
�
2Q�'\QDPLF�6SHFXODWLYH�7KUHDG�3DUWLWLRQLQJ�DQG�WKH�

0(0�VOLFLQJ�$OJRULWKP��

/XFLDQ�&RGUHVFX�
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332-0250

lucian@ece.gatech.edu

'��6FRWW�:LOOV�
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332-0250
scott.wills@ece.gatech.edu

$EVWUDFW� A dynamic speculative multithreaded processor automatically extracts thread level
parallelism from sequential binary applications without software support. The hardware is
responsible for partitioning the program into threads and managing inter-thread dependencies.
Current published dynamic thread partitioning algorithms work by detecting loops, procedures,
or partitioning at fixed intervals. Research has thus far examined these algorithms in isolation
from one another. This paper makes two contributions. First, it quantitatively compares
different dynamic partitioning algorithms in the context of a fixed microarchitecture. The
architecture is a single-chip shared memory multiprocessor enhanced to allow thread and value
speculation. Second, this paper presents a new dynamic partitioning algorithm called MEM-
slicing. Insights into the development and operation of this algorithm are presented. The
technique is particularly suited to irregular, non-numeric programs, and greatly outperforms
other algorithms in this domain. MEM-slicing is shown to be an important tool to enable the
automatic parallelization of irregular binary applications. Over SPECint95, an average speedup
of 3.4 is achieved on 8 processors.

.H\ZRUGV�� analysis and design aids, control structure performance, architectures,
multiprocessor
&DWHJRULHV��B.1.2, C.1.2

�� ,QWURGXFWLRQ�

Microprocessor architecture research is increasingly looking at multithreading to
increase parallelism, tolerate latency, and reduce design complexity. A stigma of
traditional multithreading is poor performance on legacy sequential binaries. A new
class of dynamic multithreaded architectures is emerging to meet this need
[2][5][14][18]. These designs automatically extract thread-level parallelism from
binary applications. A defining feature of these architectures is how threads are
extracted. Static thread partitioning is a difficult problem, as the compiler must
balance the often-conflicting needs of data flow, control flow, and load balance.
Dynamic partitioning algorithms do not have the benefit of compile time information,

Journal of Universal Computer Science, vol. 6, no. 10 (2000), 908-927
submitted: 8/2/00, accepted: 8/9/00, appeared: 28/10/00  Springer Pub. Co.

and must look for clues in the dynamic execution. This paper begins with an example
from FRPSUHVV�� that illustrates some of the intricacies of the partitioning problem.

Current dynamic partitioning algorithms [2][14][18] attack either loops,
procedures, or cache line boundaries. Thus far, researchers in this area have presented
individual algorithms only in the context of different architectures, making
comparisons between algorithms difficult. In this paper, current dynamic partitioning
algorithms are quantitatively compared in the context of the Atlas chip-multiprocessor
[5]. This design starts with a conventional shared memory multiprocessor. Support for
thread speculation (multiscalar execution) and aggressive inter-thread data value
prediction are added.

The paper then introduces a new dynamic partitioning algorithm, called MEM-
slicing. The basic algorithm is presented along with an exploration into several
important design variables. SPECint95 benchmarks are executed on a detailed
simulator and extensive performance evaluations are performed. The MEM-slicing
dynamic partitioning algorithm is shown to be an important tool to extract thread-
level parallelism. Using unmodified sequential SPECint95 binaries, speedup due to
thread parallelism averages 3.4 on 8 processors.

�� 5HODWHG�ZRUN�

Speculative multithreading was introduced by the Multiscalar [10][20] architecture.
This design uses the compiler to divide the program into threads and schedule inter-
thread register communication. Hydra [17], Stampede [21], RAW [27], Iacoma [12],
SPSM[9], Superthreaded[22], and Multithreaded Decoupled[8] also perform
speculative multithreading. All of these architectures perform partitioning in software
and require source code recompilation.

While work has been done in static thread partitioning for speculative
multithreaded processors [25][26], very little work exists on dynamic partitioning
algorithms. Current dynamic partitioning algorithms [2][14][18] attack either loops,
procedures, or cache line boundaries. Loops are a natural first place to look, as
parallelizing compilers have a long history of loop parallelization. Marcuello,
Gonzalez and Tubella present a microarchitecture that dynamically recognizes loops
and attempts to parallelize the loop iterations [14][23]. Stride based data value
prediction is used to speculate inter-thread data dependencies. The trace processor
[18] partitions threads on trace cache line boundaries. The cache lines are executed on
separate execution cores with inter-trace dependencies being both speculated and
synchronized via a global register file and global data cache. The dynamic
multithreaded processor (DMT) [2] recognizes loops and procedures. Threads are
dynamically forked after procedures (the code after a procedure is executed in parallel
with the procedure), and after-loops (the code after a loop is executed in parallel with
the loop). The execution architecture is a modified Simultaneous MultiThreaded
(SMT) [24] design. It includes mechanisms to speculate on, to track, and to recover
data value predictions.

This paper is divided into seven sections. Section 3 briefly describes the Atlas
chip-multiprocessor. Section 4 discusses the problem of partitioning for a speculative
multiprocessor, and includes an example from SPECint95. Section 5 presents a
quantitative comparison of current partitioning algorithms in the context of the Atlas

909Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

multiprocessor. Section 6 introduces and explores the MEM-slicing partitioning
algorithm. Section 7 presents a summary and conclusion.

�� $WODV�FKLS�PXOWLSURFHVVRU�

/��&DFKH

3(

9DOXH�
&RQWURO
3UHGLFWRU

3(

3(3(

3(3(

3(3(

)LJXUH�����$WODV�$UFKLWHFWXUH�%ORFN�'LDJUDP�

The partitioning work presented in this paper assumes a fixed configuration of the
Atlas chip-multiprocessor [5]. This section provides a brief overview of the
architecture. Interested readers should refer to [5] for details. The general philosophy
of this design is to start with a single-chip multiprocessor and add mechanisms
necessary to support thread and value speculation.

Figure 1 shows a top-level view of the architecture. Eight processors are integrated
together with global L2 cache, and a global control and value predictor. The
processors communicate with the global structures through shared buses. Processors
communicate with one another via a bidirectional, pipelined ring interconnect.
Parallel operation is achieved on sequential binaries by dynamically partitioning a
program into threads, and then executing the threads speculatively, following the
multiscalar execution model. One processor in the ring is non-speculative. The thread
on this processor runs normally, committing STORE results to the L2 cache. Control
speculations decide which threads to allocate to subsequent processors. Threads are
issued and retired in-order. Speculative threads buffer state until they become non-
speculative, at which time they commit results.

Inter-thread data dependencies are handled using two mechanisms, data
dependence speculation [15] and data value prediction [13]. Live register inputs are
always value predicted. A hybrid global value predictor makes aggressive, 2-level,
correlated value predictions [6]. All value predictions are tracked within the
processors via a small fully associative queue, called the Active Ins Queue. For
memory dependencies, a dependency predictor is first consulted to decide if a
communicating STORE is likely. If it is not likely, the processor LOADs the value
from cache and proceeds. The primary data cache is modified to track these

910 Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

speculations, in a manner similar to other designs [11][12][17][21]. Recovery from this
type of misspeculation is achieved by squashing the thread and restarting. Should the
dependency predictor indicate a communicating STORE is likely, the data value
predictor is accessed. These predictions are tracked in a similar manner to register
value predictions.

The main issue queue in each processor is modified to provide fine-grained value
misspeculation recovery. If a register or memory data value prediction is incorrect,
only instructions dependent on the incorrect value re-execute, in a manner similar to
the trace queues described in [2]. Table 1 shows the processor configuration that will
be used for all subsequent simulations.

The simulator is built on the Simplescalar toolkit [1], which uses a MIPS-like ISA.
It is execution-driven, fully modeling execution under misspeculation conditions.
SPECint95 benchmarks are compiled with gcc 2.6.1 using full optimizations. All
simulations are done using the train input sets. Benchmarks are simulated for 200
million instructions, or until they complete, whichever is first.

Processors 8
Value/Control Predictor 128Kb HLG[6]
Speculative Data Cache 32Kb,2-way SA, 4 cycle miss

penalty to L2
Active In Queue 16 entry Fully Associative
Dependency Predictor 8Kbyte
Write Buffer 64 entry Fully Associative
Processor Configuration Single issue, in-order,

pipelined (5 stage pipeline)
Issue (recovery) Queue Size 64 entry
Instruction Cache Perfect
L2 cache Perfect
All Global Communication 4 cycles, pipelined

7DEOH����6LPXODWHG�$WODV�FRQILJXUDWLRQ�

�� 3DUWLWLRQLQJ�IRU�WKUHDG�VSHFXODWLRQ�

In order to achieve speedup due to parallel execution, the application program
must be divided among the processors. In a conventional multiprocessor, a compiler
typically transforms loops for parallel execution. Different iterations of the loop are
executed in parallel on different processors. The work done on a processor is
generally called a thread, which is defined as any contiguous execution sequence. A
thread could be a loop iteration, a basic block, or a procedure, for example.
Historically, partitioning a program into threads meant finding guaranteed
independent work for the processors. Speculative multiprocessors relax dependency
restrictions in data and/or control. The processors speculate on inter-thread
dependencies and then later perform corrective procedures in the case of a
misprediction. Critical to the success of speculative multithreading is extracting
threads that are load balanced, data predictable, and control predictable.

The size of a thread is defined as the number of dynamic instructions in the thread.
It is very important that all threads are close to the same size to handle load balance.
Otherwise, processors with small threads will idle while processors with large threads

911Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

complete. Thread coverage is a related issue. It is important that the entire program be
divided into threads. If only some portions are threaded, execution into the unthreaded
code will cause severe load balance problems.

Thread data predictability refers to the number and predictability of live data
inputs into a speculative thread. For fully parallel execution, there should be no live
data inputs into the thread. This is often not possible, in which case it is desirable to
have the minimum number of short, unpredictable inputs. If a data input is
predictable, it can be removed with data value prediction. Short, unpredictable inter-
thread data dependencies should be avoided, as these will cause the consuming thread
to wait for the producing thread, effectively sequentializing thread execution.

Control predictability refers to the relative difficulty in determining which thread
follows the current thread. Depending on how threads are partitioned, there can
potentially be many possible following threads. Threads can also be partitioned to
take advantage of control convergence, by encapsulating hard-to-predict branches
within a thread. Large amounts of work may be discarded as the result of incorrect
thread control predictions.

The ideal thread example is a parallel loop iteration. Each loop iteration is
typically the same size as all other loop iterations, has no live inputs, and control
proceeds regularly from one iteration to the next. Unfortunately, many important
applications (and benchmarks) do not have parallel loops.

����� &RPSUHVV�H[DPSOH�

Finding good threads in a sequential program often involves trading off load
balance, control predictability, and data predictability. This is illustrated with an
example from the SPECint95 benchmark FRPSUHVV��.

while (c = getchar()) {
 ….
 …. = HQW
 ….
if (…) {
 HQW�= fcode(i)
 ...
}
 ….
nomatch:
 output();
 ….
 ….
 HQW� �F
������….
}

)LJXUH�����&RPSUHVV�PDLQ�ORRS�

The main compress loop is outlined in Figure 2. Each iteration of the loop begins

by reading in a character to compress. The loop iteration then follows complex and
data dependent control flow. There are numerous iteration carried true data

912 Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

dependencies, some of which are inherently unpredictable. A particularly hard-to-
predict and restrictive data dependency is the HQW variable, shown in boldface.
Occasionally, the loop body makes a call to the RXWSXW() procedure to dump
compressed characters.
 In earlier work, the authors presented a methodology to study the data flow
behavior of thread partitions in sequential programs [4]. Figure 3 shows the results of
this analysis for two iterations of the compress loop. The x-axis is time measured in
dynamic instructions. It shows two iterations of the compress loop from the beginning
of the first iteration to the end of the second iteration. On the y-axis, the strength of
data dependencies is measured. A low number indicates few hard-to-predict
dependencies crossing a thread boundary defined by the dynamic instruction on the x-
axis. A high number indicates that the data crossing this dynamic instruction is
shorter-lived and/or hard-to-predict. There are two valleys of interest in each iteration
of the compress loop. The first is the beginning of the compress loop, and the second
is a call to the output() procedure. This graph indicates that those two places make
good thread partitions as far as data flow is concerned, while the work between these
valleys is more closely related in data flow.

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150

'\QDPLF�,QVWUXFWLRQ�

,

Q

W

H

U

�

7

K

U

H

D

G

�

'

H

S

H

Q

G

H

Q

F

\

�

6

W

U

H

Q

J

W

K

&RPSUHVV�ZKLOH�JHWF����ORRS�LWHUDWLRQ &DOO�WR�RXWSXW��

)LJXUH�����&RPSUHVV�G\QDPLF�GDWD�IORZ�DQDO\VLV�

 One way to partition this code is to thread the loop body. This approach is
illustrated in Figure 4.

913Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

c = getchar();
 ….
 …. = HQW
 ….
if (…) {
 HQW�= fcode(i)
 ...
}
 ….
nomatch:
 output();
 ….
 ….
 HQW� �F c = getchar();

 ….
 …. = HQW
 ….
if (…) {
 HQW�= fcode(i)
 ...
}
 ….
nomatch:
 output();
 ….
 ….
 HQW� �F

3UHGLFW�DQRWKHU

LWHUDWLRQ

3UHGLFW�HQW�YDOXH

WLPH

✔

✘

)LJXUH�����/RRS�WKUHDGLQJ�FRPSUHVV�

Control predictability is well satisfied because the loop consecutively iterates
many times. Data predictability suffers because the HQW variable forms a hard-to-
predict, short iteration-carried dependency. This variable has the effect of
sequentializing iterations. Also, thread size can vary considerably depending on intra-
thread control flow, and as a result, load balance suffers. Even with the limitations
imposed by the HQW variable, some speedup is seen with this approach. The call to
JHWFKDU() can be overlapped with the previous loop iteration.

Another threading approach is to thread the loop body and the RXWSXW() procedure.
This procedure has only easy-to-predict input dependencies, making it a good
candidate for speculative multithreading. Figure 5 shows the results of this approach.
The data flow properties of this partitioning are much better than before, as the
RXWSXW() procedure execution can be overlapped with the compress loop iteration.
However, this approach introduces a control flow problem. The RXWSXW() procedure is
not called every iteration of the compress loop. It is called approximately every 2-5
iterations, but depends on the program input and can vary considerably. For this
reason, it is difficult to predict the thread that follows the compress iteration thread.
Sometimes another iteration thread follows, sometimes the RXWSXW() procedure. Load
balance is also affected because the size of the RXWSXW() procedure does not match the
size of the compress iteration thread.

914 Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

(c = getchar()) {
 ….
 … = HQW
 ….
if (…) {

(c = getchar()) {
 ….
 … = HQW
 ….
if (…) {
 HQW�= fcode(i)
 ...
}

output()
{

...

}
...
HQW� �F

(c = getchar()) {
 ….
 … = HQW
 ….
if (…) {
 HQW�= fcode(i)
 ...
}

3UHGLFW�RXWSXW��

3UHGLFW�LWHUDWLRQ

3UHGLFW�RXWSXW��

✔
✔

✘

WLPH

)LJXUH�����7KUHDGLQJ�WKH�RXWSXW���SURFHGXUH�

 This example was presented to illustrate the delicate nature of the partitioning

problem. Data predictability, control predictability, and load balance can often be
traded against one another. Partitioning is a known NP-hard problem [19], and
solutions are generally heuristic based. Partitioning a program dynamically is more
difficult, as the run-time hardware does not have the benefit of compile-time
information.

�� &XUUHQW�DSSURDFKHV�

This section takes a detailed look at current approaches to dynamic partitioning in
the context of the Atlas chip-multiprocessor.

����� /RRSV�

Marcuello, Gonzalez, and Tubella present a microarchitecture that dynamically
parallelizes loop iterations [14][23]. Stride based data value prediction is used to break
iteration-carried true data dependencies. They report good performance for loop
oriented numeric codes. Little benefit is seen in the irregular SPECint benchmarks. A
loop threading experiment is run on the simulator for the Atlas chip-multiprocessor.
The simulator is configured to recognize backwards taken branches. The target of
these branches is marked as a thread entrance point. The control flow predictor then
attempts to learn and repeat the program control flow as it jumps from loop target to
loop target. In the case where the code spends large amounts of time in inner loops,
this technique works very well. The simulator achieves excellent results on numeric
codes, similar to the results found by others. However, the motivation for adding
speculation techniques to a chip multiprocessor is to achieve performance on non-
numeric codes. Numeric codes can often be parallelized by the compiler, and this
approach is preferred.

Figure 6 shows the results of performing loop threading on SPECint95. The graph
shows speedup on the y-axis (8 processors are used in all experiments). The bars

915Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

show the distribution of cycles for each benchmark. The black section is achieved
speedup (perl achieves a speedup of 1.5, for example). The other shaded regions show
where lost cycles are going, divided into five regions:

• Losses due to control mispredicts (white region)
• Losses due to load balance and coverage (lightly shaded region)
• Losses due to data value mispredictions (darkly shaded region)
• Losses due to non-speculative data cache misses and speculative write buffer

full stalls (vertically graded)
• Losses due to thread startup and retirement overhead (horizontally graded)

The data in this and subsequent similar graphs is calculated as follows. First, the

simulator is set for perfect control prediction, perfect value prediction, perfect caches,
and zero overhead. The only source of performance loss in this case is load balance
and coverage. The difference between peak speedup (8), and the results of ideal
simulation give the fraction of execution bandwidth lost to load balance and coverage.
Similar simulations are run with the various penalties selectively enabled, allowing
for a measurement of execution bandwidth lost. Finally, a simulation is run without
any ideal assumptions. This gives the actual performance. All results are presented as
speedup, calculated as the execution time of 8 processors over the execution time of 1
processor. Speedup is shown, rather than IPC, because this research assumes a single-
chip multiprocessor and then addresses techniques to improve performance on non-
numeric programs. There is a strong belief that a multiprocessor is a solid candidate
for future microprocessors, even without the techniques presented here [7][16].

�

�

�

�

�

�

�

�

�

pe
rl

co
m

pr
es

s
ijp

eg
m

88
ks

im cc
1 li go

vo
rte

x
av

er
ag

e

6

S

H

H

G

X

S

Start &
Retire

D-cache &
Write Buff

VP miss

Load
Balance &
Coverage

Control
miss

Achieved

)LJXUH�����/RRS�WKUHDGV�

 Loop threads do not perform well in SPECint95. It is notable that the results
presented here are better than those achieved by others doing loop threads on these
benchmarks. This is due to the more aggressive correlated value predictor, and the
fine-grained recovery mechanisms of the Atlas processor. From these results, it is

916 Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

clear that load balance and coverage account for the majority of lost cycles. This
should be expected because the SPECint applications are not loop intensive. The
exceptions are ijpeg, m88ksim, and (to a lesser extent) vortex, which display some
looping behavior. Even in ijpeg, however, many important loops iterate only 8 times
and contain restrictive hard-to-predict data dependencies.

Table 2 summarizes simulator results for the loop threading experiments. The ’avg.
size’ is the average size in dynamic instructions of all the threads in the benchmark.
’Done Speculatively’ is the fraction of work performed on speculative processors.
Control and data miss rates are the average misprediction rates over all threads in the
benchmark.

Benchmark Speedup Avg. Size Done

Speculatively
Control
Miss rate

Data
Miss rate

perl 1.49 37 0.374 0.065 0.306
compress 1.47 109 0.392 0.258 0.267

ijpeg 2.59 61 0.672 0.101 0.247
m88ksim 3.01 49 0.718 0.055 0.066

cc1 1.43 124 0.332 0.245 0.282
li 1.54 101 0.383 0.143 0.253

go 1.44 86 0.346 0.268 0.326
vortex 2.21 198 0.489 0.058 0.128

average 1.90 96 0.463 0.149 0.234

7DEOH�����/RRS�WKUHDGV�VXPPDU\�

����� 3URFHGXUH�WKUHDGV�

Another approach to dynamic thread partitioning is to target procedure calls. The
idea is to execute procedure calls in parallel with the code that follows the procedure.
This offers a nice solution to control predictability, because very often the procedure
will return to the calling site. In addition, data flow is often favorable around
procedures. Many procedures return only an error condition that is easily predictable.
The Dynamic MultiThreaded processor (DMT) achieves most of its performance gain
from dynamically forking procedure threads [2]. The Atlas simulator was modified to
automatically fork the code following a procedure call and execute it speculatively in
parallel with the procedure.

917Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

�

�

�

�

�

�

�

�

�

S
H
U
O

F
R
P

S
U
H
V
V

LM
S
H
J

P

�
�
N
V
LP

F
F
� OL

J
R

Y
R
U
WH
[

D
Y
H
U
D
J
H

6

S

H

H

G

X

S

Start &
Retire

D-cache &
Write Buff

VP miss

Load
Balance &
Coverage

Control
miss

Achieved

)LJXUH�����3URFHGXUH�WKUHDGV�

As can be seen from the results in Figure 7, the main drawback of this approach is
again load balance and coverage. Calling patterns vary widely between programs. For
example, if a program spends most of its execution time in a large loop without
calling procedures, no benefit of procedure threads will be seen. The fact that
procedures return to the calling site is also no guarantee of perfect control prediction.
To achieve perfect control flow prediction, the machine must be able to speculate
control eight levels deep. In the case of procedure threads, this means guessing the
next eight procedures to be called.

An important aspect of procedure threads is their ability to expose very large,
control predictable threads. The average thread size in SPECint95 is over 570
instructions, with a control mispredict rate of only 11%. This aspect of procedure
threads can be very useful in architectures that benefit from deep lookahead
execution. For example, deep thread lookahead could be used in an aggressive data
prefetching implementation.

Large threads can increase the chances of a data value mispredict, often meaning
that large amounts of work will be discarded. On average, however, this approach is
more profitable than loop threading for SPECint95. Table 3 summarizes simulator
data on procedure threads.

Benchmark Speedup Avg. Size Done

Speculatively
Control
Miss rate

Data
Miss rate

perl 1.75 475 0.503 0.028 0.155
compress 1.36 549 0.362 0.221 0.329

ijpeg 1.27 981 0.264 0.023 0.260
m88ksim 3.05 1305 0.698 0.013 0.025

cc1 1.86 167 0.513 0.150 0.283
li 2.28 532 0.634 0.150 0.155

go 1.44 280 0.337 0.255 0.347
Vortex 2.52 276 0.617 0.038 0.142

Average 1.94 571 0.491 0.110 0.212

7DEOH�����3URFHGXUH�WKUHDGV�VXPPDU\�

918 Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

�����)L[HG�LQWHUYDO�WKUHDGV�

The thread policies considered so far suffer severe problems due to load balance
and coverage. The next threading technique considered is an idealization of that used
by the trace processor [18]. The idea is to use fixed instruction length intervals of the
dynamic instruction stream. The trace processor partitions threads on trace cache line
boundaries. In an ideal trace cache, each line is full with valid instructions. However,
this is not possible due to microarchitectural restrictions, such as a maximum number
of branches per line. An ideal fixed interval partitioning policy achieves a perfect load
balance, but makes no attempt to address data flow or control flow issues.

Figure 8 shows results of simulating fixed length (16 instruction) threads on the
Atlas multiprocessor. Simulations were also run with longer and shorter length
threads. Only the 16 instruction length thread results are presented, because this
length achieves the best performance. The tradeoffs involved in thread sizing will be
discussed in Section 6.2. As anticipated, this approach does a much better job with
load balance – nothing was lost to load balance and coverage in all cases. Notice that
the fraction of peak speedup lost to startup/retirement is roughly the same for every
benchmark. This is the amount lost due to the overhead of processing the relatively
short threads. Every processor has a minimum four cycle pipeline startup latency that
is the principle contributor here, as very small threads are not able to amortize this
cost. Slight variations in the startup/retirement amount between benchmarks are due
to the different number of value predictions being updated, and the amount of state
that needs to be committed to the L2 cache at thread retirement.

�

�

�

�

�

�

�

�

�

S
H
U
O

F
R
P

S
U
H
V
V

LM
S
H
J

P

�
�
N
V
LP

F
F
� OL

J
R

Y
R
U
WH
[

D
Y
H
U
D
J
H

6

S

H

H

G

X

S

Start &
Retire

D-cache &
Write Buff

VP miss (D
stall)

Load
Balance &
Coverage

Control
miss

Achieved

)LJXUH�����)L[HG�LQWHUYDO�SDUWLWLRQLQJ�����LQVWUXFWLRQ��

Fixed interval threads stand to gain from better value prediction. This is important

because value predictors will improve as researchers develop a deeper understanding
of the phenomena. Overall, the fixed interval policy provides better performance than
loop or procedure threads. Fractions of the execution bandwidth are lost due to all

919Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

penalty aspects, but, a significant portion is not lost to any one area. Table 4
summarizes data for fixed interval threads.

Benchmark Speedup Avg.

Size
Done
Speculatively

Control
Miss rate

Data
Miss rate

perl 3.41 16 0.824 0.050 0.251
compress 2.38 16 0.713 0.122 0.331

ijpeg 1.96 16 0.648 0.185 0.364
m88ksim 4.17 16 0.835 0.031 0.070

cc1 1.30 16 0.391 0.274 0.396
li 3.12 16 0.811 0.085 0.342

go 1.36 16 0.482 0.346 0.477
vortex 2.74 16 0.736 0.062 0.281

average 2.55 16 0.680 0.144 0.314

7DEOH�����)L[HG�LQWHUYDO�WKUHDG�VXPPDU\�

�� 0(0�VOLFLQJ�DOJRULWKP��

A new algorithm has been developed that improves upon current dynamic
partitioning algorithms. The algorithm works as follows. Upon starting a thread, the
processor first skips a fixed number of dynamic instructions, designated the VNLS�
GLVWDQFH. This insures that all threads are at least a minimum length, avoiding very
small threads. Next, dynamic execution continues while the processor searches for an
appropriate place to begin the next thread. The instruction chosen is called the VOLFH�
LQVWUXFWLRQ. Upon finding a suitable instruction, execution stops at the instruction just
before the slice instruction. If a suitable slice instruction is not found, the thread is cut
off at some PD[LPXP�OHQJWK.

This process is illustrated in Figure 9. The three defining variables of the approach
are the skip distance, the slice instruction, and the maximum thread length. Finding
good solutions for these three variables is the subject of following sections. The goal
is to find load balanced, data and control predictable threads by tuning these three
parameters.

Skip Distance

Thread Entrance

Maximum
thread size

Search for
suitable slice

instruction

Slice
Immediately

)LJXUH�����6NLS�VHDUFK�VOLFH�DOJRULWKP�

920 Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

���� /RRNLQJ�IRU�SUHGLFWDEOH�LQVWUXFWLRQV�

In [4], a profiler was presented that collected data on the relative merits of every
static instruction as a thread boundary. A large variability was found between
different static instructions. Some make very good threads, while others make very
poor threads. A central idea that emerged from the work is that certain instruction
types are better than others for starting a thread boundary, and should be favored as
the slice instruction.
 Numerous experiments were conducted to determine the best instruction type to
use as a slice instruction. Profiler data suggested that backwards branches and stores
are the best for data predictability. However, section 5.1 showed that loops (as
indicated by backward branches) do not make good threads because of load balance.
Using backward branches and stores as the slice instruction leads to similar load
balance problems. It was determined from experimentation that using memory
instructions (all loads and stores) works well. Memory instructions are very common
in integer programs. After the minimum skip distance has been executed, it is
typically not long until a memory instruction is encountered. This has the nice effect
of making all threads relatively the same size. Profiler data also indicated that
memory instructions offer better thread data predictability than arithmetic or control
instructions.
 A possible explanation why memory instructions offer better thread data flow is
that it is a side-effect of register allocation. In register allocation, the compiler strives
to put data with short reuse distances into registers, and longer-lived variables into
memory. It is desirable to have communication locality within the thread, and longer-
lived variables spanning threads. This is exactly the behavior that occurs when
memory instructions begin and break threads.

���� 6L]H�DQDO\VLV�

The previous section determined that memory instructions should be used as the
slice instruction. The remaining variables in the partitioning algorithm are the skip
distance and the maximum distance. When using memory instructions as the slice
instruction, the maximum distance is not important, as a memory instruction is
usually encountered soon after the minimum skip distance. The remaining interesting
design variable is determining the skip distance.

The MEM-slice algorithm was implemented in the Atlas chip multiprocessor
simulator, and the skip distance was varied from 4 to 64. Results are seen in Figure
10. The characteristic shape is that performance climbs as threads go from very small
to around 16 instructions, and then performance drops off with larger threads.

921Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

0

1

2

3

4

5

6

7

pe
rl

co
m

pr
es

s
ijp

eg

m
88

ks
im cc

1 li go

vo
rte

x

av
er

ag
e

6

S

H

H

G

X

S

Skip distance = 4, avg. size = 9.5
Skip distance = 8, avg. size = 14
Skip distance = 16, avg. size = 21
Skip distance = 32, avg. size = 36
Skip distance = 64, avg. size = 68

)LJXUH������6NLS�GLVWDQFH�

Figure 11 examines the cause of this behavior. Very small threads are dominated

by load balance and overhead problems. As threads become bigger, load balance and
overhead issues become less important. Control flow is just the opposite. With small
threads, it is easier to make control predictions than with large threads. As shown in
the figure, these two forces oppose each other. Optimal performance comes in the
middle (the apex of the “achieved” triangle).

�

�

��

��

��

$

F

K

L

H

Y

H

G

/

%

�

	

�

2

Y

H

U

K

H

D

G

&

R

Q

W

U

R

O

�

/

R

V

V

'

D

W

D

�

/

R

V

V

0

0.5

1

1.5

2

2.5

3

3.5

4

([HFXWLRQ�

%DQGZLGWK

7KUHDG�6L]H

)LJXUH������6L]H�$QDO\VLV�

922 Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

���� 0(0�6OLFLQJ�5HVXOWV�

�

�

�

�

�

�

�

�

�

S
H
U
O

F
R
P

S
U
H
V
V

LM
S
H
J

P

�
�
N
V
LP

F
F
� OL

J
R

Y
R
U
WH
[

D
Y
H
U
D
J
H

6

S

H

H

G

X

S

Start &
Retire

D-cache &
Write Buff

VP miss

Load
Balance &
Coverage

Control
miss

Achieved

)LJXUH������0(0�VOLFHG�WKUHDGV�

Figure 12 and Table 5 show results of the MEM-slice algorithm with a skip
distance of 16. The next section compares all previous dynamic partitioning policies
and the new MEM-slice policy.

Benchmark Speedup Avg.

Size
Done
Speculatively

Control
Miss rate

Data
Miss rate

perl 3.85 21 0.836 0.044 0.186
compress 3.02 19 0.766 0.108 0.170

ijpeg 3.27 33 0.776 0.076 0.257
m88ksim 5.29 20 0.869 0.020 0.029

cc1 2.59 19 0.732 0.124 0.287
li 3.68 18 0.828 0.069 0.197

go 1.96 19 0.623 0.225 0.339
vortex 3.64 18 0.798 0.035 0.141

average 3.41 21 0.779 0.088 0.201

7DEOH�����0(0�VOLFH��VNLS�����VXPPDU\�

���� &RPSDUDWLYH�5HVXOWV�

Figure 13 compares dynamic partitioning algorithms, showing data arithmetically
averaged over all benchmarks. The surprising result is that the primary benefit of the
MEM-slicing algorithm is a significant reduction in control mispredicts – not data
mispredicts as was expected. Data flow and control flow are intricately linked in may
complex ways. Results suggest that slicing at memory operations provides better
thread data flow. It is postulated that this result is a byproduct of complex analysis
already being performed by the compiler’s register allocator. Given that memory
operations provide better thread data flow, it is reasonable that memory operations
should also provide better thread control flow.

923Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

In the Atlas architecture, control predictability is more important than data
predictability. If a thread is control mispredicted, all speculative work after the
misprediction is discarded. When a value is mispredicted, the thread provides fine-
grained recovery so only affected instructions need reexecute. Other, more deeply
speculated threads are not squashed. Often, more future threads complete correctly in
the presence of a less speculative data value misprediction.

Interestingly, the analysis in [4] intended to find solutions for data flow and ended
up with a solution for control flow.

�

�

�

�

�

�

�

�

�

0HP��� IL[HG��� DIWHUFDOO ORRSV

6

S

H

H

G

X

S

Start &
Retire

D-cache &
Write Buff

VP miss (D
stall)

Load
Balance &
Coverage

Control
miss

Achieved

)LJXUH�����&RPSDULVRQ�RI�G\QDPLF�SDUWLWLRQLQJ�DOJRULWKPV�

 The important lesson learned is that the weakest aspect of a partitioning algorithm
limits performance. For example, procedure threads have excellent control and data
predictability. But load balance is poor, and as a results overall performance is poor.

The experiments also suggest that load balance and control flow are more
important than data flow, especially with fine-grained data value misspeculation
recovery. Of the current dynamic partitioning algorithms studied, fixed intervals
perform the best. Load balance is completely solved, while data and control flow can
be managed by keeping the threads small. The MEM-slice algorithm improves on
fixed interval partitioning by improving control predictability.

924 Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

�� 6XPPDU\�DQG�&RQFOXVLRQV��

Speculative multithreading is emerging as a promising technique to extract
parallelism from non-numeric applications. A critical problem that must be addressed
is how to partition the program into threads. Partitioning dynamically allows for
parallel execution of “dusty-deck” binaries.

This paper provides a quantitative comparison of existing dynamic partitioning
algorithms in the context of a fixed microarchitecture. Two current approaches are to
partition loops and procedures. While these approaches both provide good control and
data predictability, they suffer severe load balance and coverage problems. The
integer benchmarks are not loop oriented, and calling patterns and procedure sizes
vary significantly between and within benchmarks. Over half the execution bandwidth
is lost to load balance and coverage when doing procedure and loop threading.

Fixed interval partitioning eliminates load balance and coverage problems, as all
threads are exactly the same size over the entire program. However, this approach
suffers greater control and data penalties.

A new dynamic partitioning algorithm, called MEM-slicing, is introduced. This
technique improves on fixed interval partitioning by being more selective about
thread boundaries. By slicing threads only on memory operations, threads can be
made larger and more predictable than fixed interval threads. This comes at a cost of
load balance, but overall the performance of MEM-slicing greatly exceeds other
dynamic partitioning algorithms (34-80% improvement).

A fundamental tradeoff exists between overhead and predictability. As threads are
made smaller, they become more predictable. This comes at the cost of increased
overhead. Large threads reduce overhead costs, but increase penalties associated with
data and control mispredicts. An optimal size exists somewhere between large and
small threads. For the simulated Atlas chip-multiprocessor, 16-32 instruction long
threads provide the best performance.

 It is possible to expect good parallel performance from unmodified sequential
binaries using aggressive speculation techniques. Current results suggest speedups of
around 3 on 8 processors. These results will improve as partitioning and speculation
techniques mature.

$FNQRZOHGJPHQWV�
�

This work is supported by the DARPA Low Power Electronics (LPE) and
Advanced Microelectronics (AME) Programs as well as the Semiconductor Research
Corporation.

5HIHUHQFHV�

[1] D. Burger, T.A. Austin, “The SimpleScalar Tool Set, Version 2.0”, Technical Report
#1342, University of Wisconsin-Madison Computer Science, June 1997.

[2] H. Akkary, “Dynamic MultiThreaded Processor,” Ph.D. thesis, Portland State University,
June 1998.

[3] H. Akkary and M. Driscoll, “A Dynamic Multithreaded Processor,” in Micro-31, Dec. 1998

925Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

[4] L. Codrescu and S. Wills, “Profiling for Input Predictable Threads,” in ,&&'���, pp. 558-
565, October 1998.

[5] L. Codrescu and S. Wills, “Architecture of the Atlas Chip-Multiprocessor: Dynamically
Parallelizing Irregular Applications”, in ICCD-99

[6] L. Codrescu and S. Wills, “The HLG correlated value predictor,” Pica Group Technical
Report 10-98-A, in submission. Available from http://www.ece.gatech.edu/users/lucian

[7] B. Dally and S. Lacy, "VLSI architecture: past, present, and future", LQ���WK�$59/6,, March
1999.

[8] M. Dorojevets and V. Oklobdzija, “Multithreaded Decoupled Architecture,” Int. J. High
Speed Computing, 7(3), pp. 465-480, 1995.

[9] Pradeep K. Dubey, Kevin O’Brien, and Charles Barton. “Single-program speculative
multithreading (SPSM) architecture: Compiler-assisted fine-grained multithreading,” in�3$&7�
pp. 109-121, June 1995

[10] M. Franklin, “The Multiscalar Architecture” Ph.D thesis, University of Wisconsin –
Madison, 1993

[11] S. Gopal, T.N. Vijaykumar, J. Smith, and G. Sohi, “Speculative Versioning Cache,” in
+3&$��, February 1998.

[12] Venkata Krishnan & Josep Torellas, "Executing sequential binaries on a multithreaded
architecture with speculation support", LQ�+3&$��, February 1998

[13] M.H. Lipasti, C.B. Wilkerson, and J.P. Shen, “Value locality and data speculation,” in
$63/26����pp. 138-147, October 1996

[14] P. Marcuello, A. Gonzalez, and J. Tubella, "Speculative Multithreaded Processors,”,in���WK�
,QW¶O�&RQIHUHQFH�RQ�6XSHUFRPSXWLQJ, 1998.

[15] Andreas I. Moshovos, Scott E. Breach, T.N. Vijaykumar, Gurindar S. Sohi, "Dynamic
Speculation and Synchronization of Data Dependences", in ,6&$���, June 1997

[16] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chung,
“The Case for a Single-Chip Multiprocessor,” In $63/26��, October 1996.

[17] Jeffery Oplinger, David Heine, Shih-Wei Liao, Basem A. Nayfeh, Monica S. Lam, and
Kunle Olukotun, “Software and Hardware for Exploiting Speculative Parallelism with a
Multiprocessor,” Tech. Rep. CSL-TR-97-715, Computer Systems Laboratory, Stanford
University, May 1997

[18] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith, et al, “Trace Processors”, in
0LFUR�����pp. 68-74, December 1997

[19] V. Sarkar and J. Hennessy, "Partitioning parallel programs for macro-dataflow", In
&RQIHUHQFH�3URFHHGLQJV�RI�WKH������$&0�&RQIHUHQFH�RQ�/LVS�DQG�)XQFWLRQDO�3URJUDPPLQJ,
pp. 192-201, 1986.

[20] Gurindar S. Sohi, Scott E. Breach, and T.N. Vijaykumar, “Multiscalar processors,” LQ�
,6&$���, pp. 414-425, June 1995

[21] J. Gregory Steffan and Todd C. Mowry, “The Potential for Using Thread-Level Data
Speculation to Facilitate Automatic Parallelization,” LQ�+3&$��, February 1998

[22] J.-Y. Tsai and P.-C. Yew, “The Superthreaded Architecture: Thread Pipelining with Run-
Time Data Dependence Checking and Control Speculation”, LQ�3$&7, October 1996

926 Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

[23] J. Tubella and A. Gonzalez, “Control Speculation in Multithreaded Processors through
Dynamic Loop Detection,” in +3&$��, February 1998.

[24] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy, “Simultaneous multithreading:
Maximizing on-chip parallelism,” in ,6&$�����pp. 392-403, June 1995

[25] T.N. Vijaykumar, "Compiling for the Multiscalar Architecture", Ph.D. Thesis, U.
Wisconsin - Madison, Jan 1998.

[26] T.N. Vijaykumar and Gurindar S. Sohi, "Task Selection for a Multiscalar Processor", in
Micro-31 Dec 1998.

[27] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P.
Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, , “Baring It All to Software: RAW
Machines”, IEEE Computer, pp. 86-93, September 1997.

927Codrescu L., Wills D.S.: On Dynamic Speculative Thread Partitioning ...

