Journal of Universal Computer Science, vol. 6, no. 10 (2000), 928-947
submitted: 16/3/00, accepted: 10/10/00, appeared: 28/11/00 O Springer Pub. Co.

Performance of Switch Blocking on Multithreaded
Architectures

K. Gopinath
Department of Computer Science & Automation
Indian Institute of Science, Bangalore
gopi@csa.iisc.ernet.in

Krishna Narasimhan M.K.
Department of Computer Science & Automation
Indian Institute of Science, Bangalore

Abstract: Block multithreaded architectures tolerate large memory and synchroniza-
tion latencies by switching contexts on every remote-memory-access or on a failed
synchronization request. We study the performance of a waiting mechanism called
switch-blocking where waiting threads are disabled (but not unloaded) and signalled
at the completion of the wait in comparison with switch-spinning where waiting threads
poll and execute in a round-robin fashion. We present an implementation of switch-
blocking on a cycle-by-cycle simulator for Alewife (a block multithreaded machine)
for both remote memory accesses and synchronization operations and discuss results
from the simulator. Our results indicate that while switch-blocking almost always has
better performance than switch-spinning, its performance is similar to switch-spinning
under heavy lock contention. Support for switch-blocking for remote memory accesses
may be appropriate in the future due to their strong interactions with synchronization
operations.

Key Words: algorithms, performance, theory. barriers, blocking, competitive analy-
sis, locks, producer-consumer synchronization, spinning, waiting time

Category: C.1.2, C.4,D.4.1, D 4.8

1 Introduction

Remote memory access latencies are increasingly becoming high in large-scale
multiprocessors [1, 13]. They cannot be removed entirely by caching as some
memory transactions can cause cache coherence protocols to issue invalidation
messages and misses have to be endured. Processors can spend most of their
time waiting for remote accesses to be serviced, hence reducing the processor
utilization [14]. A similar problem arises when the processor must wait for a
synchronization event; the problem here is even more acute as these delays may
be unbounded.

One solution that addresses both the above mentioned problems allows the
processor to have multiple outstanding remote memory accesses or synchro-
nization requests. The Alewife [7] machine implements this solution by using a
processor that can switch rapidly between multiple threads' of computation and
a cache controller that supports multiple outstanding requests. Processors that

1 A thread is a process with its own processor state but without a separate address
space. A hardware context is a set of registers on a processor that implements the
processor-resident state of a thread. A context switch is a transfer of processor control

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ... 929

switch rapidly between multiple threads of computation are called multithreaded
architectures. It is important to emphasize the difference between traditional
view of context switching and thread context switching in Alewife. Tradition-
ally, a context switch involves saving out the state of a process into memory,
and loading the state of another process into the processor. In multithreaded
architectures, a context switch does not involve saving state into memory; the
processor can activate a different hardware context. Processor state is saved in
memory only when a thread is blocked and unloaded.

In the prototypical finely multithreaded machine HEP [8] or its more recent
version TERA [2], the processor switches between processor resident threads ev-
ery cycle. Architectures employing such cycle-by-cycle interleaving of threads are
called for finely multithreaded. In contrast, Alewife employs block multithreading:
context switches occur only when a thread executes a memory request that must
be serviced by a remote node in the multiprocessor, or on a failed synchronization
request. The Alewife controller traps the processor and the trap handler may
force a context switch depending on the waiting mechanisms chosen: spinning,
switch-spinning, blocking and switch-blocking.

Current multiple issue superscalar processors exploit parallelism inside a sin-
gle thread and not across threads, especially without the ability to tolerate la-
tencies due to synchronization or cache faults etc. Simultaneous multithreading
leverages the register renaming mechanism within dynamically-scheduled super-
scalar processors to allow instructions from multiple threads to be active simul-
taneously within the pipeline [4]. However, in block multithreading, instructions
are executed from within a single thread until the next context switch, for higher
single-thread performance..

1.1 Waiting Mechanisms

Spinning is a polling mechanism. It has low execution cost because each poll
of the synchronization variable consumes only a few processor cycles to read a
memory location, but it is not processor-efficient because it prevents the other
threads from utilizing the processor. It is possible to spin-wait economically on a
machine with hardware cache coherence like Alewife by using cache invalidations
to inform the waiters of a change in the synchronization variable.

Blocking is a signaling mechanism. It is processor-efficient because it relin-
quishes control of the processor, but has high execution cost. This cost includes
the time needed to unload and suspend the waiting thread, and then reschedule
and reload it at a later time. Unloading a thread involves storing its hardware
context into memory and reloading a thread involves restoring the saved context
of the thread onto the processor.

In the case of switch-spinning, context switch takes place to another resi-
dent thread upon a synchronization fault. The processor is kept busy executing
other threads at the cost of the fast context switch without incurring the high
overhead of blocking. Control eventually returns to the waiting thread and the
failed synchronization is retried. This mechanism is more processor-efficient than
spinning and has a lower execution cost than blocking.

from one processor-resident thread to another processor-resident thread. No thread
state needs to be saved out into memory. A thread is running if it is resident in a
hardware context regardless of whether it has control of the processor.

930 Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

The switch-blocking waiting mechanism disables the context associated with
the waiting thread and switches execution to another context. The disabled
context is ignored by further contexts switches until it is re-enabled when the
waiting thread is allowed to proceed. Contrast this with blocking, which requires
unloading a thread. It is as processor-efficient as blocking and has a low-execution
cost because threads are not unloaded.

The choice between waiting mechanisms depends on several factors like the
expected wait time, the blocking overhead, whether the number of concurrently
executable threads in a program does not exceed the number of hardware con-
texts (matched) or is unbounded (unmatched), etc. In addition, there are hybrid
strategies like two-phase algorithms that employ one mechanism (say, spin) dur-
ing the first phase and if the synchronization condition is not satisfied within
the first phase, employ another mechanism (say, blocking). In the unmatched
case (more threads than contexts), if there are more active threads than con-
texts, they get unloaded in pure blocking waiting algorithms. In the switch-block
case, they get unloaded in a 2-phase algorithm after B time units (the cost of
unloading and loading a hardware context). In 1-phase switch-block, they do
not.

Previous work at MIT [10] has studied the performance of the first three
waiting mechanisms under various models (2-phase algorithms, matched vs un-
matched, etc.). Here we report the modelling, implementation and benchmark
performance of switch-blocking and compare it with switch-spinning. Switch-
blocking requires modest additional hardware resources on top of what is re-
quired for switch-spinning. Our results indicate that while switch-blocking al-
most always performs better than switch-spinning, its performance is similar
to switch-spinning under heavy lock contention. Support for switch-blocking for
remote memory accesses may be appropriate in the future due to their strong
interactions with synchronization operations.

1.2 Background and Related Work

Beng-Hong Lim and Anant Agarwal [10] studied waiting algorithms for synchro-
nization in large-scale multiprocessors. Their work addresses switch-spinning in
1-phase and 2-phase versions.

SUN has recently released a MAJC processor, MAJC-5200, that also uses
block multithreading; this processor is designed for Java. This chip exploits par-
allelism through multiple CPUs (2) per chip, “vertical micro-threading” (same as
block multithreading) through low overhead context switching triggered through
long latency memory fetch, etc. and finally the use of VLIW in each thread [3].

One future architecture that plans to use block multithreading is “Blue Gene”
from IBM, a massively parallel system currently being designed to have more
than 8 million simultaneous threads of computation [17] to model the folding
of human proteins. This architecture is being referred to as SMASH (Simple,
Many and Self-Healing) as it will also be self-stabilizing and self-healing, ie. au-
tomatically be able to overcome failures of individual processors and computing
threads. Blue Gene is expected to consist of more than one million 1 gigaflop
processors with 32 of them on a single chip and 8 threads per processor.

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ... 931

1.3 Roadmap

In Section 2, we propose a Markov model for switch-blocking to estimate the per-
formance advantage of switch-blocking over switch-spinning. Section 3 discusses
two-phase waiting algorithms, as handling deadlocks in pure switch-blocking
or switch-spinning can result in considerable loss of performance (due to use of
coarse timeouts). In Section 4, we describe briefly Alewife’s architecture and syn-
chronization constructs followed by implementation details of switch-blocking.
Section 5 presents the results of running various benchmarks on Alewife’s simu-
lator (ASIM) [5, 6] comparing one and two phase switch-blocking with switch-
spinning and some discussion on the effectiveness of the models. ASIM (Alewife
simulator) is a cycle-by-cycle simulator developed at MIT and we have modified
it to run switch-blocking. It has a functional simulator for the memory subsys-
tem, though. Finally, we conclude with some observations and future work.

2 Model for Switch-Blocking

Let T denote the random variable for wait time and f(¢) the probability density
function (PDF) for wait time. Let B be the cost of blocking. If ¢ is the wait time
under spinning, define v as the relative efficiency of switch-blocking over spinning
so that ¢/v is the waiting cost under switch-blocking for the same wait. The cost
is modelled as being proportional to ¢ as leaving contexts disabled diminishes the
latency hiding efficiency (as experienced by other threads) compared to switch-
spinning. In addition, a switch-blocked thread waiting for access to some lock
will, upon being woken up one or more times, introduce network traffic that is
proportional to the waiting time.

The parameter 7y is not easy to estimate in closed form in contrast to 3, the
relative efficiency of switch-spinning, which is approximately given by [10]

t
(@ + Cop) [tory |

B= (1)

Here N is the total number of hardware contexts, (s, the context switch
time for switch-spinning and [m] denotes the number of times control

returns to the waiting thread before it succeeds in its synchronization attempt
and x denotes the context run-length. However, v is very close to the value of 3
as the simulations show a difference in performance that is less than 5%-8%.

To investigate the performance difference between switch-spinning and switch-
blocking, we develop the following combined Markov model for both pure switch-
spinning and switch-blocking for the matched case where the number of threads
and processor contexts match. At the level of modelling attempted, it is not
possible to derive the differences between them in one stroke; we use the prob-
abilities of occupancy of the various states and the sojourn times computed in
the combined Markov model to then estimate the additional overhead of switch-
spinning over switch-blocking. (We leave the modelling for the unmatched case
as future work.)

932 Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

2.1 Combined Markov Model
We make the following assumptions:

— The average rate at which any active context gets disabled is exponentially
distributed with parameter A. Note that this is not the same as the rate at
which a particular context gets disabled as the exact identity of the context
is not clear in the case of switch-blocking.

— The average rate at which a context is enabled is exponentially distributed
with parameter p.

— At any point in time only one context can be enabled or disabled.

The Markov model (Figure 1) has NV + 1 states where ¢ contexts are enabled
in state i. All the contexts are disabled in state 0. Let 7; denote the steady state
probability of state i. Let E[T;] denote the expected time when i contexts are

enabled.
Iz 2p 3p (N —-1) Nup
@’ N_l N_2 1 @
f———> f—— —_— f———
N N —1)x

N —2)A 2x A

Fig 1: Markov model for switch-blocking.

Initially all the contexts are enabled. The rate at which a transition takes
place from state (N —) to state (N — i + 1) is the rate at which one context is
enabled from the remaining i contexts. Hence this rate is iu. The rate at which
a transition takes place from state (N — i) to state (INV — i — 1) is the rate at
which one context is disabled from the remaining (N — i) contexts. Hence this
rate is (N — i)\. The steady state probabilities can be calculated as follows:

’/TNN/\ = UTN-1
7T(N,2)2,u, = (N — 1)>\7TN_1

Hence, m(ny_;) = %(%)Zﬂ']\f fori=1,...,N.
Since TN mi = 1, we get

1
™ = . .
PO i!(lifv;i)! (%)Z

The rate at which the state (N —i) transits to state (N —i+1) is exponentially
distributed with parameter ¢u and the rate at which a transition takes place to
state (N — i — 1) is also exponentially distributed with parameter (N — i)A.
Hence the time spent in the state (N — i) is again exponentially distributed
with parameter min((N — i)\, i), which is same as (N —)\ + iu: this leads to
Equation 2: .

A= =

(2)

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ... 933

Substituting ¢ = N in Equation 2, the expected time all contexts are blocked
is given by .
E[Ty] = N (3)
The PMF’s for different values of A/u are plotted in Figures 2 and 3 whereas
PMF’s through simulations for multigrid and conjugate gradient (see Section 5
for information on these benchmarks) are plotted in Figures 4 and 5.

2.2 Modelling the Difference

To model the difference between switch-spinning and switch-blocking, we make
the assumption that the probabilities of occupancy and sojourn times of the var-
ious states in the Markov model are the same for both and given by the above
equations with the only difference being the extra context switches suffered by
the former. This approximation is reasonable as the difference in the simulated
times for many benchmarks is typically not more than 8% and the current hard-
ware implementation can scan for an available context in the same sequence in
both the waiting mechanisms.

The extra overhead can be modelled as the extra waiting time in a M/G/1
queue with vacations [15] with the vacations being the extra context switches
suffered by switch-spinning: here W is the wait time, X is the service time and
V the vacation: . .

W =AX2/2(1—p)+VZ/2V (4)

Let the service time include the context switch time. The vacation time in
switch-spinning is given by kCs, where k is the number of idle contexts at-
tempted before success. Switch-blocking has, with each context-switch, a fixed
short vacation given by Cys — Csp,, where Cyp, is the context switch time for
switch-blocking.

The vacation part of the waiting time in Equation 4 is computed as follows
(N = 4). Given that the number of enabled contexts is ¢, and the current context
is enabled, the average (variance) is computed by enumerating all the possible
states of the contexts, and, assuming that they are equiprobable, multiplying by
the time (square of the time) for the number of intervening failed contexts.

Vip = Csp(1 — mo) (w4 0 + 73 /3 +
7!'2(]./3 + 2/3) + 3’/T1) + ’/T[)E[To]

= :L‘Csp(]. — ’/T[)) + ’/T[)E[To] (5)
Va = Cfp(l —mo)(ma x 0+ 73 /9 +
9 + 97(1) + 7T0E[T[)]2

=yC2,(1 — mo) + mo B[To]? (6)

V_sb = (1 - ”0)(0817 - Csz)) + 7rOE[TO] (7)
Vi = (1=m0)(Csp — Csp)® + moE[To]* (8)
Weztra = VSZI)/2W[) - ‘/32()/2‘/_5;!7 (9)

The extra context switches suffered by switch-spinning is given by Wesrq and
this enables us to compute v from Eq. 1. In addition, the specific contribution
to the overhead for switch-spinning from memory transactions can be computed
in a similar fashion.

934 Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

2.3 Evaluating the Model

To estimate the effectiveness of the Markov model, consider the case for A\/u =
0.5 that is close to the observed probability profile for the number of live con-
texts for the multigrid benchmark. The computed values are as follows: my =
0.012; 7 = 0.099; o = 0.296; 73 = 0.395; 74 = 0.198.

Using equation 3 and assuming an average value of context run length ob-
tained from a simulation for multigrid (namely: 43, i.e. A = 1/43 per cycle), the
extra wait for switch-spinning is given by Equation 4 as 0.69Cj, i.e. for every
context-switch suffered by switch-blocking, there is an extra 0.69 context-switch
overhead in the case of switch-spinning. This roughly corresponds to the ob-
served difference in clock cycles between switch-blocking and switch-spinning in
order of magnitude (calculated: 240,000 cycles; observed: 330,000 cycles). This
is quite reasonable as we have not explicitly taken into account the difference in
the context switches due to synchronization or remote cache misses and we have
made many simplifying assumptions.

If probabilities computed from simulations are used instead of using calcu-
lated values from the Markov model (but still using Eq.9), we get a more accurate
answer. Using the values in Figure 4, the extra overhead is 0.97 context switches
(for a total of 337,400 cycles), which is closer to the observed value.

3 Two Phase Algorithms

As deadlocks are possible in the context of unmatched algorithms, pure switch-
spinning and switch-blocking may not be suitable as the overhead of deadlock
detection (typically by timeouts) can be substantial. Two phase algorithms can
handle this problem with ease in addition to the original motivation of tackling
widely varying waiting times of synchronization events.

Without any information about the distribution of wait times of synchroniza-
tion events and remote memory references, one cannot expect an on-line waiting
algorithm to perform as well as an optimal off-line algorithm. However, com-
petitive analysis can be used to place an upper bound on the cost of an on-line
algorithm relative to the cost of an optimal off-line algorithm. A c¢-competitive
algorithm has a cost that is at most ¢ times more than the cost of an optimal
off-line algorithm. Karlin et al. [12] present a refinement of the 2-phase blocking
scheme, and prove a competitive factor of 1.59 on their algorithm. The idea is
based on 2-phase blocking: given a choice between spinning and blocking, the
waiting thread should spin for some period of time and then block if the thread is
still not allowed to proceed. The maximum length of the spin phase is randomly
picked from a predetermined probability distribution.

An optimal off-line algorithm has perfect knowledge about wait times. There-
fore, at each wait, it knows exactly how long the wait time will be. If the cost
of switch-blocking for the entire wait time is more than the cost of blocking, the
optimal off-line algorithm will choose to block immediately. Otherwise it will
switch-block. Typically, a two-phase algorithm splits the waiting into a polling
phase and a signaling phase. But we will be considering a two-phase algorithm
that splits the waiting between two signaling phases. This algorithm executes
switch-blocking for some length of time and then blocking if the thread still has
to wait.

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ... 935

Let the length of the switch-blocking phase be aB, where « is a non-negative
constant and B is the overhead of blocking. Setting « to 1 yields a 2-competitive
algorithm because any wait time that is less than B incurs the same cost as
an optimal off-line algorithm while any wait time that is more than B cycles is
exactly twice the cost of the optimal algorithm. If & > 1, any wait time that is
more than B cycles costs (1 + «) times more than optimal.

The various types of waiting algorithms considered in our simulations are as
follows:

Always Switch-Block : This is a pure 1-phase strategy with the cost of waiting
for ¢ cycles being t/7.

Blocking : The cost of blocking is B, regardless of the wait time distribution.
Optimal Switch-block/Block : The cost of switch-blocking in phase 1 is re-
duced by a factor of v with the maximum length of the phase being vB.
Two-phase Switch-Block/Block : This algorithm switch-blocks until the cost

of switch-blocking is equal to aB and then blocks if necessary.

Once the wait time distributions for commonly used synchronization types
(like mutual exclusion, barriers, producer-consumer) are derived by making suit-
able assumptions (see Lim [10] for details), one can compute the cost of the
different waiting algorithms. Assuming that the factor for switch-blocking is -y
instead of 3, all the results that Lim derives are carried through except that 3
is replaced by ~.

4 Implementation of Switch Blocking in Alewife

Alewife is a cache-coherent, block-multithreaded, distributed memory multipro-
cessor that supports a shared-memory programming abstraction. The initial
implementation of the SPARC-based node processor is SPARCLE (also called
APRIL) [9] and designed to meet requirements that are crucial for multiprocess-
ing: tolerate latencies and handle traps efficiently. It has four hardware contexts
with a context switch taking 14 cycles. The trap mechanism takes 5 cycles to
empty the processor pipeline and save the relevant state before passing control
to the trap handler.

Register windows in the SPARC processor permit a simple implementation
of block multithreading. Two register windows are allocated to each thread. The
Current Window Pointer (CWP) is altered via SPARC instructions (SAVE and
RESTORE). To effect a context switch, the trap routine saves the Program
Counter (PC) and Processor Status Register (PSR), flushes the pipeline and
sets the CWP to a new register window for a total of 14 cycles. Through the
use of memory exception (MEXC) line on SPARC, the controller can invoke
synchronous traps and rapid context switching.

SPARC provides a 32 bit register, the window invalid mask (WIM), whose
bits indicate whether a context is enabled (0) or not. The SPARCLE processor
is based on the following modifications to SPARC architecture: emulation of
multiple FP hardware contexts, detection of unresolved futures through SPARC
word-alignment and tagged-arithmetic traps. In addition, it has the following
instructions? that enables us to efficiently implement switch-blocking: RDWIM is

2 SPARCLE also has SAVE2 and RESTORE2 that change CWP by two.

936 Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

a privileged instruction that reads the WIM register contents into a register while
WRWIM writes WIM. In NEXTF and PREVF, the new CWP is determined
by the next alternate window that is enabled. In PREVF, CWP - 2, 4 or 6 is
checked in sequence to locate an enabled window. If no window is enabled, CWP
remains the same. The add behaviour as in SAVE and RESTORE instructions is
preserved and no traps are taken. Analogously, NEXTF checks CWP + 2, 4 or 6.
Both NEXTF and PREVF are 1 cycle instructions. ASIM (Alewife’s simulator:
see Section 5) has been modified to simulate these instructions and registers like
WIM. According to the SPARC V8 standard [16], WRWIM can have 0-3 delay
slots depending on the implementation with NEXTF to be executed only after
these delay slots for a correct operation®. Our implementation has assumed a
delay slot of 1.

4.1 Enabling and Disabling of Contexts

First, we discuss one important boundary case. If all the contexts are disabled
in the matched case (i.e., when all contexts contain switch-blocked threads), the
processor idles*.

4.1.1 Handling Remote Memory Accesses

Initially, the WIM bits of an active context are 0. When a thread issues a remote-
memory-access, a cache miss trap is generated. In the trap handler, the state
of the context is saved and the WIM bits of that context are set to 1. Next, a
context switch is effected by the use of the NEXTF instruction which searches for
a context whose WIM bits are 0. When the remote-memory-access is serviced,
the WIM bits corresponding to that context are set to 0 and the context is
enabled.

To reset WIM in hardware so that no polling is necessary, additional pins are
needed on the chip: namely, the hardware context to be enabled and an enable
signal. Due to the pipelining in the chip, this reset takes effect only after a delay
of 4 cycles. We assume that the Alewife controller has been modified so that
when the remote memory access is complete, in addition to providing the data,
the controller sets the enable pin along with the context number.

For computing the service time of a remote-memory-access, the following
network delay model has been used [11]:

pS(kq — 1) 1
T.=1+——F——"14+—))nkg+S+M-1
T. = Network latency for memory transactions

p = Channel utilization

S = Message size in flits (8 bits)

n = Dimension of the network (2)

M = Memory access time

kg = Average distance a message must travel
in each dimension

3 SPARCLE has a 3 cycle delay slot
4 This is also the behaviour of the NEXTF and PREVF instructions in SPARCLE.

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ... 937

Since there is a delay of 4 cycles due to the pipeline in SPARCLE before
the enabling of a hardware context, the effective memory delay as seen by the
processor is 4 cycles longer. In this paper, the memory times given include this
extra 4 cycles.

4.1.2 Handling Synchronization

Alewife supports synchronization through full/empty bits and traps. The full/
empty bit automatically serves as lock for its associated memory location. Hence
all synchronizations are based on setting and resetting of full/empty bits. How-
ever, there is a fundamental difference between a cache miss trap and a full/empty
trap. In the former, a memory transaction is pending when control returns to the
processor after the cache miss trap. In the latter, the memory transaction has
already completed before the full/empty trap is signalled. The above observa-
tions can be used to design a signalling system that does not need any additional
hardware support; everything can be handled in software.

When a thread gets a full/empty trap, it queues its processor and context
number in the queue slot associated with the empty location (in the same manner
as when a thread gets blocked) before disabling the context it resides in. When
another thread sets the location to full, it uses Alewife’s messaging facility to
send enable messages to the processors with switch-blocked threads on the wait
queue. The message handler can then set the WIM bits appropriately.

For two-phase switch-block/block, when a thread decides to switch-block on
a full/empty trap, it needs to queue both its thread-id and its context number
in the queue slot. Keeping the thread loaded for exactly the blocking time is
possible given that the current Alewife controller uses timers for its various
needs. We need to dedicate 4 timers; control already exists. Before a context
is switched out, the timer has to be initialized; this can be attempted in the 3
cycle delay in the current Sparcle after WRWIM for NEXTF to be executed.
When the thread is woken up, the message handler also needs to check to see
if the waiting thread has already blocked and relinquished the context. If not,
it can set the WIM bits. Otherwise, it reenables the thread as when waking up
a blocked thread. In our simulations, we have not incorporated the hardware
timers (and the overhead from the associated traps) but let the simulator keep
track of the time. The implementation specifics of each of the synchronization
constructs is as follows:

Semaphores and Mutex: These are identical in their implementation. Each
of them has a value slot, a full/empty bit, and a queue slot. If the full/empty bit
is 0, it indicates that a thread is accessing the semaphore or the mutex value and
therefore the other threads which want to access this value will be queued up.
Hence when a thread finds a value of 0 in the full/empty bit, a context switch is
effected and the thread is put on the queue associated with that location. When
the full/empty bit is set to 1, the first thread on the queue is allowed access to
the value, the context corresponding to this thread is restored and WIM bits of
this context are reset to 0.

J/L-structures®: If the full/empty bit of a J/L-structure is 0, the reader
is forced to wait. The writer will write the value into the J/L-structure and set

® J-structures (reusable I-structures) are implemented as vectors with full/empty bits
associated with each vector slot. A reader of a J-structure slot is forced to wait if the
full/empty bit for that slot is 0. A writer of a J-structure slot sets the full/empty bit

938 Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

the full/empty bit to 1 and releases any readers waiting on it. Hence for a J/L-
structure, if the full/empty bit is 0 for the reader, WIM bits of the requesting
thread are set to 1. The requesting thread will be queued up. Once the writer
has set the full/empty bit to 1, all the threads on the queue will have their WIM
reset, to 0.

Barriers: Let M be the total number of participants in the barrier. Then
the first M — 1 threads will have their WIM bits set to 1. The arrival of the M*"
thread will reset the WIM bits of the remaining M — 1 threads.

Futures: A thread that requires the value of a future (future X) is a con-
sumer that is synchronizing with the thread producing that value and will have
to wait if unresolved. When the value is available, the thread that produced the
value will release all those threads that are waiting for that value. Hence, when a
future is in an unresolved state, the WIM bits are set to 1. Once the expression
is evaluated, the WIM bits are reset to 0.

4.1.3 Overheads

Assuming the above hardware support for handling remote memory accesses,
the additional overhead involved in a context switch for an implementation of
switch-blocking are the instructions that set and reset the WIM bits. As we
have assumed a delay slot of one for WRWIM in our simulations, and RDWIM
and WRWIM are executed in succession to toggle the WIM bits of the context,
Cy = Csp + 2 =16.

In the current SPARCLE implementation, with WRWIM’s delay slot of 3,
Csp = Csp +4 = 18; this makes switch-blocking only marginally more expensive
than our results indicate as switch-blocking attempts to reduce the number of
context-switches. One additional overhead we have not modelled is due to traps
from hardware timing counters when two-phase algorithms are used. As this
is quite small compared to the blocking cost, our results are likely to be quite
accurate. (As the initial loading of the timing counter can be done in the spare
delay slot of the WRWIM of Sparcle, a more complete simulation for two-phase
algorithms would need only to model the 3 cycle delay slot and the overhead
from timing traps.)

5 Results and Analyses

To study the performance of waiting algorithms for switch-blocking vs switch-
spinning, simulations were run on ASIM (Alewife’s Simulator) for single and
two phase versions. Table 1 lists the default parameters. The following waiting
algorithms were considered for the simulation:

to 1 and releases any readers waiting on it. A J-structure can be reset. This clears
out all the value slots and sets the full/empty bits to 0. Resetting a J-structure to
an empty state enables efficient memory allocation and good cache performance.
L-structures are similar to J-structures but support three operations: locking read,
non-locking read and synchronous write. A locking read waits until an element is full
before emptying it (i.e. locking it) and returning the value. A non-locking read also
waits until the element is full, but then returns the value without emptying the
element. A synchronizing write stores a value to an empty element, and sets it to
full, releasing any waiters. An L-structure therefore allows mutually exclusive access
to each of its elements. In addition, L-structures allow multiple non-locking readers.

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ... 939

. Switch-spinning (abbreviated as sspin in Figs 6-13)
. Switch-spinning/block (abbreviated as sspin/bl)

. Switch-blocking (abbreviated as sblock)

. Switch-blocking/block (abbreviated as sblock/bl)

=N =

5.1 ASIM

ASIM simulates the processor, memory system and interconnection network
cycle-by-cycle. The organization of this simulator is as follows:

Mul-T program
X

Mul-T
Compiler

APRIL machine lang prog

b

APRIL |, Runtime System
Simulator

6

Memory requests/acks

b

Cache

Simulator
6

Network Transactions

R
Network
Simulator

In order to execute a benchmark, the program is compiled and linked with
the run-time system to produce executable object code that ASIM executes.
The cache simulator is responsible for modeling the state of the cache and the
cache coherence protocol. The network simulator is used to simulate the network
latency incurred whenever a cache transaction involves communication with a
remote cache.

5.2 Benchmark Programs

When the number of concurrently runnable threads is guaranteed not to ex-
ceed the number of hardware contexts available to execute them, the degree of

940 Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

Parameter Default setting

Number of Processors 64

Cache Coherence Protocol|LimitLESS (4 HW pointers)
Cache Size 64KB (4096 lines)

Cache Block Size 16 bytes

Number of Contexts 4

Network Topology 2-D Mesh

Table 1: Simulation Parameters.

threading is less than or equal to 1 or matched. Otherwise, the degree of thread-
ing can be greater than 1 or unbounded or unmatched. Both matched as well
as unmatched benchmarks were run on ASIM. The following is a description of
the benchmarks (all written in the Mul-T language) ordered by the three basic
synchronization types:

Mutual Exclusion

Mutex distributes worker threads evenly throughout the machine. Each
thread runs a loop that with some fixed probability acquires a mutex, does
some computation and then releases the mutex.

Barrier Synchronization

CGrad uses the conjugate gradient method for solving systems of linear
equations. The data structure for the 2-D grid is mapped evenly among process-
ing nodes in a block fashion to reduce the amount of communication between
nodes. The computation involved in each iteration of CGrad is a matrix multiply,
two vector inner products, and three vector adds. The matrix multiply involves
only nearest neighbor communication because Poisson’s equation results in a
banded matrix. Each inner product involves a global accumulate and broadcast.
Because of the need to compute vector inner products which involve accumulate
and broadcast, it is natural for CGrad to use barrier synchronization.

Producer-Consumer

MGrid applies the multigrid algorithm to solve Poisson’s equation on a
2-D grid with fixed boundary conditions. The 2-D grid is partitioned evenly
among the processing nodes in a block-structured fashion. The multigrid algo-
rithm consists of a series of Jacobi relaxations performed on grids of varying size.
Synchronization is implemented with J-structures. The 2-D grid is partitioned
into subgrids, and a thread is assigned to each subgrid. The borders of each sub-
grid are implemented as J-structures so that threads responsible for neighboring
subgrids can access the border values synchronously.

Cholesky factorization of a sparse, symmetric and positive definite matrix
by two methods: CFan-in (Cholesky Fan-in: all the needed columns on the left
are collected at the current column) and CFan-out (Cholesky Fan-out: all the
columns that need the current column are sent the data). For both, the data is
mapped in a block fashion.

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ... 941

5.3 Simulation Results

The following simulation results were obtained by running ASIM to compare
switch-spinning with switch-blocking and the two-phase switch-spin/block with
two-phase switch-block/block. The two-phase algorithms were run with a = 1
and B = 1000 cycles, the value of B being approximately the cost of saving
and restoring a hardware context. Due to lack of space, we will be presenting
graphs only for MGrid and CGrad, though the discussion will include the other
benchmarks also.

In all the simulations, the memory access time was varied from 8 to 40 pro-
cessor clocks. In the case of matched benchmarks, this time was varied from 8
to 200. A high value of 200 was chosen for some simulations as in the case of
DEC 10000 Alpha multiprocessors, the bus access time is 68 (processor) clocks
and this does not take into account the delays due to networking.

MGrid: The simulation results for 64 x 64 grid are presented in Figures 6,
7 for the matched case, and in Figures 8, 9 for the unmatched case.

CGrad: The simulation results for 64 x 64 grid are presented in Figures 10,
11 for the matched case, and in Figures 12, 13 for the unmatched case.

5.4 Discussion

The model presented in Section 2 is partly corroborated by the simulation re-
sults. Figures 4 and 5 illustrate the plots of the probability of i contexts being
alive. This probability is computed by summing the time for which ¢ contexts
are enabled and dividing by the total execution time. The MGrid graph has a
shape that is similar to the shape predicted by the Markov model (Figure 3).
However, the graph for CGrad resembles normal distribution, instead of the ex-
ponential distribution. In a barrier synchronization, all the participating threads
get blocked at the barrier, hence the probability with which the contexts are dis-
abled is higher.

It is interesting to note that there is improvement in the running time for
switch-block /block over switch-block for matched mutex, MGrid, CFan-in and
CFan-out but not for matched CGrad. The explanation is similar to the one that
has been advanced by Lim [10] in the case of switch-spinning. In the matched
case, a first expectation is for switch-block time to be lower than for switch-
block/block as the overhead of loading and unloading is not present and the
switch-blocked threads do not contribute to loading the network as they do not
poll. However, this is not true in the context of heavy lock contention where the
behaviour of the switch-block versions approaches that of the switch-spinning
versions. In switch-blocking, whenever lock contention becomes sufficiently high,
the switch-blocked threads that are enabled after a lock is released, possibly
residing on different processors, try to acquire the lock and load the network
heavily. However, switch-block/block would have a smaller loading of the net-
work as the unloading & loading of the blocked threads (and their variance in
time depending on cache hits) eliminates the possibility of bursts of memory
reads to the same memory location®. Switch-block/block also does not incur the

6 A similar situation arises for mutex [10] under blocking which works better than
switch-spinning as the blocked waiters take longer to be reactivated and thereby
avoid the detrimental effect of bursty lock requests.

942 Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

overhead of blocking under low lock contention. The difference in performance
is related to the extent of synchronization activity: higher in the case of mutex
compared to MGrid, for example. In the case of matched CGrad, switch-block
has a better performance over switch-block/block as expected. Similarly, in all
the unmatched cases, switch-block/block performs better than switch-block as
expected as deadlocks are handled better with blocking in the former rather than
with expensive timeouts in the latter.

There is a slight decrease in the advantage of switch-blocking over switch-
spinning as memory access time is increased from 8 to 40 in many of the simu-
lations before it increases again after 40. This is very likely due to the increased
overhead of 2 extra cycles in switch blocking that shows its effect as long as the
number of failed context switches is small. Once the latter becomes larger with
larger memory access times, the extra overhead of 2 cycles is masked by the
efficiency of switch-blocking.

Figure 14 lists the average number of cycles idled and the percentage of time
idled by the processor when all the contexts are disabled. It can be seen that
this time is negligible when compared to the total execution time; hence the
overhead involved in the implementation of switch-blocking is small compared
to its performance.

Figure 15 lists the number of times threads that issue remote memory ac-
cesses fail on the next try for matched MGrid employing switch-spinning (the
percentage listed is that of this number with respect to context switches due only
to remote memory accesses). Even when memory access is set to 8 cycles, there
are quite a few failures as actual access may be in the region of 30-50 cycles with
network overhead. The number of failures is related to the probability that the
following three contexts are also not active; this is given by 71 = 0.18 (from sim-
ulations) which is not negligible. Only latencies lower than 3Cs, = 42 cycles can
avoid failure with absolute certainty. It is also interesting to note from Figures
6, 7 that there is a sudden increase in the execution time at a memory access
of 100 cycles. This is most likely due to the effective memory access (including
network delays) being just about three times the context run length (43 from
simulations for MGrid) and hence increasing the likelihood that the retry will
not be successful. This is also connected with the sudden increase in the exe-
cution times at memory access times of 100 and above as the synchronization
operations on remote locks involve memory accesses and they may have to be
carried out multiple times (as local copies get invalidated by cache coherence
transactions) before the operation is successful. This behaviour is seen on all the
benchmarks.

As the difference of execution times between for access times of 8 and 200
in the case of multigrid from is between 4-5%, and as the difference increases
sharply even more with higher access times (say, 400+) due to its impact on
synchronization operations, switch-blocking for remote memory accesses may
be judicious if the hardware resources are available. However, remote memory
accesses do not play a major role in the comparative performance advantage of
switch-blocking over switch-spinning at current range of memory access times.
Similarly, with an increase in network channel utilization (leading to an increase
in the network latency), the performance advantage of switch-blocking improves
only marginally.

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ... 943

6 Conclusions

Simulation results have shown that switch-blocking improves the performance of
Alewife by about 6-8% over switch-spinning for the matched case and between
3-4% for the unmatched case. The hardware overhead for the implementation
is not substantial as instructions and registers already provided by SPARCLE
have been used except for some additional lines (for an enable and for specify-
ing the context number) from the memory subsystem into the SPARCLE chip
for handling switch-blocking due to long-duration remote memory accesses and
some support for hardware counters for the two-phase algorithms. Some of the
conclusions are listed below:

— The two-phase switch-block/block algorithm performs better than the one-
phase switch-block algorithm even for the matched case whenever there is
heavy lock contention. Under low lock contention, the reverse is true.

— In the unmatched case, the two-phase switch-block/block algorithm performs
better than the one-phase switch-block algorithm as deadlocks are handled
better.

— The two-phase switch-block/block algorithm performs better than the two-
phase switch-spin/block algorithm by about 6-8% for the matched case.

— For the unmatched case, both switch-spin/block and switch-block/ block
perform much better than switch-spinning. When the degree of threading
is unbounded, a potential for deadlock exists for one-phase algorithms since
we cannot guarantee that the thread waited upon is not unloaded. Hence
the two-phase switch-block/block and switch-spin/block outperform their
single-phase counterparts.

— As memory access times are increased, the performance advantage of switch-
blocking improves only marginally with respect to switch-spinning. Hence
support for switch-blocking for remote memory accesses may not be judicious
at current range of memory access times but may be so in the future due to
its strong interactions with synchronization operations.

The current Alewife architecture uses the sequential consistency model. Other
memory models (like weak consistency) can reduce the number of context switches
and thus increase performance but the processor is very rarely completely idle
from the above results. Hence, reducing the context switch time may be a better
and simpler way of increasing performance than going in for a more complex
memory consistency model due to the complexity of such an implementation
and the small payoff. However, researchers at Stanford have found that more
complex models give a reasonable payoff [14]. More work is needed to settle this
question comprehensively.

Number of disabled contexts (N = 4).

HgZPMFﬁr%:&l
5E-001
4E-001
3E-001
2E-001

1E-001

Number of disabled contexts (N = 4).

Fig 4: PMF for MGrid (64 x 64)
by Simulation

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

4E-001

3E-001

2E-001

1E-001

Number of disabled contexts (N = 4).

Fig 3: PMF for 3 = 0.5

4E-001
3E-001
2E-001

1E-001

Number of disabled contexts (N = 4).

Fig 5: PMF for CGrad (64 x 64)
by Simulation

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

p M sblock , sspin
8 '
9 —
.25 4
101
20 (=
8
2 =l
.5 4(b
10 —
200~ + |
28 L
9 4 —
10 |
20 |
1 2 3 4 5 6
Fig 6: MGRID m. 1-¢
M = 8
g sblock! sspin
_K
L
9 | | | | | |

5 115 2 25 3
Fig 8: MGRID unm. 1-¢

P 1§[sblock sspin

2501

758
200~

8
'7§GAL
8
90

.2
s

|
T
1 2 3 5 8

I
Fig 10: CGRAD m. 1-¢

M= 8

sblock sspin

S
o b

1 2 3 4
Fig 12: CGRAD unm. 1-¢

p 1\é[sblock/bl sspin/bl
2
.25 4
10
20 (=
8
2 =
.5 44 I| I|
10 *
200
8
2
9 4
10
20
1 2 3 4 5 6
Fig 7: MGRID m. 2-¢
M =8
g sblock/bl sspin/bl
2
.9 L

1 2 3 4 5 6 7
Fig 9: MGRID unm. 2-¢

sblock /bl sspin/bl

plgll

20
.7§§¢

8
a5
o

1 2 3 4 5 6 7
Fig 11: CGRAD m. 2-¢

M =28
kblock/bl sspin/bl

]
—

fd

o

1
Fig 13: CGRAD unm. 2-¢

945

Figs 6-13: Comparison of switch-blocking (sblock) vs switch-spinning (sspin)
algorithms: 1-phase (1-¢) with switch phase only vs 2-phase (2-¢) with both
switch and block (bl) phases; also matched (m.) vs unmatched (unm.). X-azxis

in Mcycles. M refers to memory access time.

946

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ...

15kr 0.00 1: MGrid
2: CFan-in
10kt 0.0 3: CFan-out
5k 0.0 4: CGrad
cycles % i

1 2 3 4 1 2 3 4

Fig 14: Idling cycles with all contexts disabled and as % time

6k 9L
4kt 6L
atill 2oL |
| | % | |
abcdeabcdeabcde abcdeabcdeabcd e
.25 .9 P .25 .5 .9

a: 8, b: 40, c: 200, d: 400, e: 1000 memory cycles //
Fig 15: Number of failed context switches for MGRID (see text)

References

[1]

Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John Hen-
nessy. The Effects of Latency, Occupancy, and Bandwidth in Distributed Shared
Memory Multiprocessors Technical Report CSL-TR-95-660, Computer Systems
Laboratory, Stanford University, January 1995.

Larry Carter, John Feo, Allan Snavely, “Performance and Programming Experi-
ence on the Tera MTA” | Proceeding SIAM Conference on Parallel Processing, San
Antonio, Texas (March 1999).

S.Sudarshanan, “MAJC-5200: A High Performance Microprocessor for Multimedia
Computing,” LNCS 1800, p.163-170.

D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous multithreading: max-
imizing on-chip parallelism,” Proceedings 22nd Annual International Symposium
on Computer Architecture, 1995

David Kranz, David Chaiken, Anant Agarwal, “Multiprocessor Address Tracing
and Performance Analysis,” MIT VLSI Memo No. 91-624, Sep 1990. Available at
http://www.cag.lcs.mit.edu/alewife/papers

Beng-Hong Lim, “Instructions for Obtaining and Installing ASIM,” Alewife Sys-
tems Memo #30, Dec’91. See also the website http://www.cag.lcs.mit.edu/alewife
for later developments.

Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Kranz,
John Kubiatowicz, Beng-Hong Lim, Ken Mackenzie, and Donald Yeung, “The
MIT Alewife Machine: Architecture and Performance,” Proceedings 22nd Annual
International Symposium on Computer Architecture, 1995

B. J. Smith, “Architecture and Applications of the HEP Multiprocessor Computer
System,” SPIE, 298:241-248, 1981

Anant Agarwal, B. H. Lim, D. Kranz and J. Kubiatowicz, “APRIL: A Processor
Architecture for Multiprocessing,” Proceedings 17th Annual International Sympo-
stum on Computer Architecture, p. 104-114, June 1990.

B. H. Lim, Anant Agarwal, “Waiting Algorithms on Large Scale Multiprocessors,”
ACM Transactions on Computer Systems, 11(3):253-294, Aug. 1993.

Anant Agarwal, “Limits on Interconnection Network Performance,” IEEE Trans-
actions on Parallel and Distributed Systems, 1991.

A. Karlin et.al., “Competitive Randomized Algorithms for Non-Uniform Prob-
lems,” Procs. of First Annual ACM-SIAM Symp. on Discrete Algorithms, Jan
1990.

Gopinath K., Narasimhan K.M.K: Performance of Switch Blocking ... 947

[13] D. Lenoski, et al., “The Directory-Based Cache Coherence Protocol for the DASH
Multiprocessor,” Proceedings 17th Annual International Symposium on Computer
Architecture, p. 148-159, June 1990.

[14] A. Gupta et. al., “Comparative Evaluation of Latency Reducing and Tolerating
Techniques,” Proceedings 18th Annual International Symposium on Computer Ar-
chitecture, p. 254-263, May 1991.

[15] D. Bertsekas and R. Gallager, “Data Networks,” Prentice-Hall, 1987

[16] SPARC International, “The SPARC Architecture Manual Version 8,”Prentice-
Hall, 1992

[17] IBM Research, http://www.research.ibm.com/bluegene/

