules supported by 1HW6SHF are pattern-based only,

– The act phase of the recognize-act cycle operates only for one tuple rather than
for all of those, to avoid a set-oriented firing of transitions [Kiernan et al. 1990]
as in Petri nets,

±�'51V do not allow to specify a conflict resolution strategy: a transition may be
fired as soon as it has been triggered. So, the design of a transition constraints is
very important if we want to obtain a deterministic behavior of the net. With
1HW6SHF, conflict resolution is implemented by using numeric priorities of three
different types: fixed priorities (the match phase checks the rule conditions in a
specific order), rotating priorities (a triggered rule will receive the lowest
priority for the next match phase), and iterative priorities (a triggered rule will
receive the highest priority for the next match phase, allowing an equivalent of
set-oriented firing. We can also specify no conflict resolution, since 1HW6SHF
now supports multitasking (all transitions are modeled by concurrent processes),

– Finally, the only coupling mode supported when using conflict resolution is the
deferred one. In fact, immediate C-A coupling mode may cause problems
(causally dependent constraints), and detached C-A coupling mode is reserved
for multitasking mode. Practically, on the match and act phases, queries of types
delete (for consumption) and insert (for production) are generated, but will be
executed at the end of the transaction, in that order, to avoid token duplication in
the case of an update of attribute values.

These restrictions are not developed in this paper because our purpose is first to

show that '51V have enough potential toward the design side of an information
system.

����$UFKLWHFWXUH�RI�1HW6SHF�

As shown in [Fig. 7] an application layer is provided to design a DRN with a graphical
tool, to store its definition, to analyze and translate this definition into a set of
executable programs (formally the job of the DRN compiler). A run-time library (the
situation monitor layer) independent of the application itself, provides rule processing
(transition ordering based on conflict resolution).

1120 Allain L., Yim P.: Modeling Information System Behavior ...

)LJXUH��� 7KH�OD\HUHG�DUFKLWHFWXUH�RI�1HW6SHF�

����&RGH�JHQHUDWLRQ�

The main job of the situation monitor layer is to provide rule processing. In fact, the
main difficulty is for the '51 compiler, to order the evaluation of all constraints over
the net [Allain 1999].
 For a transition, the input part (from places to a transition) will be evaluated first,
beginning with finite sets of variables circulating over the edges, i.e. variables well
known. For one tuple of the result, variables of intentionally defined sets are
evaluated. Last, these intentionally defined sets are checked for their cardinalities. The
output part (from a transition to places) is then computed to generate new token
attribute values. These values are optionally checked for compatibility and finally,
place constraints and key constraints are evaluated. If all these constraints are
satisfied, the transition can be crossed and the update of the net is done by means of
insert and/or delete queries.
 From a '51 specification, either created by means of the graphical tool or directly
written in the native language of 1HW6SHF, the compiler creates two executable files.
The former of these two files is a script that contains commands used to create the
database itself. With a relational data model, places are implemented by tables, each
record of which (row) keeps one token, which attributes are columns of the row. For
example, the place PDLO of the IFIP case will be created by:

Application

8VHU�,QWHUIDFH�
'HVLJQ��6WRUDJH��$QDO\VLV��

7UDQVODWLRQ�
0RQLWRU�'%06�,QWHUIDFH�

�

6LWXDWLRQ�0RQLWRU�
/D\HU�

– Polling
– Aperiodic Checking
– Rule Processing

User

Interface

DBMS

(non-active)

$SSOLFDWLRQ�/D\HU�

1HW63(&

1121Allain L., Yim P.: Modeling Information System Behavior ...

&5($7(�7$%/(�PDLO��� ,17�3.BPDLO��
� ,17�UHI��
� 9$5&+$5�����DXWKRUBQDPH��
� '$7(�UHFHLSWBGDWH��
� 9$5&+$5�����YHUVLRQ��
� 35,0$5<�.(<�3.BPDLO����

Notice that the primary key 3.BPDLO is automatically inserted by the compiler to

avoid duplication of tokens having no key constraint and receiving the same attribute
values at run-time (a place contains a set, not a multiset). So, such tokens can be
distinguished without ambiguity inside database queries. This primary key is invisible
for the designer and is reserved for internal use only.
 Transition constraint queries can also be created as views at this time. These views
are relative to the input part of such a constraint (only those generating well known
variables). For example, the view created for the transition UHJLVWHUBDXWKRU is:

&5($7(�9,(:�YLHZBUHJLVWHUBDXWKRU���3.BPDLO�DXWKRUBQDPH���
$6�6(/(&7�3.BPDLO��DXWKRUBQDPH�)520�PDLO�

The latter of the two files created by the compiler provides functions used for rule

processing. For the example developed in [Section 3.1], the non-optimized code of the
transition UHJLVWHUBDXWKRU will be:

EHJLQ�
����FURVVHG�←�)$/6(�
����'(&/$5(�&85625�&��$6�6(/(&7��)520�YLHZBUHJLVWHUBDXWKRU�
����23(1�&��
����ZKLOH�¬(2)�&���DQG�¬FURVVHG�
��������)(7&+�&��,172��SNBD��DXWKRUBQDPH�
��������6(/(&7�&2817���,172��FRXQW�)520�DXWKRU�

:+(5(�QDPH=�DXWKRUBQDPH�
��������LI�FRXQW�=���WKHQ�
����������������,16(57�,172�DXWKRU�9$/8(6��DXWKRUBQDPH��
����������������&200,7�:25.�
����������������FURVVHG�←�758(�
������������HOVH�52//%$&.�:25.�
��������IL�
����HQGZKLOH�
����&/26(�&��
HQG�

��&RQFOXVLRQ�

The definition of '51V is now complete. Several systems derived from multiple
scopes were modeled with our formalism: information processing (the ‘IFIP case’),
planning (robot and cubes [Wilkins 1988]), simulation (IBM360 pipeline execution

1122 Allain L., Yim P.: Modeling Information System Behavior ...

unit [Kogge 1981]), process control (steam-boiler [Abrial 1994]), and reverse design
of a real application (data management [Cadivel 1997]). In this last study, a '51
restricted to one page for its graph and three pages for all annotations has been build,
even though the initial program had about 50000 lines of code written in a classical
programming language. All these examples had successfully passed their
implementation with 1HW6SHF. We have highlighted three main qualities for a
processing model: processing abstraction, dynamic behavior and graphical
representation. We have defined a model closely related to high-level Petri Nets.
'\QDPLF� 5HODWLRQV� 1HWV allow within a unique graphical representation the
specification of data, processing, events and constraints. Annotations of the net use a
set based abstract language. Constraints arise from three levels: from places (related to
the notion of abstract type), from markings (we can then express global constraints
between places), and from transitions (in order to specify processing as state
transformations).

We have not developed here a true method built around '51V. The reverse design
study gave birth to new ideas especially related to valid schema transformations,
allowing a gradual materialization from an abstract model to an operational one, as
with the B method. In fact, the non-deterministic behavior remains a critical aspect: a
'51 must satisfy some properties so that the implementation (for example with
1HW6SHF) fits the initial specifications.

We have not looked for the usual properties of Petri Nets and high-level Petri Nets
(invariants, ...) applied to '51V. We think that these properties are useful in
concurrent systems but are less significant in information systems. Therefore, we will
concentrate on applying proof tools related to Z and B to our model.
 In this paper, we have described the implementation of our approach in active
database systems, based on the '\QDPLF� 5HODWLRQ� 1HWV. Our system, 1HW6SHF,
automatically generates the imperative code of the computational part of an ADBMS
based application, by means of a new modeling language that makes abstraction of
classical programming.

However, 1HW6SHF has enlightened some problems that do not exist in the '51
theory:

– First of all and the most important one, a '51 may have concurrent transitions

the constraints of which are not exclusive. Such a configuration introduces a
non-deterministic behavior of the net. 1HW6SHF uses priorities to solve conflicts
between triggered transitions, as many of the existing ADBMS. However, the
”programming style” has a possible influence on the model, because the designer
can choose its priority type,

– Another problem is the necessity to build a coherent development tool,
especially with a debugger [see Fig. 8]. In fact, the fired transitions of a '51
introduce the same consequences of the fired ECA-rules in ADBMS: transitions
(as ECA-rules) behavior may be complex and not easily understood. The
designer of an application must be able to directly influence the transition firing,
to solve terminations and deadlocks. This is an objective of our future directions.

1123Allain L., Yim P.: Modeling Information System Behavior ...

Our future works will be based on a set of tools designed to build and to validate a
general method to be used on non obvious applications. We hope to create a set of
consistent design tools, dedicated to processing specifications.

)LJXUH����$�VFUHHQ�VDPSOH�RI�WKH�1HW6SHF�SURWRW\SH�GHYHORSPHQW�WRRO�

5HIHUHQFHV�

[Abrial 1994] Abrial, R.: ”Steam-Boiler Control Specification Problem”; Technical

Report (1994).
[Agrawal, Gehani 1989] Agrawal, R., Gehani, N.H.: ”ODE (Object Database and

Environment): The Language and the Data Model”; Proc. ACM-SIGMOD
International Conference on Management of Data, Portland, Oregon (1989), 36-
45.

[Allain 1999] Allain, L.: ”Contribution à la Modélisation et à la Spécification:
Réseaux Formels et Bases de Données Actives”; Thèse de Doctorat en
Productique, Automatique et Informatique Industrielle, LAIL UPRES A8021, EC-
Lille, Université des Sciences et Technologies de Lille, France (1999).

[Bastide et al. 1993] Bastide, R., Sibertin-Blanc, C., Palanque, P.: ”Cooperative
objects: a concurrent, Petri-net based, object-oriented language”; Proc. IEEE
SMC, 1, (1993), 286-291.

[Brownston et al. 1985] Brownston, L., Farrell, R., Kant, E., Martin, N.: ”Pro-
gramming Expert Systems in OPS5: An Introduction to Rule-Based
Programming”; Addison-Wesley, Reading, Massachusetts (1985).

[Cadivel 1997] Cadivel, C.: ”Contribution à la Specification des Systèmes
d’Information”; Thèse de Doctorat en Informatique et Automatique Appliquées,
INSA Lyon, France (1997).

1124 Allain L., Yim P.: Modeling Information System Behavior ...

[Chakravarthy 1989] Chakravarthy, S.: HiPAC: ”A Research Project in Active, Time-
Constrained Database Management, Final Report”; Technical Report XAIT-89-
02, Xerox Advanced Information Technology, Cambridge, Massachussets (1989).

[Chakravarthy et al. 1993] Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.:
 ”Anatomy of a Composite Event Detector”. Technical Report UF-CIS-TR-93-
039, CIS Department, University of Florida (1993).

[Dittrich et al. 1995] Dittrich, K.R., Gatziu, S., Geppert, A.: ”The Active Database
Management System Manifesto”; Proc. 2nd Workshop on Rules in Databases,
Athens, Greece (1995), 3-20.

[Gatziu et al. 1994] Gatziu, S., Geppert, A., Dittrich, K.R.: ”The SAMOS Active
DBMS Prototype”; Technical Report 94.16, Institut für Informatik, Universität
Zürich Switzerland (1994).

[Hanson, Widom 1992] Hanson, E.N., Widom, J.: ”An Overview of Production Rules
in Database Systems”; Technical Report UF-CIS 92-031, CIS Department,
University of Florida (1992).

[Hanson 1992] Hanson, E.N.: ”Rule Condition Testing and Action Execution in
Ariel”; Proc. ACM-SIGMOD International Conference, (1992), 49-58.

[Heuser et al. 1993] Heuser, C.A., Peres, E.M., Richter, G.: ”Towards a complete
conceptual Model: Petri Nets and Entity-Relationship Diagrams”; Information
Systems, 5, (1993), 275-298.

[Jensen, Rosenberg 1991] Jensen, K., Rosenberg, G.: ”High-Level Petri Nets”;
Springer, Berlin (1991).

[Kiernan et al. 1990] Kiernan, G., de Maindreville, C., Simon, E.: ”Making Deductive
Database a Practical Technology: A Step Forward”; Proc. ACM SIGMOD
International Conference on Management of Data (1990).

[Kogge 1981] Kogge, P.M.: ”The Architecture of Pipelined Computers”; McGraw-
Hill Book Company (1981).

[McCarthy, Dayal 1989] McCarthy, D.R., Dayal, U.: ”The Architecture of an Active,
Object-oriented Database Management System”; Proc. ACM-SIGMOD
International Conference on Management of Data, 18, 2, Portland, Oregon
(1989), 215-224.

[Murata 1989] Murata, T: ”Petri nets: properties, analysis and applications”; Proc.
IEEE, 77, 4, (1989), 541-580.

[Pascot, Ridjanovic 1991] Pascot, D., Ridjanovic, D.: ”DATARUN: La modélisation
des traitements au sein des modèles de données. Application au cas
IFIP”; AFCET, Paris (1991).

[Sibertin-Blanc 1991] Sibertin-Blanc, C.: ”Cooperative Objects for the Conceptual
Modeling of Organizational Information Systems”; Proc. IFIP TC8, Quebec City,
Canada (1991).

[Widom et al. 1991] Widom, J., Cochrane, R.J., Lindsay, B.G.: ”Implementing Set-
Oriented Production Rules As An Extension To Starburst”; Proc. 17th
International Conference on Very Large Data Bases (VLDB), Barcelona, Spain
(1991), 275-285.

[Wilkins 1988] Wilkins, D.: ”Practical Planning: Extending the classical AI planning
paradigm”; Morgan Kaufmann (1988).

1125Allain L., Yim P.: Modeling Information System Behavior ...

$SSHQGL[�

Hereafter we show the complete graph of the '51 [see Fig. 9] and the complete table
of annotations [see Tab. 3] for the IFIP case study. For convenience, we do not
annotate the graph with all the variables but we consider that a given edge is annotated
by a set { S } where S is the place linked to it. The only exception is for the variables
denoting intentionally defined sets: they can be located by a ‘*’ and they appear in the
annotation table as S¶.

)LJXUH��� &RPSOHWH�JUDSK�RI�WKH�'51�

PDLO

UHVSRQVH

*

GHURJDWLRQ

SURMHFW

PHPEHU

DYHUDJH

ILQDO

LQYLWDWLRQ

DFFHSWDQFH

VHVVLRQ

DGYLFH

GHFLVLRQ

UHMHFWLRQEDOORW

7�

7�

7��

UHDSSRLQWPHQW

DSSRLQWPHQW

UHIHUHH

PDUNLQJ
SDSHU

HQGBRIBPDUNLQJ�

DXWKRU
7�

7�

7�

7�

7�

7��

7�

7�� 7��
7��

7�

7��

7���

7��

7��
7��

PDUN

*

*

1126 Allain L., Yim P.: Modeling Information System Behavior ...

3ODFH� 7\SH�3ODFH��

mail 〈 UHI : ≤,
DXWKRUBQDPH : ,
UHFHLSWBGDWH : ,
YHUVLRQ : • YHUVLRQ ∈ { ’letter’, ’temporary’, ’final’ } 〉

author 〈 QDPH : 〉
derogation 〈 UHI : ≤,

DJUHHPHQW : • DJUHHPHQW ∈ { ’yes’, ’no’ } 〉
project 〈 UHI : ≤,

DXWKRUBQDPH : ,
UHFHLSWBGDWH : ,
YHUVLRQ : • YHUVLRQ ∈ { ’letter’, ’temporary’ } 〉

paper 〈 UHI : ≤,
DXWKRUBQDPH : 〉

member 〈 QDPH : 〉
appointment 〈 UHI : ≤,

UHIHUHHBQDPH : 〉
referee 〈 UHI : ≤,

QDPH : 〉
reappointment 〈 UHI : ≤,

ROGBUHIHUHHBQDPH : ,
QHZBUHIHUHHBQDPH : 〉

end_of_marking 〈 VWDWH : • VWDWH ∈ { ’yes’, ’no’ } 〉
marking 〈 UHI : ≤,

UHIHUHHBQDPH : ,
VXEMHFW : ∞ • VXEMHFW ∈ [0..10],
TXDOLW\ : ∞ • TXDOLW\ ∈ [0..10],
UHIHUHQFHV : ∞ • UHIHUHQFHV ∈ [0..10] 〉

mark 〈 UHI : ≤,
UHIHUHHBQDPH : ,
VXEMHFW : ∞ • VXEMHFW ∈ [0..10],
TXDOLW\ : ∞ • TXDOLW\ ∈ [0..10],
UHIHUHQFHV : ∞ • UHIHUHQFHV ∈ [0..10] 〉

average 〈 UHI : ≤,
DXWKRUBQDPH : ,
YDOXH : ∞ 〉

rejection 〈 UHI : ≤,
DXWKRUBQDPH : 〉

ballot 〈 UHI : ≤,
DXWKRUBQDPH : 〉

acceptance 〈 UHI : ≤,
DXWKRUBQDPH : 〉

final 〈 UHI : ≤,
DXWKRUBQDPH : ,
UHFHLSWBGDWH : 〉

decision 〈 UHI : ≤,

1127Allain L., Yim P.: Modeling Information System Behavior ...

DJUHHPHQW : • DJUHHPHQW ∈ { ’yes’, ’no’ } 〉
advice 〈 UHI : ≤,

DJUHHPHQW : • DJUHHPHQW ∈ { ’yes’, ’no’ } 〉
session 〈 UHI : ≤,

VSHDNHUBQDPH : 〉
invitation 〈 UHI : ≤,

DXWKRU : ,
GHDGOLQH : 〉

response 〈 UHI : ≤,
UHFHLSWBGDWH : 〉

7UDQVLWLRQ� *�7UDQVLWLRQ��

register_author
(T1)

DXWKRU�QDPH� �PDLO�DXWKRUBQDPH

receive_mail
(T2)

PDLO.UHFHLSWBGDWH�≤�’06/09/2000’
∧ (PDLO.YHUVLRQ = ’letter’ ∨ PDLO.YHUVLRQ = ’temporary’)
∧ PDLO.DXWKRUBQDPH = DXWKRU.QDPH
∧ SURMHFW.UHI = PDLO.UHI
∧ SURMHFW.DXWKRUBQDPH = PDLO.DXWKRUBQDPH
∧ SURMHFW.UHFHLSWBGDWH = PDLO.UHFHLSWBGDWH
∧ SURMHFW.YHUVLRQ�=�PDLO.YHUVLRQ

Derogate_delay
(T3)

PDLO.UHFHLSWBGDWH�>�’06/09/2000’
∧ (PDLO.YHUVLRQ = ’letter’ ∨ PDLO.YHUVLRQ = ’temporary’)
∧ PDLO.DXWKRUBQDPH = DXWKRU.QDPH�
∧ GHURJDWLRQ.UHI = PDLO.UHI
∧ GHURJDWLRQ.DJUHHPHQW = ’yes’
∧ SURMHFW.UHI = PDLO.UHI
∧ SURMHFW.DXWKRUBQDPH = PDLO.DXWKRUBQDPH
∧ SURMHFW.UHFHLSWBGDWH = PDLO.UHFHLSWBGDWH
∧ SURMHFW.YHUVLRQ�=�PDLO.YHUVLRQ

receive_temporary
(T4)

SURMHFW.YHUVLRQ = ’temporary’
∧ SDSHU.UHI = SURMHFW.UHI
∧ SDSHU.DXWKRUBQDPH = SURMHFW.DXWKRUBQDPH

receive_temp_letter
(T5)

PDLO.YHUVLRQ = ’temporary’
∧ SURMHFW.YHUVLRQ = ’letter’
∧ SURMHFW.UHI = PDLO.UHI
∧ SDSHU.UHI = PDLO.UHI
∧ SDSHU.DXWKRUBQDPH = PDLO.DXWKRUBQDPH

receive_final
(T6)

PDLO.YHUVLRQ = ’final’
∧ ILQDO.UHI = PDLO.UHI
∧ ILQDO.DXWKRUBQDPH = PDLO.DXWKRUBQDPH�
∧ ILQDO.UHFHLSWBGDWH = PDLO.UHFHLSWBGDWH

1128 Allain L., Yim P.: Modeling Information System Behavior ...

appoint_referee
(T7)

DSSRLQWPHQW.UHI = SDSHU.UHI
∧ DSSRLQWPHQW.UHIHUHHBQDPH = PHPEHU.QDPH
∧ DSSRLQWPHQW.UHIHUHHBQDPH ≠ SDSHU.DXWKRUBQDPH
∧ UHIHUHH.UHI = DSSRLQWPHQW.UHI
∧ UHIHUHH.QDPH = DSSRLQWPHQW.UHIHUHHBQDPH

Reappoint_referee
(T8)

Please see [Tab. 2]

cancel
(T9)

SURMHFW.UHI = UHIHUHH¶.UHI
∧ SURMHFW.UHI = SDSHU.UHI
∧ SURMHFW.YHUVLRQ = ’letter’
∧ CurrentDate − SURMHFW.UHFHLSWBGDWH > 30 days

register_mark
(T10)

PDUNLQJ.UHI = UHIHUHH.UHI�
∧ PDUNLQJ.UHIHUHHBQDPH = UHIHUHH.QDPH
∧ PDUN.UHI = PDUNLQJ.UHI
∧ PDUN.UHIHUHHBQDPH = PDUNLQJ.UHIHUHHBQDPH
∧ PDUN.VXEMHFW = PDUNLQJ.VXEMHFW
∧ PDUN.TXDOLW\ = PDUNLQJ.TXDOLW\
∧ PDUN.UHIHUHQFHV = PDUNLQJ.UHIHUHQFHV

compute_average
(T11)

HQGBRIBPDUNLQJ.VWDWH�= ‘yes’
∧ PDUN¶.UHI = SDSHU.UHI�∧ Card(PDUN¶) ≥ 3
∧ DYHUDJH.UHI = SDSHU.UHI
∧ DYHUDJH.DXWKRUBQDPH = SDSHU.DXWKRUBQDPH
∧ DYHUDJH.YDOXH = Avg(PDUN¶.VXEMHFW) × 0.5
 + Avg(PDUN¶.TXDOLW\) × 0.3
 + Avg(PDUN¶.UHIHUHQFHV) × 0.2

register_rejection
(T12)

DYHUDJH.YDOXH < 8.0
∧ UHMHFWLRQ.UHI = DYHUDJH.UHI
∧ UHMHFWLRQ.DXWKRUBQDPH = DYHUDJH.DXWKRUBQDPH

register_ballot
(T13)

DYHUDJH.YDOXH ≥ 8.0 ∧ DYHUDJH.YDOXH < 10.0
∧ EDOORW.UHI = DYHUDJH.UHI
∧ EDOORW.DXWKRUBQDPH = DYHUDJH.DXWKRUBQDPH

register_acceptance
(T14)

DYHUDJH.YDOXH ≥ 10.0
∧ DFFHSWDQFH.UHI = DYHUDJH.UHI
∧ DFFHSWDQFH.DXWKRUBQDPH = DYHUDJH.DXWKRUBQDPH

accept_ballot
(T15)

EDOORW.UHI = GHFLVLRQ.UHI
∧ GHFLVLRQ.DJUHHPHQW = ’yes’
∧ DFFHSWDQFH.UHI = EDOORW.UHI
∧ DFFHSWDQFH.DXWKRUBQDPH = EDOORW.DXWKRUBQDPH

reject_ballot
(T16)

EDOORW.UHI = GHFLVLRQ.UHI
∧ GHFLVLRQ.DJUHHPHQW = ’no’
∧ UHMHFWLRQ.UHI = EDOORW.UHI
∧ UHMHFWLRQ.DXWKRUBQDPH = EDOORW.DXWKRUBQDPH

organize_final_session
(T17)

DFFHSWDQFH.UHI = ILQDO.UHI
∧ ILQDO.UHFHLSWBGDWH ≤ ’06/30/2000’
∧ VHVVLRQ.UHI = ILQDO.UHI
∧ VHVVLRQ.VSHDNHUBQDPH = ILQDO.DXWKRUBQDPH

1129Allain L., Yim P.: Modeling Information System Behavior ...

organize_delayed_session
(T18)

DFFHSWDQFH.UHI = ILQDO.UHI
∧ ILQDO.UHFHLSWBGDWH > ’06/30/2000’
∧ ILQDO.UHI = DGYLFH.UHI
∧ DGYLFH.DJUHHPHQW = ’yes’
∧ VHVVLRQ.UHI = ILQDO.UHI
∧ VHVVLRQ.VSHDNHUBQDPH = ILQDO.DXWKRUBQDPH

invite
(T19)

LQYLWDWLRQ.UHI = UHVSRQVH.UHI
∧ UHVSRQVH.UHFHLSWBGDWH ≤ LQYLWDWLRQ.GHDGOLQH
∧ VHVVLRQ.UHI = LQYLWDWLRQ.UHI
∧ VHVVLRQ.VSHDNHUBQDPH = LQYLWDWLRQ.DXWKRUBQDPH

7DEOH��� &RPSOHWH�DQQRWDWLRQV�RI�WKH�'51��

1130 Allain L., Yim P.: Modeling Information System Behavior ...

