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$EVWUDFW� A dynamic speculative multithreaded processor automatically extracts thread level 
parallelism from sequential binary applications without software support. The hardware is 
responsible for partitioning the program into threads and managing inter-thread dependencies. 
Current published dynamic thread partitioning algorithms work by detecting loops, procedures, 
or partitioning at fixed intervals. Research has thus far examined these algorithms in isolation 
from one another. This paper makes two contributions. First, it quantitatively compares 
different dynamic partitioning algorithms in the context of a fixed microarchitecture. The 
architecture is a single-chip shared memory multiprocessor enhanced to allow thread and value 
speculation. Second, this paper presents a new dynamic partitioning algorithm called MEM-
slicing. Insights into the development and operation of this algorithm are presented. The 
technique is particularly suited to irregular, non-numeric programs, and greatly outperforms 
other algorithms in this domain. MEM-slicing is shown to be an important tool to enable the 
automatic parallelization of irregular binary applications. Over SPECint95, an average speedup 
of 3.4 is achieved on 8 processors. 
 
.H\ZRUGV�� analysis and design aids, control structure performance, architectures, 
multiprocessor 
&DWHJRULHV��B.1.2, C.1.2 
 

�� ,QWURGXFWLRQ�

Microprocessor architecture research is increasingly looking at multithreading to 
increase parallelism, tolerate latency, and reduce design complexity. A stigma of 
traditional multithreading is poor performance on legacy sequential binaries. A new 
class of dynamic multithreaded architectures is emerging to meet this need 
[2][5][14][18]. These designs automatically extract thread-level parallelism from 
binary applications. A defining feature of these architectures is how threads are 
extracted. Static thread partitioning is a difficult problem, as the compiler must 
balance the often-conflicting needs of data flow, control flow, and load balance. 
Dynamic partitioning algorithms do not have the benefit of compile time information, 
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and must look for clues in the dynamic execution. This paper begins with an example 
from FRPSUHVV�� that illustrates some of the intricacies of the partitioning problem. 

Current dynamic partitioning algorithms [2][14][18] attack either loops, 
procedures, or cache line boundaries. Thus far, researchers in this area have presented 
individual algorithms only in the context of different architectures, making 
comparisons between algorithms difficult. In this paper, current dynamic partitioning 
algorithms are quantitatively compared in the context of the Atlas chip-multiprocessor 
[5]. This design starts with a conventional shared memory multiprocessor. Support for 
thread speculation (multiscalar execution) and aggressive inter-thread data value 
prediction are added. 

The paper then introduces a new dynamic partitioning algorithm, called MEM-
slicing. The basic algorithm is presented along with an exploration into several 
important design variables. SPECint95 benchmarks are executed on a detailed 
simulator and extensive performance evaluations are performed. The MEM-slicing 
dynamic partitioning algorithm is shown to be an important tool to extract thread-
level parallelism. Using unmodified sequential SPECint95 binaries, speedup due to 
thread parallelism averages 3.4 on 8 processors.  

�� 5HODWHG�ZRUN�

Speculative multithreading was introduced by the Multiscalar [10][20] architecture. 
This design uses the compiler to divide the program into threads and schedule inter-
thread register communication. Hydra [17], Stampede [21], RAW [27], Iacoma [12], 
SPSM[9], Superthreaded[22], and Multithreaded Decoupled[8] also perform 
speculative multithreading. All of these architectures perform partitioning in software 
and require source code recompilation.  

While work has been done in static thread partitioning for speculative 
multithreaded processors [25][26], very little work exists on dynamic partitioning 
algorithms. Current dynamic partitioning algorithms [2][14][18] attack either loops, 
procedures, or cache line boundaries. Loops are a natural first place to look, as 
parallelizing compilers have a long history of loop parallelization. Marcuello, 
Gonzalez and Tubella present a microarchitecture that dynamically recognizes loops 
and attempts to parallelize the loop iterations [14][23]. Stride based data value 
prediction is used to speculate inter-thread data dependencies.  The trace processor 
[18] partitions threads on trace cache line boundaries. The cache lines are executed on 
separate execution cores with inter-trace dependencies being both speculated and 
synchronized via a global register file and global data cache. The dynamic 
multithreaded processor (DMT) [2] recognizes loops and procedures. Threads are 
dynamically forked after procedures (the code after a procedure is executed in parallel 
with the procedure), and after-loops (the code after a loop is executed in parallel with 
the loop). The execution architecture is a modified Simultaneous MultiThreaded 
(SMT) [24] design. It includes mechanisms to speculate on, to track, and to recover 
data value predictions. 

This paper is divided into seven sections. Section 3 briefly describes the Atlas 
chip-multiprocessor. Section 4 discusses the problem of partitioning for a speculative 
multiprocessor, and includes an example from SPECint95. Section 5 presents a 
quantitative comparison of current partitioning algorithms in the context of the Atlas 
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multiprocessor. Section 6 introduces and explores the MEM-slicing partitioning 
algorithm. Section 7 presents a summary and conclusion.   

�� $WODV�FKLS�PXOWLSURFHVVRU�
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)LJXUH�����$WODV�$UFKLWHFWXUH�%ORFN�'LDJUDP�

The partitioning work presented in this paper assumes a fixed configuration of the 
Atlas chip-multiprocessor [5]. This section provides a brief overview of the 
architecture. Interested readers should refer to [5] for details. The general philosophy 
of this design is to start with a single-chip multiprocessor and add mechanisms 
necessary to support thread and value speculation. 

Figure 1 shows a top-level view of the architecture. Eight processors are integrated 
together with global L2 cache, and a global control and value predictor. The 
processors communicate with the global structures through shared buses. Processors 
communicate with one another via a bidirectional, pipelined ring interconnect. 
Parallel operation is achieved on sequential binaries by dynamically partitioning a 
program into threads, and then executing the threads speculatively, following the 
multiscalar execution model. One processor in the ring is non-speculative. The thread 
on this processor runs normally, committing STORE results to the L2 cache.  Control 
speculations decide which threads to allocate to subsequent processors. Threads are 
issued and retired in-order. Speculative threads buffer state until they become non-
speculative, at which time they commit results.  

Inter-thread data dependencies are handled using two mechanisms, data 
dependence speculation [15] and data value prediction [13]. Live register inputs are 
always value predicted. A hybrid global value predictor makes aggressive, 2-level, 
correlated value predictions [6]. All value predictions are tracked within the 
processors via a small fully associative queue, called the Active Ins Queue. For 
memory dependencies, a dependency predictor is first consulted to decide if a 
communicating STORE is likely. If it is not likely, the processor LOADs the value 
from cache and proceeds. The primary data cache is modified to track these 
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speculations, in a manner similar to other designs [11][12][17][21]. Recovery from this 
type of misspeculation is achieved by squashing the thread and restarting. Should the 
dependency predictor indicate a communicating STORE is likely, the data value 
predictor is accessed. These predictions are tracked in a similar manner to register 
value predictions. 

The main issue queue in each processor is modified to provide fine-grained value 
misspeculation recovery. If a register or memory data value prediction is incorrect, 
only instructions dependent on the incorrect value re-execute, in a manner similar to 
the trace queues described in [2]. Table 1 shows the processor configuration that will 
be used for all subsequent simulations.  

The simulator is built on the Simplescalar toolkit [1], which uses a MIPS-like ISA. 
It is execution-driven, fully modeling execution under misspeculation conditions. 
SPECint95 benchmarks are compiled with gcc 2.6.1 using full optimizations. All 
simulations are done using the train input sets. Benchmarks are simulated for 200 
million instructions, or until they complete, whichever is first. 

 
Processors 8 
Value/Control Predictor 128Kb HLG[6] 
Speculative Data Cache  32Kb,2-way SA, 4 cycle miss 

penalty to L2 
Active In Queue 16 entry Fully Associative 
Dependency Predictor 8Kbyte 
Write Buffer   64 entry Fully Associative 
Processor Configuration Single issue, in-order, 

pipelined (5 stage pipeline) 
Issue (recovery) Queue Size  64 entry 
Instruction Cache Perfect 
L2 cache Perfect 
All Global Communication  4 cycles, pipelined 

7DEOH����6LPXODWHG�$WODV�FRQILJXUDWLRQ�

�� 3DUWLWLRQLQJ�IRU�WKUHDG�VSHFXODWLRQ�

In order to achieve speedup due to parallel execution, the application program 
must be divided among the processors. In a conventional multiprocessor, a compiler 
typically transforms loops for parallel execution. Different iterations of the loop are 
executed in parallel on different processors. The work done on a processor is 
generally called a thread, which is defined as any contiguous execution sequence. A 
thread could be a loop iteration, a basic block, or a procedure, for example. 
Historically, partitioning a program into threads meant finding guaranteed 
independent work for the processors. Speculative multiprocessors relax dependency 
restrictions in data and/or control. The processors speculate on inter-thread 
dependencies and then later perform corrective procedures in the case of a 
misprediction. Critical to the success of speculative multithreading is extracting 
threads that are load balanced, data predictable, and control predictable.  

The size of a thread is defined as the number of dynamic instructions in the thread. 
It is very important that all threads are close to the same size to handle load balance. 
Otherwise, processors with small threads will idle while processors with large threads 
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complete. Thread coverage is a related issue. It is important that the entire program be 
divided into threads. If only some portions are threaded, execution into the unthreaded 
code will cause severe load balance problems.   

Thread data predictability refers to the number and predictability of live data 
inputs into a speculative thread. For fully parallel execution, there should be no live 
data inputs into the thread. This is often not possible, in which case it is desirable to 
have the minimum number of short, unpredictable inputs. If a data input is 
predictable, it can be removed with data value prediction. Short, unpredictable inter-
thread data dependencies should be avoided, as these will cause the consuming thread 
to wait for the producing thread, effectively sequentializing thread execution.  

Control predictability refers to the relative difficulty in determining which thread 
follows the current thread. Depending on how threads are partitioned, there can 
potentially be many possible following threads. Threads can also be partitioned to 
take advantage of control convergence, by encapsulating hard-to-predict branches 
within a thread. Large amounts of work may be discarded as the result of incorrect 
thread control predictions.  

The ideal thread example is a parallel loop iteration. Each loop iteration is 
typically the same size as all other loop iterations, has no live inputs, and control 
proceeds regularly from one iteration to the next. Unfortunately, many important 
applications (and benchmarks) do not have parallel loops.  

����� &RPSUHVV�H[DPSOH�

Finding good threads in a sequential program often involves trading off load 
balance, control predictability, and data predictability. This is illustrated with an 
example from the SPECint95 benchmark FRPSUHVV��.  

 
while (c = getchar()) {
       ….
       ….     = HQW
       ….
if (  … )  {
     HQW�= fcode(i)
      ...
}
     ….
nomatch:
     output();
       ….
       ….
     HQW� �F
������….
}  

)LJXUH�����&RPSUHVV�PDLQ�ORRS�

 
The main compress loop is outlined in Figure 2. Each iteration of the loop begins 

by reading in a character to compress. The loop iteration then follows complex and 
data dependent control flow. There are numerous iteration carried true data 
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dependencies, some of which are inherently unpredictable. A particularly hard-to-
predict and restrictive data dependency is the HQW variable, shown in boldface. 
Occasionally, the loop body makes a call to the RXWSXW() procedure to dump 
compressed characters.  
 In earlier work, the authors presented a methodology to study the data flow 
behavior of thread partitions in sequential programs [4]. Figure 3 shows the results of 
this analysis for two iterations of the compress loop. The x-axis is time measured in 
dynamic instructions. It shows two iterations of the compress loop from the beginning 
of the first iteration to the end of the second iteration. On the y-axis, the strength of 
data dependencies is measured. A low number indicates few hard-to-predict 
dependencies crossing a thread boundary defined by the dynamic instruction on the x-
axis. A high number indicates that the data crossing this dynamic instruction is 
shorter-lived and/or hard-to-predict. There are two valleys of interest in each iteration 
of the compress loop. The first is the beginning of the compress loop, and the second 
is a call to the output() procedure. This graph indicates that those two places make 
good thread partitions as far as data flow is concerned, while the work between these 
valleys is more closely related in data flow.   
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)LJXUH�����&RPSUHVV�G\QDPLF�GDWD�IORZ�DQDO\VLV�

 One way to partition this code is to thread the loop body. This approach is 
illustrated in Figure 4.     
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c = getchar();
       ….
       ….   = HQW
       ….
if (  … )  {
     HQW�= fcode(i)
      ...
}
     ….
nomatch:
     output();
       ….
       ….
     HQW� �F c = getchar();

       ….
       ….  =  HQW
       ….
if (  … )  {
     HQW�= fcode(i)
      ...
}
     ….
nomatch:
     output();
       ….
       ….
     HQW� �F

3UHGLFW�DQRWKHU

LWHUDWLRQ

3UHGLFW�HQW�YDOXH

WLPH

✔

✘

 

)LJXUH�����/RRS�WKUHDGLQJ�FRPSUHVV�

Control predictability is well satisfied because the loop consecutively iterates 
many times. Data predictability suffers because the HQW variable forms a hard-to-
predict, short iteration-carried dependency. This variable has the effect of 
sequentializing iterations. Also, thread size can vary considerably depending on intra-
thread control flow, and as a result, load balance suffers. Even with the limitations 
imposed by the HQW variable, some speedup is seen with this approach. The call to 
JHWFKDU() can be overlapped with the previous loop iteration.  

Another threading approach is to thread the loop body and the RXWSXW() procedure. 
This procedure has only easy-to-predict input dependencies, making it a good 
candidate for speculative multithreading.  Figure 5 shows the results of this approach. 
The data flow properties of this partitioning are much better than before, as the 
RXWSXW() procedure execution can be overlapped with the compress loop iteration. 
However, this approach introduces a control flow problem. The RXWSXW() procedure is 
not called every iteration of the compress loop. It is called approximately every 2-5 
iterations, but depends on the program input and can vary considerably. For this 
reason, it is difficult to predict the thread that follows the compress iteration thread. 
Sometimes another iteration thread follows, sometimes the RXWSXW() procedure. Load 
balance is also affected because the size of the RXWSXW() procedure does not match the 
size of the compress iteration thread.    
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(c = getchar()) {
       ….
       … =  HQW
       ….
if (  … )  {

(c = getchar()) {
       ….
       … =  HQW
       ….
if (  … )  {
     HQW�= fcode(i)
      ...
}

output()
{

...

}
...
HQW� �F

(c = getchar()) {
       ….
       … = HQW
       ….
if (  … )  {
     HQW�= fcode(i)
      ...
}

3UHGLFW�RXWSXW��

3UHGLFW�LWHUDWLRQ

3UHGLFW�RXWSXW��

✔
✔

✘

WLPH

 

)LJXUH�����7KUHDGLQJ�WKH�RXWSXW���SURFHGXUH�

 
 This example was presented to illustrate the delicate nature of the partitioning 

problem. Data predictability, control predictability, and load balance can often be 
traded against one another. Partitioning is a known NP-hard problem [19], and 
solutions are generally heuristic based. Partitioning a program dynamically is more 
difficult, as the run-time hardware does not have the benefit of compile-time 
information.   

�� &XUUHQW�DSSURDFKHV�

This section takes a detailed look at current approaches to dynamic partitioning in 
the context of the Atlas chip-multiprocessor.  

����� /RRSV�

Marcuello, Gonzalez, and Tubella present a microarchitecture that dynamically 
parallelizes loop iterations [14][23]. Stride based data value prediction is used to break 
iteration-carried true data dependencies. They report good performance for loop 
oriented numeric codes. Little benefit is seen in the irregular SPECint benchmarks. A 
loop threading experiment is run on the simulator for the Atlas chip-multiprocessor. 
The simulator is configured to recognize backwards taken branches. The target of 
these branches is marked as a thread entrance point. The control flow predictor then 
attempts to learn and repeat the program control flow as it jumps from loop target to 
loop target. In the case where the code spends large amounts of time in inner loops, 
this technique works very well. The simulator achieves excellent results on numeric 
codes, similar to the results found by others. However, the motivation for adding 
speculation techniques to a chip multiprocessor is to achieve performance on non-
numeric codes. Numeric codes can often be parallelized by the compiler, and this 
approach is preferred.  

Figure 6 shows the results of performing loop threading on SPECint95. The graph 
shows speedup on the y-axis (8 processors are used in all experiments). The bars 
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show the distribution of cycles for each benchmark. The black section is achieved 
speedup (perl achieves a speedup of 1.5, for example). The other shaded regions show 
where lost cycles are going, divided into five regions:  

• Losses due to control mispredicts (white region) 
• Losses due to load balance and coverage (lightly shaded region) 
• Losses due to data value mispredictions (darkly shaded region)   
• Losses due to non-speculative data cache misses and speculative write buffer 

full stalls (vertically graded) 
• Losses due to thread startup and retirement overhead (horizontally graded)  

     
The data in this and subsequent similar graphs is calculated as follows. First, the 

simulator is set for perfect control prediction, perfect value prediction, perfect caches, 
and zero overhead. The only source of performance loss in this case is load balance 
and coverage. The difference between peak speedup (8), and the results of ideal 
simulation give the fraction of execution bandwidth lost to load balance and coverage. 
Similar simulations are run with the various penalties selectively enabled, allowing 
for a measurement of execution bandwidth lost. Finally, a simulation is run without 
any ideal assumptions. This gives the actual performance. All results are presented as 
speedup, calculated as the execution time of 8 processors over the execution time of 1 
processor. Speedup is shown, rather than IPC, because this research assumes a single-
chip multiprocessor and then addresses techniques to improve performance on non-
numeric programs. There is a strong belief that a multiprocessor is a solid candidate 
for future microprocessors, even without the techniques presented here [7][16]. 
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 Loop threads do not perform well in SPECint95. It is notable that the results 
presented here are better than those achieved by others doing loop threads on these 
benchmarks. This is due to the more aggressive correlated value predictor, and the 
fine-grained recovery mechanisms of the Atlas processor. From these results, it is 
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clear that load balance and coverage account for the majority of lost cycles. This 
should be expected because the SPECint applications are not loop intensive. The 
exceptions are ijpeg, m88ksim, and (to a lesser extent) vortex, which display some 
looping behavior. Even in ijpeg, however, many important loops iterate only 8 times 
and contain restrictive hard-to-predict data dependencies.  

Table 2 summarizes simulator results for the loop threading experiments. The ’avg. 
size’ is the average size in dynamic instructions of all the threads in the benchmark. 
’Done Speculatively’ is the fraction of work performed on speculative processors. 
Control and data miss rates are the average misprediction rates over all threads in the 
benchmark. 

 
Benchmark Speedup  Avg. Size Done 

Speculatively 
Control 
Miss rate 

Data  
Miss rate 

perl 1.49 37 0.374 0.065 0.306 
compress 1.47 109 0.392 0.258 0.267 

ijpeg 2.59 61 0.672 0.101 0.247 
m88ksim 3.01 49 0.718 0.055 0.066 

cc1 1.43 124 0.332 0.245 0.282 
li 1.54 101 0.383 0.143 0.253 

go 1.44 86 0.346 0.268 0.326 
vortex 2.21 198 0.489 0.058 0.128 

average 1.90 96 0.463 0.149 0.234 

7DEOH�����/RRS�WKUHDGV�VXPPDU\�

����� 3URFHGXUH�WKUHDGV�

Another approach to dynamic thread partitioning is to target procedure calls. The 
idea is to execute procedure calls in parallel with the code that follows the procedure. 
This offers a nice solution to control predictability, because very often the procedure 
will return to the calling site. In addition, data flow is often favorable around 
procedures. Many procedures return only an error condition that is easily predictable. 
The Dynamic MultiThreaded processor (DMT) achieves most of its performance gain 
from dynamically forking procedure threads [2]. The Atlas simulator was modified to 
automatically fork the code following a procedure call and execute it speculatively in 
parallel with the procedure.  
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As can be seen from the results in Figure 7, the main drawback of this approach is 
again load balance and coverage. Calling patterns vary widely between programs. For 
example, if a program spends most of its execution time in a large loop without 
calling procedures, no benefit of procedure threads will be seen. The fact that 
procedures return to the calling site is also no guarantee of perfect control prediction. 
To achieve perfect control flow prediction, the machine must be able to speculate 
control eight levels deep. In the case of procedure threads, this means guessing the 
next eight procedures to be called.  

An important aspect of procedure threads is their ability to expose very large, 
control predictable threads. The average thread size in SPECint95 is over 570 
instructions, with a control mispredict rate of only 11%. This aspect of procedure 
threads can be very useful in architectures that benefit from deep lookahead 
execution. For example, deep thread lookahead could be used in an aggressive data 
prefetching implementation. 

Large threads can increase the chances of a data value mispredict, often meaning 
that large amounts of work will be discarded. On average, however, this approach is 
more profitable than loop threading for SPECint95. Table 3 summarizes simulator 
data on procedure threads. 

 
Benchmark Speedup  Avg. Size Done 

Speculatively 
Control 
Miss rate 

Data  
Miss rate 

perl 1.75 475 0.503 0.028 0.155 
compress 1.36 549 0.362 0.221 0.329 

ijpeg 1.27 981 0.264 0.023 0.260 
m88ksim 3.05 1305 0.698 0.013 0.025 

cc1 1.86 167 0.513 0.150 0.283 
li 2.28 532 0.634 0.150 0.155 

go 1.44 280 0.337 0.255 0.347 
Vortex 2.52 276 0.617 0.038 0.142 

Average 1.94 571 0.491 0.110 0.212 

7DEOH�����3URFHGXUH�WKUHDGV�VXPPDU\�
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����� )L[HG�LQWHUYDO�WKUHDGV�

The thread policies considered so far suffer severe problems due to load balance 
and coverage. The next threading technique considered is an idealization of that used 
by the trace processor [18]. The idea is to use fixed instruction length intervals of the 
dynamic instruction stream. The trace processor partitions threads on trace cache line 
boundaries. In an ideal trace cache, each line is full with valid instructions. However, 
this is not possible due to microarchitectural restrictions, such as a maximum number 
of branches per line. An ideal fixed interval partitioning policy achieves a perfect load 
balance, but makes no attempt to address data flow or control flow issues.   

Figure 8 shows results of simulating fixed length (16 instruction) threads on the 
Atlas multiprocessor. Simulations were also run with longer and shorter length 
threads. Only the 16 instruction length thread results are presented, because this 
length achieves the best performance. The tradeoffs involved in thread sizing will be 
discussed in Section 6.2. As anticipated, this approach does a much better job with 
load balance – nothing was lost to load balance and coverage in all cases. Notice that 
the fraction of peak speedup lost to startup/retirement is roughly the same for every 
benchmark. This is the amount lost due to the overhead of processing the relatively 
short threads. Every processor has a minimum four cycle pipeline startup latency that 
is the principle contributor here, as very small threads are not able to amortize this 
cost. Slight variations in the startup/retirement amount between benchmarks are due 
to the different number of value predictions being updated, and the amount of state 
that needs to be committed to the L2 cache at thread retirement. 
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Fixed interval threads stand to gain from better value prediction. This is important 

because value predictors will improve as researchers develop a deeper understanding 
of the phenomena. Overall, the fixed interval policy provides better performance than 
loop or procedure threads. Fractions of the execution bandwidth are lost due to all 
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penalty aspects, but, a significant portion is not lost to any one area. Table 4 
summarizes data for fixed interval threads. 

 
Benchmark Speedup  Avg. 

Size 
Done 
Speculatively 

Control 
Miss rate 

Data  
Miss rate 

perl 3.41 16 0.824 0.050 0.251 
compress 2.38 16 0.713 0.122 0.331 

ijpeg 1.96 16 0.648 0.185 0.364 
m88ksim 4.17 16 0.835 0.031 0.070 

cc1 1.30 16 0.391 0.274 0.396 
li 3.12 16 0.811 0.085 0.342 

go 1.36 16 0.482 0.346 0.477 
vortex 2.74 16 0.736 0.062 0.281 

average 2.55 16 0.680 0.144 0.314 

7DEOH�����)L[HG�LQWHUYDO�WKUHDG�VXPPDU\�

�� 0(0�VOLFLQJ�DOJRULWKP��

A new algorithm has been developed that improves upon current dynamic 
partitioning algorithms. The algorithm works as follows. Upon starting a thread, the 
processor first skips a fixed number of dynamic instructions, designated the VNLS�
GLVWDQFH. This insures that all threads are at least a minimum length, avoiding very 
small threads. Next, dynamic execution continues while the processor searches for an 
appropriate place to begin the next thread. The instruction chosen is called the VOLFH�
LQVWUXFWLRQ. Upon finding a suitable instruction, execution stops at the instruction just 
before the slice instruction. If a suitable slice instruction is not found, the thread is cut 
off at some PD[LPXP�OHQJWK.  

This process is illustrated in Figure 9. The three defining variables of the approach 
are the skip distance, the slice instruction, and the maximum thread length. Finding 
good solutions for these three variables is the subject of following sections. The goal 
is to find load balanced, data and control predictable threads by tuning these three 
parameters. 

Skip Distance

Thread Entrance

Maximum
thread size

Search for
suitable slice

instruction

Slice
Immediately  

)LJXUH�����6NLS�VHDUFK�VOLFH�DOJRULWKP�
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In [4], a profiler was presented that collected data on the relative merits of every 
static instruction as a thread boundary. A large variability was found between 
different static instructions. Some make very good threads, while others make very 
poor threads. A central idea that emerged from the work is that certain instruction 
types are better than others for starting a thread boundary, and should be favored as 
the slice instruction.   
 Numerous experiments were conducted to determine the best instruction type to 
use as a slice instruction. Profiler data suggested that backwards branches and stores 
are the best for data predictability. However, section 5.1 showed that loops (as 
indicated by backward branches) do not make good threads because of load balance. 
Using backward branches and stores as the slice instruction leads to similar load 
balance problems. It was determined from experimentation that using memory 
instructions (all loads and stores) works well. Memory instructions are very common 
in integer programs. After the minimum skip distance has been executed, it is 
typically not long until a memory instruction is encountered. This has the nice effect 
of making all threads relatively the same size. Profiler data also indicated that 
memory instructions offer better thread data predictability than arithmetic or control 
instructions.   
 A possible explanation why memory instructions offer better thread data flow is 
that it is a side-effect of register allocation. In register allocation, the compiler strives 
to put data with short reuse distances into registers, and longer-lived variables into 
memory. It is desirable to have communication locality within the thread, and longer-
lived variables spanning threads. This is exactly the behavior that occurs when 
memory instructions begin and break threads.  

���� 6L]H�DQDO\VLV�

The previous section determined that memory instructions should be used as the 
slice instruction. The remaining variables in the partitioning algorithm are the skip 
distance and the maximum distance. When using memory instructions as the slice 
instruction, the maximum distance is not important, as a memory instruction is 
usually encountered soon after the minimum skip distance. The remaining interesting 
design variable is determining the skip distance.   

The MEM-slice algorithm was implemented in the Atlas chip multiprocessor 
simulator, and the skip distance was varied from 4 to 64. Results are seen in Figure 
10. The characteristic shape is that performance climbs as threads go from very small 
to around 16 instructions, and then performance drops off with larger threads. 
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Figure 11 examines the cause of this behavior. Very small threads are dominated 

by load balance and overhead problems. As threads become bigger, load balance and 
overhead issues become less important. Control flow is just the opposite. With small 
threads, it is easier to make control predictions than with large threads. As shown in 
the figure, these two forces oppose each other. Optimal performance comes in the 
middle (the apex of the “achieved” triangle). 
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Figure 12 and Table 5 show results of the MEM-slice algorithm with a skip 
distance of 16. The next section compares all previous dynamic partitioning policies 
and the new MEM-slice policy. 

 
Benchmark Speedup Avg. 

Size 
Done 
Speculatively 

Control 
Miss rate 

Data  
Miss rate 

perl 3.85 21 0.836 0.044 0.186 
compress 3.02 19 0.766 0.108 0.170 

ijpeg 3.27 33 0.776 0.076 0.257 
m88ksim 5.29 20 0.869 0.020 0.029 

cc1 2.59 19 0.732 0.124 0.287 
li 3.68 18 0.828 0.069 0.197 

go 1.96 19 0.623 0.225 0.339 
vortex 3.64 18 0.798 0.035 0.141 

average 3.41 21 0.779 0.088 0.201 

7DEOH�����0(0�VOLFH��VNLS�����VXPPDU\�

���� &RPSDUDWLYH�5HVXOWV�

Figure 13 compares dynamic partitioning algorithms, showing data arithmetically 
averaged over all benchmarks. The surprising result is that the primary benefit of the 
MEM-slicing algorithm is a significant reduction in control mispredicts – not data 
mispredicts as was expected. Data flow and control flow are intricately linked in may 
complex ways. Results suggest that slicing at memory operations provides better 
thread data flow. It is postulated that this result is a byproduct of complex analysis 
already being performed by the compiler’s register allocator. Given that memory 
operations provide better thread data flow, it is reasonable that memory operations 
should also provide better thread control flow.   
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In the Atlas architecture, control predictability is more important than data 
predictability. If a thread is control mispredicted, all speculative work after the 
misprediction is discarded. When a value is mispredicted, the thread provides fine-
grained recovery so only affected instructions need reexecute. Other, more deeply 
speculated threads are not squashed. Often, more future threads complete correctly in 
the presence of a less speculative data value misprediction.  

Interestingly, the analysis in [4] intended to find solutions for data flow and ended 
up with a solution for control flow.   

�

�

�

�

�

�

�

�

�

0HP��� IL[HG��� DIWHUFDOO ORRSV

6

S

H

H

G

X

S

Start &
Retire

D-cache &
Write Buff

VP miss (D
stall)

Load
Balance &
Coverage

Control
miss

Achieved

 

)LJXUH�����&RPSDULVRQ�RI�G\QDPLF�SDUWLWLRQLQJ�DOJRULWKPV�

 
 The important lesson learned is that the weakest aspect of a partitioning algorithm 
limits performance. For example, procedure threads have excellent control and data 
predictability. But load balance is poor, and as a results overall performance is poor. 

The experiments also suggest that load balance and control flow are more 
important than data flow, especially with fine-grained data value misspeculation 
recovery. Of the current dynamic partitioning algorithms studied, fixed intervals 
perform the best. Load balance is completely solved, while data and control flow can 
be managed by keeping the threads small. The MEM-slice algorithm improves on 
fixed interval partitioning by improving control predictability. 
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Speculative multithreading is emerging as a promising technique to extract 
parallelism from non-numeric applications. A critical problem that must be addressed 
is how to partition the program into threads. Partitioning dynamically allows for 
parallel execution of “dusty-deck” binaries. 

This paper provides a quantitative comparison of existing dynamic partitioning 
algorithms in the context of a fixed microarchitecture. Two current approaches are to 
partition loops and procedures. While these approaches both provide good control and 
data predictability, they suffer severe load balance and coverage problems. The 
integer benchmarks are not loop oriented, and calling patterns and procedure sizes 
vary significantly between and within benchmarks. Over half the execution bandwidth 
is lost to load balance and coverage when doing procedure and loop threading.  

Fixed interval partitioning eliminates load balance and coverage problems, as all 
threads are exactly the same size over the entire program. However, this approach 
suffers greater control and data penalties.   

A new dynamic partitioning algorithm, called MEM-slicing, is introduced. This 
technique improves on fixed interval partitioning by being more selective about 
thread boundaries. By slicing threads only on memory operations, threads can be 
made larger and more predictable than fixed interval threads. This comes at a cost of 
load balance, but overall the performance of MEM-slicing greatly exceeds other 
dynamic partitioning algorithms (34-80% improvement).  

A fundamental tradeoff exists between overhead and predictability. As threads are 
made smaller, they become more predictable. This comes at the cost of increased 
overhead. Large threads reduce overhead costs, but increase penalties associated with 
data and control mispredicts. An optimal size exists somewhere between large and 
small threads. For the simulated Atlas chip-multiprocessor, 16-32 instruction long 
threads provide the best performance. 

 It is possible to expect good parallel performance from unmodified sequential 
binaries using aggressive speculation techniques. Current results suggest speedups of 
around 3 on 8 processors. These results will improve as partitioning and speculation 
techniques mature. 
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