
On The Thread Scheduling Problem

Wing-Ning Li

Department of Computer Science and Computer Engineering

University of Arkansas

email:wingning@uafsysb.uark.edu

Jing-Fu Jenq

Department of Computer Science

Montclair State University

jenq@pegasus.montclair.edu

Abstract: This paper considers the thread scheduling problem. The thread scheduling
problem abstracts the problem of minimizing memory latency, using a directed data
dependency graph generated form a compiler, to improve run time eÆciency. Two
thread scheduling problems are formulated and shown to be strongly NP-complete.
New methods and algorithms for analyzing a data dependency graph in order to com-
pute the theoretical best runtime (lower bound of the �nishing time) and to estimate
the required minimum number of PEs needed to achieve certain �nishing time are pre-
sented. The new methods and algorithms improve upon some of the existing analysis
and transformation techniques.

Key Words: Scheduling, memory latency, multi-threaded architecture, complexity.

1 Introduction

The thread scheduling problem deals with the static or compile time schedule

of a data dependency graph on a multi-threaded architecture. The data de-

pendency graph is a directed acyclic graph (dag), where the vertices represent

instruction threads and edges correspond to interdependency among threads. A

multi-threaded architecture is a multiprocessor system which consists of many

processing elements (PEs). Each PE contains a local data cache called L1 cache,

which is connected across a single interconnection network. Global memory is

used to share data between PEs and is connected to the interconnection network.

Due to the transfer of data among the threads (vertices in the dag) memory la-

tencies are introduced. Thus, in order to schedule threads on the available set of

PEs in such a way that the maximum �nishing time (makespan) is minimized,

we must consider both the processing time of the threads as well as memory

latency delays.

This paper formally formulates the thread scheduling problem, analyzes the

computational complexity of the problem, and proposes techniques and algo-

rithms to address certain aspects of the problem.

Journal of Universal Computer Science, vol. 5, no. 10 (2000), 994-1014
submitted: 1/4/00, accepted: 17/7/00, appeared: 28/10/00  Springer Pub. Co.

The thread scheduling problem abstracts the problem of minimizing memory

latency using a directed data dependency graph generated from a compiler. Such

a problem was �rst considered by Thornton and Andrews [17]. In addition to

a formal formulation of the problem, NP-completeness results, and new algo-

rithms, this paper also improves upon some of the analysis and transformation

techniques introduced in [17].

These results are practical to implement in the optimization stage of the com-

piler/loader portion of the system software. These results are directly applicable

to the development of programs for the optimal generation of instruction threads

in recon�gurable, multi-threaded architecture [17]. The approaches of using a di-

rected data dependency graph produced from a compiler for optimization have

been used by other researchers for related applications [2, 7, 14, 15].

The remainder of the paper is organized as follows. The next section will

introduce terminology used and formulate the thread scheduling problem. Next,

the computational complexity results are proved. Analysis and transformation

techniques are developed in Section 4. Concluding remarks are given in the last

section.

2 Formulation and terminology

This section is divided into the following subsections for a more logical presen-

tation.

2.1 Problem representation

A dag or data dependency graph can be used to represent the dependencies

among elementary computational steps (such as threads) in a given program or

algorithm. Some compilers automatically generate these graphs in intermediate

optimization stages. The reader is referred to [3, 13] for detailed discussions and

examples on how programs are represented as graphs and to [1] for examples on

how compilers generate these graphs. In what follows, we shall describe the dag

representation as an input instance to be scheduled.

De�nition 1 A program thread graph is a dag G=(V,E,d,cm), where

a) V is the vertex set of G. Each vertex represents a thread;

b) E � V � V is the edge set of G. The edge set forms a partial ordering of V ,

representing data and control dependencies between threads in V ;

c) d is a thread weighting function with domain V and range Z+. d(v) = w

where w is the (estimated) running time for v;

995Li W.N., Jenq J.F.: On the Thread Scheduling Problem

d) cm is a edge weighting function with domain E and range Z+. cm(< u; v >

) = w where w is the (estimated) communication cost of edge < u; v > when

threads u and v are processed by di�erent processors.

For the sake of generality, we state the edge weighting function cm in terms

of arbitrary functions. For the architecture introduced in the next subsection,

cm is a constant function denoting memory latency for a cache miss.

2.2 Architecture de�nition

The multi-threaded architecture introduced in [17] is used here. The block di-

agram of a simpli�ed tightly coupled architecture obtained from [17] is shown

in Figure 1. As can be seen from the �gure, associated with each processing

element, PE, is a local data cache (L1 cache) which is connected across a single

interconnection network. Data memory is a shared memory storing global data.

Accessing data from a L1 cache is assumed to introduce no communication over-

head. Getting data from L2 cache incurs an overhead of a cache miss from L1

cache, and any delays due to the contention across the interconnection network.

Accesses of data in the data memory incur a miss from both L1 and L2 cache,

as well as any delay due to network contention.

Data Memory

6?

L2 Cache

6?

Interconnection Network

6 6 6 6? ? ? ?

L1 Cache L1 Cache L1 Cache L1 Cache

PE PE PE PEr r r

Figure 1: Architecture block diagram.

996 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

2.3 A simple example

Before formally state the thread scheduling problem|statically scheduling a

program thread graph on a multi-threaded architecture with n PEs, we shall

consider a simple example, which is used to illustrate the rationale behind our

formulation.

Let us consider the program thread graph shown in Figure 2(a). In the ex-

ample, we have three threads a, b, and c. The running time of these threads are

6, 5, and 4 respectively. The running time of the thread indicates how long it

takes a PE to process it and includes the possible memory latency for executing

it.

(a,c) (b,c) c

b

a

b c(a,c)

a

a b c

cm

am bm
@
@
@@R

�
�

��	

d(a)=6

d(b)=5

d(c)=4

cm(< a; c >)=cm(< b; c >)=2

(a)

(b)

P3

P2

P1

P2

P1

P1

Figure 2: An example program thread graph and its schedule.

The edges from a to c and from b to c indicate that c must wait for the

completion of a and b before it can be processed by any PE, due to data and

control dependencies. They also represent the need for communication between

a,c and between b,c.

997Li W.N., Jenq J.F.: On the Thread Scheduling Problem

If a and c are processed by the same PE, the data generated by a and re-

quested by c are in the local L1 cache of the PE. Hence, no communication

overhead is introduced. On the other hand, if a and c are processed by two dif-

ferent PEs, then the only way to communicate the data is through the global

data memory. Hence, as described in the previous subsection, an overhead of

cache miss as well as any delay due to network contention is introduced. In

this example, the PE that process c must wait for another two time units, after

the completion of a, so that it has the data to begin the execution of c, since

cm(< a; c >) = 2. Here we assume once the initial transfer has completed, no

more overhead will be introduced, since the possible additional transfer of data

from data memory is accounted for in the running time of the thread. To end

the subsection, we depict three schedules of the program thread graph of Figure

2(a) using Gantt Chart like diagrams in Figure 2(b).

2.4 Thread scheduling problem

De�nition 2 Let PRED(v) be the set of immediate predecessors of v. PRED(v)

= fu j< u; v >2 Eg. Let SUCC(u) be the set of immediate successors of u.

SUCC(u) = fv j< u; v >2 Eg.

In our notation, when the output of a function �(x) is an ordered pair such

as < y1; y2 >, then �1(x) denotes the �rst element and �2(x) the second element

respectively, i.e., �1(x) = y1 and �2(x) = y2.

De�nition 3 Given dag G = (V;E; d; cm) as a program thread graph and a

multi-threaded architecture with m PEs, a valid schedule is a total function � :

V �! N � f1; 2; : : : ;mg which satis�es the following two conditions:

1. For all t 2 N , j fvi j vi 2 V and �1(vi) � t < �1(vi) + ex(vi) + d(vi)g j� m;

2. �1(vi) � maxu2PRED(vi)f�1(u) + ex(u) + d(u)g

where ex(v) denotes the extra processing time due to communication overhead

and ex(v) =
P

u2PRED(v);�2(u)6=�2(v)
cm(u; v)

In plain language, for each thread vi in V , the function � assigns to it a

starting time (�1(vi)) for execution and a PE (�2(vi)). Condition (1) states

that no more than m threads are ever executed simultaneously, condition (2)

ensures that the precedence constraints as well as communication overheads

are respected. In condition(2), maxu2PRED(vi)f�1(u) + d(u)g alone ensures the

precedence constraints are respected and adding ex(u) to �1(u) + d(u), both

the precedence constraints and the communication overheads are respected. The

�nishing time ! for a valid schedule � is given by ! = maxf�1(v)+ex(v)+d(v) j

v 2 V g.

998 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

Now, the thread scheduling problem can be de�ned precisely as follows.

Thread Scheduling Problem

Input: A dag G = (V;E; d; cm) and a positive integer m, where G represents

a program thread graph and m represents the number of PEs in the multi-

threaded architecture.

Output: A valid schedule � of the input such that the �nishing time of � is

minimum among all possible valid schedules of the input.

Basic Thread Scheduling Problem

Input: Same as the thread scheduling problem except that cm is restricted to

a constant function.

Output: Same as the thread scheduling problem.

We de�ne both problems as optimization problems. For the decision versions

of the problems, we are given an additional integer K and asked whether there

exists a valid schedule � whose �nishing time is no more that K.

De�nition 4 Let PRED�(v) = fu j u 2 PRED(v) and �2(u) 6= �2(v)g, where

� is a valid schedule.

For the basic thread scheduling problem, ex(v) in de�nition 3 can be sim-

pli�ed to cm� j PRED�(v) j. The examples given in section 6 of [17] can be

treated as instances of the basic thread scheduling problem.

2.5 Task execution model comparison

At this time it is appropriate to make a few observations about the similarity and

di�erence between the proposed model and another well-known task execution

model in the literature, known as the compile time macro-data
ow model, that

has been considered by Wu and Gajski [19], Sarkar [13], Yang and Gerasoulis

[20], and others.

The formulation of the input graph in both models is basically identical.

The execution models, however, are rather di�erent. Let us analyze some of the

crucial di�erences resulted from di�erent architecture assumptions.

The problem formulation given in the previous section is based on a shared

memory multi-threaded architecture. Under such a architecture, a task must

obtain data from its predecessor tasks and the communication cost of getting the

data from a task's predecessors is accumulative. Note that the extra processing

time due to communication overhead in De�nition 3, ex(v), of a given schedule

� is given by the following summation:

ex(v) =
X

u2PRED(v);�2(u)6=�2(v)

cm(u; v)

999Li W.N., Jenq J.F.: On the Thread Scheduling Problem

This accumulative property is illustrated in the last schedule of Figure 2(b).

The compile time macro-data
ow model is based on a message-passing archi-

tecture. In this model, a task receives all input from its predecessor tasks before

starting execution, executes to completion without preemption, and immediately

sends the output to all successor tasks in parallel. Under the message-passing

architecture, a task instead of fetching data from its predecessors, sends the data

needed by its successors in parallel. In this case, the communication cost is dom-

inant in the sense that, assuming all predecessor tasks �nish at the same time,

the largest communication cost of a task's predecessor running on a di�erent PE

determines the wait time of the task. More precisely, to model this dominant

property, the two conditions of De�nition 3 should be changed to:

1. For all t 2 N , j fvi j vi 2 V and �1(vi) � t < �1(vi) + d(vi)g j� m;

2. �1(vi) � maxu2PRED(vi)f�1(u) + d(u) + cm(u; vi)g

Using the compile time macro-data
ow model, the last schedule of Figure 2 (b)

can actually be shortened by two time units. The reader is referred to [19, 13,

16, 12, 20] for results related to the compile time macro-data
ow model.

3 Complexity results

In this section, we shall �rst establish the basic thread scheduling problem is

NP-complete in the strong sense. We shall use the following NP-hard problem

[4] to prove that.

Partition into Triangles

Input: A graph G = (V;E), with j V j= 3q for a positive integer q.

Output: `yes' i� there is a partition of V into q disjoint sets V1, V2, . . . , Vq of

three vertices each such that, for each Vi = fVi[1]; Vi[2]; Vi[3]g, the three edges

(Vi[1]; Vi[2]), (Vi[1]; Vi[3]), and (Vi[2]; Vi[3]) all belong to E.

We may assume that j E j� 3q, otherwise the answer to the partition into trian-

gles problem is always negative. Given an instance of the partition into triangle

problem, we use the following construction to build a corresponding instance of

the decision version of the basic thread scheduling problem, in polynomial time,

such that the instance of the partition into triangles problem has a `yes' answer

i� the corresponding instance of the basic thread scheduling problem also has a

`yes' answer.

We shall describe the construction in stages so the arguments used in the

proof can be more easily followed.

Construction 1:

1000 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

Let G = (V;E), with j V j= 3q for a positive integer q, be an instance of the

partition into triangles problem. The corresponding instance of the basic thread

scheduling problem has m =j E j �2q + 1 many PEs, K = 6 + 3 j E j as the

desired �nishing time for the valid schedule, and a dag G0 = (V 0; E0; d; cm). The

details of G0 are as follows.

1. Threads in each group.

(a) vertex-group (v-threads) VV . For each vertex vi 2 V there is a thread

vi 2 VV , where d(vi) = 2.

(b) edge-group (e-threads) VE . For each edge ei 2 E, there is a thread

ei 2 VE , where d(ei) =j E j.

(c) x-group (x-threads) VX . There are eight threads in VX . They are xi; 0 �

xi � 7, where d(xi) = 1, xi; 0 � xi � 5, d(x6) = 2, and d(x7) = 2 j E j

�2.

(d) y-group (y-threads) VY . There are j E j �3q threads yi, 1 � yi �j E j

�3q, in VY , where d(yi) = 6.

(e) z-group (z-threads) VZ . There are j E j �3q threads zi, 1 � zi �j E j

�3q, in VZ , where d(zi) = 2 j E j �3.

2. V 0 = VV [VE [VX [VY [VZ .

3. Edges connecting threads within each group.

(a) Threads in VX are connected by the following edges EX=f< xi; x6 >j

0 � xi � 5g [f< x6; x7 >g.

(b) Threads in VV are not connected within. Neither are threads in VE ; VY ; VZ .

4. Edges connecting threads between groups.

(a) From VV to VX . EV X = f< vi; x6 >j vi 2 VV g.

(b) From VV to VE . EV E = f< vi; ej >j vi 2 VV ; ej 2 VE ; ej is incident to

vi in Gg.

(c) From VY to VX . EY X = f< yi; x6 >j yi 2 VY g.

(d) From VX to VZ . EXZ = f< x6; zi >j zi 2 VZg.

5. E0 = EX [EV X [EV E [ETX [EXZ . For each edge e 2 E0, cm(e) = 1 or

simply cm = 1.

1001Li W.N., Jenq J.F.: On the Thread Scheduling Problem

It is clear that for each instance of the partition into triangles problem,

Construction 1 delivers an instance of the basic thread scheduling problem. Note

that V 0 = VV [VE [VX [VY [VZ and j V 0 j= 3 j E j � j V j +8. Note also

that E0 = EX [EV X [EV E [ETX [EXZ and j E0 j= 4 j E j � j V j +7. Note

that the numbers used are also bounded by 2 j E j. Hence, Construction 1 can

be carried out in polynomial time. Figure 3 depicts an example of Construction

1. Figure 3(a) shows an instance of the partition into triangles problem. The

overlay of Figures 3(b), 3(c) and 3(d) shows the dag built using Construction 1.

z1m z2m

x6m
�
�	

@
@R

v1mXXXXXXXXXXXz

v2mPPPPPPPPq

v3m
Q
Q
QQs

v4m
AAU

v5m
���

v6m
�

�
��+

y1m��������)

y2m�����������9

x7m

x6m

?

x0mPPPPPPPPq

x1m
Q
Q
QQs

x2m
AAU

x3m
���

x4m
�

�
��+

x5m��������)

e2m e1m e3m e8m e7m e5m e6m e4m

v1m

?
@
@R

v2m
@
@R

�
�	

HHHHHj

v3m

?
�
�	

HHHHHj

v5m

?
@
@R

������

v4m
@
@R

�
�	

������

v6m

?
�
�	

v2m v5me8

v1m e1

J
J
JJ

e2

v3m e7

e3

v4m e4

J
J
JJ

e5

v6m

e6
(a)

(b)

(c)

(d)

VV ; VE; EV E

(VX ; EX)

VY ; VZ ; EV X ; EYX ; EXZ

Figure 3: An example of construction 1.

1002 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

Lemma 1 If the partition into triangle instance has a `yes' answer, then the

corresponding basic thread scheduling instance built using construction 1 has a

`yes' answer.

Proof: We need to show there is a valid schedule � whose �nishing time is no

more that K (6 + 3 j E j). � assigns each of the q partition to the �rst q PEs.

It also assigns the three edges associated with each partition to the same PE

that processes the partition. It then assigns threads in VX to the next PE. For

the remaining j E j �3q PEs, � assigns yi, zi, 1 � i �j E j �3q, and one of

the remaining j E j �3q e-threads to each of them. Now we need to specify

the starting time of each thread. Let Vi = fVi[1]; Vi[2]; Vi[3]g be a partition, and

fei[1]; ei[2]; ei[3]g be the three edges of E that belong to the partition. We have

�1(Vi[1]) = 0, �1(Vi[2]) = 2, �1(Vi[3]) = 4, �1(ei[1]) = 6, �1(ei[2]) =j E j +6,

�1(ei[3]) = 2 j E j +6. Note that ei[3] will complete its processing by K. For

each threads in VX , �1(xi) = i, 0 � i � 6. Note that the �nishing time of x6 is

8+ j E j, where j E j is the sum of the communication overheads due to EV X

(3q) and EY X (j E j �3q), i.e., ex(x6) =j E j. �1(x7) =j E j +8. Note that x7
will complete it processing by K also. For each thread yi 2 VY , �1(yi) = 0. For

each thread ei 2 VE that does not belong to any partition, �1(ei) = 6. Note that

the �nishing time of ei is 6 + 2+ j E j, where 2 is the overhead due to its two

predecessors which are processed by other PE or PEs. For each thread zi 2 VZ ,

�1(zi) = 8+ j E j. Note that zi will complete its processing by K as well.

It is straight forward to verify that � satis�es conditions (1) and (2) in the

de�nition of a valid schedule and thus is a valid schedule. Since the �nishing

time of � is K, the corresponding basic thread scheduling instance has a `yes'

answer. The lemma is proved. 2

To prove that Construction 1 is indeed a reduction from partition into tri-

angles to basic thread scheduling, we must show the converse of Lemma 1. The

next set of lemmas and observations is developed for that purpose.

All y-threads are predecessors of x6. Since d(yi) = 6 for yi 2 VY , any valid

schedule � must satisfy �1(x6) � 6.

Observation 1 Let � be any valid schedule. �1(x6) � 6.

Suppose a valid schedule assigns starting time 6 to x6. Between time slots 0

to 5, the actions of the PE that processes x6 can be classi�ed into three groups:

doing nothing (idle), always busy, and partially busy. Let us consider the �nishing

time of x6 for the three categories above.

For doing nothing case, the �nishing time of x6 is at least 14+ j E j. Note

that the overheads from VX is 6, from VV is 3q, and from VY is j E j �3q.

The always busy case results in the following sub-cases. Each of which is

considered next.

1003Li W.N., Jenq J.F.: On the Thread Scheduling Problem

1. The PE processes one y-thread. In this case the �nishing time of x6 is at

least 6 + (6 + 3q+ j E j �3q � 1) + 2 = 13+ j E j.

2. The PE processes three v-threads. In this case, the �nishing time of x6 is at

least 6 + (6 + 3q � 3+ j E j �3q) + 2 = 11+ j E j.

3. The PE processes six x-threads. In this case, the �nishing time of x6 is at

least 6 + (3q+ j E j �3q) + 2 = 8+ j E j.

4. The PE processes a combination of v-threads and x-threads. The combina-

tion would be 1 v-thread and 4 x-threads or 2 v-threads and 2 x-threads.

The respective �nishing times are at least 6+ (2+ 3q� 1+ j E j �3q) + 2 =

9+ j E j and 6 + (4 + 3q � 2+ j E j) + 2 = 10+ j E j.

For the partially busy case and doing nothing case, the �nishing time of x6
cannot be earlier that 8+ j E j, which is the best possible �nishing time for the

always busy case.

Hence, when a valid schedule � assigns starting 6 to x6, the earliest �nishing

time possible for x6 is 8+ j E j. Can a valid schedule reduce the �nishing

time of x6 to be earlier that 8+ j E j by starting x6 later than 6? As far as

minimizing the �nishing time of x6 is concerned, the only advantage of delaying

the starting time of x6 is to have more predecessors of x6 processed by the

same PE that processes x6 so that the communication overheads are reduced.

Since each thread's processing time is no less that the cost of communication

(cm = 1) for our instance, the answer to the above question is no. We summarize

the preceding discussion in the next observation.

Observation 2 Under any valid schedule, the earliest possible �nishing time of

x6 is 8+ j E j, when xi, 0 � i � 6 are processed by the same PE.

>From Construction 1, d(x7) = 2 j E j �2. Any valid schedule � that com-

pletes x7 by K must satisfy �1(x7) � 8+ j E j. Since x6, the only predecessor

of x7, has 8+ j E j as its earliest �nishing time (Observation 2), � must satisfy

�1(x7) = 8+ j E j and �2(x6) = �2(x7).

Lemma 2 Any valid schedule � having �nishing time no more that K must

assign x-threads to one PE. Furthermore, �1(x6) = 6 and �1(x7) = 8+ j E j.

Proof: The lemma follows from observation 2 and the preceding discussion. 2

Henceforth let � denote any valid schedule having �nishing time K. From

observation 2, we know at least one PE is busy from time slots 0 to 5 in �. Let

us consider the scheduling of the remaining j E j �2q PEs under �.

Lemma 3 In � between time slots 0 to 5, each of the j E j �3q PEs processes

one y-thread and each of the remaining q PEs processes three v-threads.

1004 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

Proof: From lemma 2, we have �1(x6) = 6. This implies that v-threads and y-

threads, which are predecessors of x6, must be completed (before 6) in time slots

0 to 5 in �. Since d(yi) = 6 for each y-thread yi and j VY j=j E j �3q, j E j �3q

many PEs must each processes a yi from 0 to 5 in �. The remaining q PEs must

each processes three v-threads in � because j VV j= 3q, d(vi) = 2 for vi 2 VV ,

and v-threads are not connected to one another. 2

Let us call the PE that processes v-thread, x-thread, and y-thread under �,

respectively, v-PE, x-PE, and y-PE.

>From lemmas 2 and 3, under � every PE is busy before 6. So the earliest

starting time of a e-thread is 6 in �.

Observation 3 �1(ei) � 6 for ei 2 VE .

Besides e-threads, other threads that have not been considered are z-threads.

From construction 1, each z-thread has x6 as its only predecessor. From lemma

2, we know that under � the PE that processes a z-thread has to be di�erent

from the PE that processes x6. Since d(zi) = 2 j E j �3, the starting time of zi
in � must be no later than K � (2 j E j �3)� 1 =8+ j E j. From observation 2,

we have the following observation.

Observation 4 �1(zi) = 8+ j E j for zi 2 VZ and no PE can process more than

one z-thread in �.

The next observation is based on observation 3 and d(ei) =j E j in construc-

tion 1.

Observation 5 Each v-PE can process at most 3 e-threads in �.

Suppose a v-PE, P , processes three e-threads in �. Then one e-thread must

start at 6, the next at 6+ j E j and 6 + 2 j E j respectively, otherwise the

�nishing time requirement of � cannot be met. In order to complete the thread

that start at 6 and before 6+ j E j, two of its only predecessor v-threads have to

be processed by P . Similarly, to complete the next two threads before 6+2 j E j

and 6+3 j E j respectively, their predecessor v-threads have also to be processed

by P . From the correspondence given in Construction 1, the threads processed

by P correspond to a triangle in G.

Observation 6 In �, whenever a v-PE processes three e-threads, the threads

processed by the v-PE correspond to a triangle in G.

Observation 7 In � each y-PE can process at most one arbitrary e-thread along

with an arbitrary z-thread.

1005Li W.N., Jenq J.F.: On the Thread Scheduling Problem

Observation 7 is based on observations 3 and 4 and the fact that each e-

thread has two predecessors. Although the two predecessors are processed by

v-PEs, under � y-PE can start the e-thread at 6 and �nish it by 6+ j E j +2 =

8+ j E j.

In � if the only other threads that are processed by a y-PE are e-threads,

then the �rst e-thread can be completed no earlier than 8+ j E j and the next no

earlier than 10+ j E j. At this point, on other e-thread can be processed without

violating the �nishing time K.

Observation 8 In � each y-PE can process at most two e-threads.

Lemma 4 In �, no z-thread is processed by an v-PE.

Proof: Suppose L many z-threads are processed by v-PEs in �, where L � 1.

From observation 4, we must have L v-PEs each processes one z-thread. Let us

consider the maximum number of e-thread that can be processed here.

The L v-PEs that process z-thread can process at most L e-threads because

of observation 4 and d(ei) =j E j. From observation 5, the remaining v-PEs can

process at most 3(q�L) e-threads. Since the remaining j E j �3q�L z-threads

are processed by y-PEs, from observation 4, j E j �3q � L y-PEs must be used

for this task. From observation 7, these y-PEs can process at most j E j �3q�L

e-threads. Based on observation 8, the remaining L y-PEs can process at most

2L e-threads. So the total number of e-threads that can possibly be processed is

L+ 3(q � L)+ j E j �3q � L+ 2L = j E j �L. Since L � 1, in � the maximum

number of e-threads that can processed is less than j E j. This contradicts to �

being a valid schedule having �nishing time K. Hence, the lemma is proved. 2

Lemma 5 If the basic thread scheduling instance built using construction 1 has

a `yes' answer, then the corresponding partition into triangle instance has a `yes'

answer.

Proof: The `yes' answer for the basic thread scheduling instance implies that

there exists �. Based on lemmas 2,3 and 4, � must assign one PE for all x-

threads, q PEs as v-PE, and the remaining j E j �3q PEs as y-PEs that process

all y-threads and z-threads. Based on observations 5 and 7, in order to process

all e-threads, each v-PE must process 3 e-threads and each y-PE 1 e-thread.

From observation 6, the three v-threads and the three e-threads processed by

each v-PE corresponds to a triangle in G. Since we have q such v-PEs, the

corresponding partition into triangle instance has a `yes' answer. 2

Theorem 1 The basic thread scheduling problem is NP-complete in the strong

sense even when cm = 1.

1006 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

Proof: It follows from construction 1, lemmas 1 and 5, and the fact that basic

thread scheduling problem is in the NP class. 2

>From the formulation of the thread scheduling problems in Section 2, in-

stances of the basic thread scheduling problem are instances of the thread

scheduling problem. This leads to the next theorem.

Theorem 2 The thread scheduling problem is NP-complete in the strong sense

even when cm(e) = 1 for every edge.

By using the above idea, replacing each thread of size K by a chain of K

unit threads, and a slightly more complicated construction and analysis, the next

theorem can be established [9].

Theorem 3 The basic thread scheduling problem is NP-complete in the strong

sense even when cm = 1 and each thread is a unit thread (having a unit process-

ing time).

The complexity results of related scheduling problems has been considered

by other researchers [12, 16, 18]. The complexity results presented cannot be

implied by the previous results mentioned above.

4 Analysis and transformation techniques

In this section, we propose and discuss several techniques which are used to

develop several heuristic algorithms [10] that solve the basic thread scheduling

problem. These techniques not only deal with issues of heuristic algorithm design

and development, they also address some of the questions and concerns raised

by other researchers and improve some of the techniques in [17].

4.1 Critical path analysis

Critical path analysis is used to predict ideal execution time (assuming no com-

munication overhead between threads) [17]. The ideal execution time is used

to evaluate the theoretical speedup of various scheduling techniques and algo-

rithms. A stack based critical path analysis algorithm is given in [17]. Besides

using an extra space (worst case O(n), where n is the number of nodes in the

dag), based on our careful analysis of the algorithm, the algorithm has O(j E j
2
)

as its worst case time complexity instead of O(j E j). In what follows, we give

a simple algorithm with worst case time complexity of O(n+ j E j) to solve the

same problem. Based on the topological ordering of the vertices [6], the algo-

rithm eliminates the need of the stack. In [17], the term level is used to refer to

a thread's earliest completion time. So each thread v has a level, level(v). We

shall use the same term for ease of cross-referencing.

1007Li W.N., Jenq J.F.: On the Thread Scheduling Problem

The following recurrence formula is used to compute level(v) of each vertex

v in the dag.

level(v) = d(v); if PRED(v) = ;

= max
u2PRED(v)

flevel(u)g+ d(v) if PRED(v) 6= ; (1)

Note that due to communication (cm > 0) we cannot assume a single source

vertex (a vertex is called a source vertex if its indegree is zero) by the technique

of adding a new dummy vertex. Since each path from source vertices to v must

go through a predecessor of v, the longest path from source vertices to v must

consists of two parts; the �rst part is a longest path from source vertices to u,

where u is a predecessor of v, and the second part is d(v). The recurrence formula

captures the above observation and correctly computes level(v) for each v. Note

that the maximum level of the sink vertices (vertices with outdegree zero) is the

length of the critical path.

The stack based algorithm computes level(v) by incrementally updating its

value. The value may be updated many times. Each time the value is updated,

the vertex is pushed onto the stack and the level value of each node in the entire

subgraph form v to the sink vertices is recomputed. The above observations

lead to a more accurate analysis of the algorithm and can be used to construct

examples for which the stack based algorithm runs in O(j E j
2
) time, not O(j

E j). This changes the worst case time complexity of the stack based algorithm

from O(j E j), as reported in [17], to O(j E j
2
).

To compute level(v), we need to know level(u) for u 2 PRED(v). To ensure

the level value of each predecessor is available, the computation of a vertex's

level should be carried out in topological order1.

Let v1; v2; : : : ; vn be a topological order of vertices in G. The algorithm is

stated in pseudo code below. The algorithm is based on ideas used in PERT

network [8].

Algorithm 1: for computing level(v) and critical path

1 for (i=1; i <= n; i++) {

2 if vi does not have any immediate predecessor

3 level(vi) = d(vi);

4 else {

5 level(vi) = 0;

6 for each immediate predecessor u of vi do

7 if level(vi) < level(u)

8 level(vi) = level(u);

9 level(vi) = level(vi) + d(vi); } }

1 We do not need to �rst compute the topological order. With appropriate data struc-
tures it can be computed on the
y.

1008 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

4.2 Critical network

A dag G, in general, may have many critical paths. A thread is called a critical

thread if it belongs to a critical path. The critical network of G is the maximum

subgraph of G such that every source to sink path in the subgraph is a critical

path in G. An example dag and its critical network are shown in Figure 4 (a) and

(b), where the letter inside the circle denotes the vertex and the number denotes

the processing time. The two are separated by a colon. An application of critical

network for better ideal execution prediction is given in the next subsection. We

shall now illustrate the method for critical thread identi�cation as well as critical

network identi�cation.

o:5m -���
���

���
��:

p:2m - q:2m r:1m- s:1m

n:2m - i:2m - j:2m - l:3m -m:1m
AAU

b:1m- c:1m-
AAU

d:1m- e:1m- f:1m-
@
@R

g:4m

o:5m -���
���

���
��:

p:2m - q:2m r:1m- s:1m

n:2m - i:1m - j:2m - l:1m -m:1m
A
AU

b:1m- c:1m-
AAU

d:1m- e:1m- f:1m-
@
@R

g:4m

o:5m -���
���

���
��:

p:2m - q:2m r:1m- s:1m

n:2m - i:1m - j:2m - l:1m -m:1m -

AAU

n:1m

b:1m- c:1m-
AAU

d:1m-PPPPPPPPq

e:1m- f:1m-
@
@R

g:4m

a:2mPPPPPPPPq

(c)

(b)

(a)

Figure 4: An example of critical network and its transformation.

Let rlevel(u) denote the latest starting time of thread u such that the theoret-

ical runtime is not a�ected. The following recurrence formula computes rlevel(u),

1009Li W.N., Jenq J.F.: On the Thread Scheduling Problem

where length stands for critical path length.

rlevel(u) = length� d(u); if SUCC(u) = ;

= min
v2SUCC(u)

frlevel(v)g � d(u) if SUCC(u) 6= ; (2)

To use the above formula, we must �rst compute the length of the critical

path. The algorithm presented in the previous section can be used to compute

that. Notice the symmetry between formula (1) and (2). By consider each thread

in reverse topological order, we can compute the rlevel(u) for each u in order

O(n+ e) time. The algorithm is very similar to Algorithm 1 and is omitted.

De�nition 5 C(v) = level(v) � rlevel(v) � d(v). C(v) is called the criticality

of thread v.

If C(v) = 0, then v is a critical thread. It is straight forward to see that

C(v) = 0 i� v belongs to a critical path. Notice that this is obviously true if v

is a sink vertex. For other vertices, we use induction to establish C(v) = 0 i� v

belongs to a critical path.

Once we know level(v) and rlevel(v), we can compute C(v) and determine

the critical thread. The critical network is constructed by including all critical

threads and those edges of the dag that belong to critical paths. An edge< u; v >

belongs to a critical path i� level(v)� rlevel(u)� d(v)� d(u) = 0.

De�nition 6 Given a dag G, an edge � =< u; v > is redundant if the graph

contains a directed path from u to v which does not include �. G is irreducible

i� there is no redundant edge in G.

Lemma 6 The critical network of a program thread graph is irreducible.

Proof: If the critical network, N , is not irreducible, then there is a redundant

edge � =< u; v > in N . Let p = u; vi1; : : : ; vik ; v, k � 1, be the directed path

from u to v which does not include �. Since d(vij) > 0, 1 � j � k, we cannot

have level(v)� rlevel(u)� d(v)� d(u) = 0. Hence, � cannot belong to N . It is

a contradiction. 2

Let p = v1; v2; : : : ; vk be a path of a irreducible dag. Each vi, 2 � i � k,

satis�es the property that it has exactly one immediate predecessor in p. This

property of the critical network will be used later.

4.3 Critical network transformation

Lower bounds of the execution time of the dag can be used to evaluate the

theoretical speedup of various scheduling techniques and can be used to evaluate

1010 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

heuristic scheduling algorithms. In previous approaches [17], the ideal execution

time of a critical path is used as the lower bound. Since the critical network is

a subgraph of the dag, the `ideal' execution time (lower bound of the execution

time) of the critical network is also a lower bound of the execution time of

the dag. Using critical network and the following transformation, we show that

a bound which is tighter than that given by the critical path method can be

obtained.

Just as in [17], we shall assume maximum achievable parallelism, i.e., suf-

�cient available PEs. The transformation assumes d(v) � cm for all critical

threads v, i.e., the execution time of each critical thread is greater than the

communication time between threads. This is a valid assumption for any rea-

sonable thread granularity and well designed multi-threaded architectures.

Transformation 1: Let N = (VN ; EN ; tN ; cmN) be a critical network. Let

ind(v) be the indegree of v 2 VN . We transform N to another dag A = (VA; EA;

tA; cmA), where VN = VA, EN = EA, tA(v) = (ind(v)� 1)cmN + tN (v) for each

v, and cmA = cmN . Figure 4(b) and Figure 4(c) depict N and A respectively

using this transformation.

Lemma 7 The ideal execution time of a critical path in A is a lower bound of

the completion time of N .

Proof: Let p = v1; v2; : : : ; vk be a critical path in A. Note that p is also a critical

path in N . Let us consider the execution of p along with other threads of N .

Since p is a path of N , the earliest completion time of p is no more than the

earliest completion time ofN . Since d(v) � cm, for v 2 N , to �nish the execution

of p in the earliest possible time is to assign p to one PE and process the threads

of p one after another. Let f(vi) be the best possible �nishing time of vi and

lA(vi) be the level(vi) in A.

Note that f(v1) � dN (v1) and lA(v1) = dA(v1) = dN (v1). Hence, f(v1) �

lA(v1). Since p is a path of a irreducible dag N , each vi, 2 � i � k, has exactly

one predecessor in p. Other predecessors of vi are processed by other PEs. Thus,

f(v2) � f(v1) + (ind(v2) � 1)cmN + dN (v2). From transformation 1, dA(v2) =

(ind(v2) � 1)cmN + dN (v2). Since p is a critical path in A, lA(v2) = lA(v1) +

dA(v2). Hence, f(v2) � lA(v2). By repeatedly using the same argument, we have

f(vi) � lA(vi), 1 � i � k. Note that lA(vk) is the ideal execution time of a

critical path of A, and f(vk) � lA(vk) implies lA(vk) is a lower bound of the

completion time of N . 2

It follows from the above lemma and the discussion that precedes it that we

can compute a lower bound of the execution time of the dag, by �rst constructing

the critical network N , then transforming N to A using transformation 1, and

�nally computing the critical path of A2.

2 The steps can be combined in the implementation.

1011Li W.N., Jenq J.F.: On the Thread Scheduling Problem

Let us consider the example of Figure 4. The lower bound given by the

critical path method is 9 and the lower bound given by the critical network

transformation method is 12. The critical network transformation method always

provides a tighter lower bound than that given by the critical path method.

4.4 Thread packing

The thread packing technique aims at reducing the number of PEs needed to

complete the set of thread sequences obtained from the program thread graph.

Some thread sequence formation algorithms such as the one proposed in [17]

assume that maximum parallelism can be achieved. Under this assumption, each

PE is responsible for the execution of one thread sequence. Once the thread

sequences are formed and assigned to each PE, the execution time interval of each

thread sequence can be speci�ed and the completion time of all tread sequences

can be determined. In thread packing, we are interested in achieving the same

�nishing time as the current schedule but with the least possible number of PEs.

The problem of thread packing can be modeled as an interval packing prob-

lem, where each thread sequence s is represented by an interval [s(b); s(e)]. s(b)

denotes the beginning time slot of the processing and s(e) denotes the ending

time slot. Two thread sequence may be packed together if their corresponding

intervals do not overlap. Several thread sequences may be packed together if

there corresponding intervals are pairwise nonoverlopping. A simple packing ex-

ample is shown in Figure 5. Since the packing process does not modify any of

the intervals, the �nishing time is not a�ected. As illustrated in the example,

the packing process can reduce the number of PEs needed. Using an algorithm

similar to the left-edge algorithm used in [5, 11], the maximum PE reduction

can be achieved.

1012 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

s1

s1

s2

s2

s3

s3

P1

P2

P3

P1

P2

Figure 5: An example of thread packing.

5 Conclusion

The thread scheduling problem is considered in this paper. The thread scheduling

problem abstracts the problem of minimizing memory latency, using a directed

data dependency graph generated from a compiler, to reduce the �nishing time.

Two thread scheduling problems are formulated and shown to be NP-complete in

the strong sense. New methods and algorithms for analyzing a data dependency

graph in order to compute the theoretical best runtime (lower bound of the

�nishing time) and to estimate the required minimum number of PEs needed to

achieve certain �nishing time are presented. The new methods and algorithms

improve upon some of the analysis and transformation techniques introduced in

[17]

These methods and algorithms are eÆcient and thus together other tech-

niques [10, 17] can provide a practical optimization phase in the compiler for the

de�ned architecture.

References

[1] IF1 An Intermediate Form for Applicative Languages, reference manual version 1.0
edition, Univertisy of California-Davis 1985.

[2] M.C. Chang and F. Lai. EÆcient exploitation of instruction-level parallelism for
superscalar processors by the conjugate register �le scheme. IEEE Transaction on
Computers, 45(3):278{93, 1994.

[3] J. T. Feo. An analysis of the computational and parallel complexity of the liver-
more loops. Parallel Computing, pages 163{185, July 1988.

[4] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Fran-
cisco, CA, 1979.

1013Li W.N., Jenq J.F.: On the Thread Scheduling Problem

[5] A. Hashimoto and J. Stevens. Wire routing by optimizing channel assignment
within large apertures. In Proceedings of 8th Design Automation Conference, pages
155{169, 1971.

[6] E. Horowitz and S. Sahni. Fundamentals of Data Structures in PASCAL. Com-
puter Science Press, New York, NY, 1994.

[7] D. Kuck et al. Dependence graphs and compiler optimizations. In Proceedings of
the 8th ACM Symposium on Principles of Programming Languages, pages 207{218,
January 1981.

[8] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart,
and Winston, 1976.

[9] W. N. Li. Manuscript in preparation.
[10] W. N. Li and J. F. Jenq. Manuscript in preparation.
[11] W. N. Li and Sartaj Sahni. Pull up transistor folding. IEEE Transactions on

Computer-Aided Design, 9(5):512{521, May 1990.
[12] C.H. Papadimitriou and M. Yannakakis. Towards an architecture-independent

analysis of parallel algorithms. SIAM J. Comput., 19(2):322{328, April 1990.
[13] V. Sarkar. Partitioning and Scheduling Parallel programs for execution on Multi-

processors. MIT Press, Cambridge, MA, 1989.
[14] V. Sarkar and J. Hennessy. Compile-time partitioning and scheduling of parallel

programs. In Proceedings of the SIGPLAN 86 Symposium on Compiler Construc-
tion, pages 17{26, July 1986.

[15] B. Simons, V. Sarkar, Breternitz Jr. M., and M. Lai. An optional asynchronous
scheduling algorithm for software cache consistency. In Proceedings of the Hawaii
International Conference on Systems Sciences, pages 502{511, 1994.

[16] V.J. Rayward Smith. Uet scheduling with unit interprocessor communication de-
lays. Discrete Applied Mathematics, 18:55{71, 1987.

[17] M.A. Thornton and D.L. Andrews. Graph analysis and transformation techniques
for runtime minimization in multi-threaded architectures. In Proceedings of the
Hawaii International Conference on Systems Sciences, pages 566{575, 1997.

[18] J. Ullman. Np-complete scheduling problems. J. Comput. System Sci., 10:384{
393, 1975.

[19] M. Y. Wu and D. Gajski. Hypertool: A programming aid for message-passing
systems. IEEE Transactions on Parallel and Distributed Systems, 1(3):330{343,
July 1990.

[20] T. Yang and A. Gerasoulis. Dsc: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Systems,
5(9):951{967, September 1994.

1014 Li W.N., Jenq J.F.: On the Thread Scheduling Problem

