
Compiler Generated Multithreading

to Alleviate Memory Latency

Kristof E. Beyls

(Dept. of Electronics and Information Systems

University of Ghent, Belgium

kbeyls@elis.rug.ac.be)

Erik H. D'Hollander

(Dept. of Electronics and Information Systems

University of Ghent, Belgium

dhollander@elis.rug.ac.be)

Abstract: Since the era of vector and pipelined computing, the computational speed
is limited by the memory access time. Faster caches and more cache levels are used to
bridge the growing gap between the memory and processor speeds. With the advent of
multithreaded processors, it becomes feasible to concurrently fetch data and compute in
two cooperating threads. A technique is presented to generate these threads at compile
time, taking into account the characteristics of both the program and the underlying
architecture. The results have been evaluated for an explicitly parallel processor. With a
number of common programs the data-fetch thread allows to continue the computation
without cache miss stalls.

Key Words: data locality, multithreading, run-time data relocation, compiler opti-
mization, cache optimization, prefetching, tiling

1 Introduction

The well known Von Neumann bottleneck has hampered the unbridled develop-

ment of shared memory multiprocessors. New parallel programming paradigms,

architectures and interconnection networks with huge bandwidth have increased

the computing power, but the memory latency remains the limiting factor of the

computation. Whereas the processor performance increases by about 60%/year,

the memory performance increases only by about 7%, leading to a relative per-

formance drop of 2 every 21 months. In the beginning, a single cache level suÆced

to dampen the e�ect of slow memory access, but the widening gap has led to

a hierarchy of caches. This cache hierarchy limits the damage, but clearly the

memory latency is important when cache misses occur. It is not uncommon that

a processor stalls for memory accesses more often than doing useful computa-

tions. With more data-hungry superscalar and multithreaded processors, this

trend is not likely to change.

To tighten the processor-memory gap, several hardware and software tech-

niques have been proposed to use the cache hierarchy more e�ectively and to

Journal of Universal Computer Science, vol. 6, no. 10 (2000), 968-993
submitted: 1/4/00, accepted: 13/9/00, appeared: 28/10/00 Springer Pub. Co.

hide the memory latency:

1. Software techniques which reorder the program loop structure in order to

promote data locality and reuse, such as loop permutation, reversal, fusion,

distribution[McKinley et al.1996] and tiling[Lam et al.1991].

2. Software and hardware techniques which improve the usage of the limited

cache capacity, such as skewed-associative caches[Seznec et al.1993], victim

caches[Jouppi1990], array padding[Rivera et al.1998], data copying at run-

time[Temam et al.1993], : : : .

3. Techniques to hide the latency of inevitable cache misses with useful com-

putations such as prefetching[Baer et al., Mowry et al.1992], multithread-

ing[Weber et al.1989, Alverson et al.1995, Mowry et al.1998], non-blocking

caches, dynamic instruction scheduling, : : : .

Modern processor architectures expose the cache to the software by intro-

ducing prefetch instructions and cache hints in their instruction sets. It allows

the programmer to assist the cache hardware in making decisions about what

and when to cache. In this paper, these cache instructions are used to implement

cache remapping, a new technique which optimizes cache behavior. Cache remap-

ping uses the multithreading capabilities of a processor to pipeline the memory

access and to improve cache usage. The �rst step is to create a separate data-

fetch thread,which continuously fetches the data needed in future computations.

The second step is to store the data in a free area of the cache The third step is

to use the fetched data in the new calculations. A well balanced, multithreaded

program will experience only a few cache misses at start-up. For scienti�c loop

kernels, a compiler can automatically perform the necessary transformations to

implement this technique.

In the following section, a formal cache model is introduced to explain and

analyze the caching policy used in cache remapping. In [Section 3] the data

placement, thread-synchronization and architecture requirements necessary to

implement cache remapping are discussed. The compiler implementation is dis-

cussed in [Section 4]. In [Section 5] the performance of cache remapping is com-

pared with optimized non-threaded execution. Speedups using multithreading

yield signi�cant improvement over the best existing single-threaded version.

2 Modeling Cache and Locality

2.1 Cache Model

The cache is characterized by a 4-element tuple (Cs; Ns; k; Ls), cache size, num-

ber of sets, associativity and line size respectively[Ghosh1999]:

969Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

Set Ns-1

Set 1

Set 0

Number

of
Cache

Sets

(Ns)

Line size (Ls)

Associativity(k)

Cache Size Cs = k � Ls �Ns

Figure 1: Illustration of cache organization

The cache size (Cs) is the total number of data elements in the cache. The

line size (Ls) is the number of adjacent data elements fetched on a cache miss. A

memory line refers to a cache-line-sized block in the memory, aligned to a single

cache line. A cache set is a collection of cache lines which can hold a particular

memory line. Ns denotes the number of cache sets in a cache. Associativity (k)

refers to the number of cache lines in a cache set. These parameters are related

by the equation Cs = Ns � k � Ls.

Cache misses occur when an addressed memory line is not in the cache. Cache

misses can be categorized by the way cache lines are overwritten[Hill et al.1989]:

cold misses occur when data is referenced for the �rst time.

capacity misses occur when to many other references since the previous ref-

erence to the same data have occured. The cache is just to small to enable

the reuse.

conict misses result from the fact that in caches with a limited associativity,

data at a given address can only be stored in a limited number of cache lines.

If the miss wouldn't have occured in a fully associative cache of the same size

with the LRU replacement policy, it is a conict miss. By de�nition, conict

misses do not occur in fully-associative caches with LRU replacement.

The cache set N , holding the memory line starting at address A, is given by:

N =

�
A

Ls

�
mod Ns (1)

A replacement algorithm decides which line in set N is overwritten by mem-

ory line
j
A
Ls

k
.

970 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

2.2 Caching Policy

A caching policy is a mechanism for processing the memory reference string

! = r1; r2; : : : ; rt; : : : resulting from a program execution[Co�man et al.1973].

Let Adr(ri : : : rj) be the set of di�erent data addresses accessed by references

ri : : : rj . The caching policy implemented by cache remapping is as follows:

{ First, the reference string ! is partitioned into subsequences P!
1
P!
2
: : : such

that each partition can be stored in one-half of the available data cache size

Cs:
Cs

2
� jAdr(P!

i)j (2)

{ With every trace partition P!
i a code fragment C!

i is associated. Initially the

data for partition P!
0
is fetched into the cache. Next in phase i concurrently

the data for partition P!
i+1 is prefetched and the code C!

i is executed. Due

to cache remapping, prefetching and execution operate on di�erent regions

in the cache.

The partitioning of the reference string implicitly implies a partitioning of

the program into code blocks. This requires a program analysis and transforma-

tion as well as a multithreaded execution kernel. The program transformation

and compiler implementation will be further discussed in [Section 4]. The imple-

mentation of software-directed caching policies in general and the above caching

policy in particular are further discussed in detail in [Section 3].

2.3 Prefetch Cost

In order to achieve a smooth and continuous execution after the initial prefetch of

the �rst partition, the computation time, CT , should always exceed the prefetch

time, FT , so

CT (P!
i) � FT (Adr(P!

i+1)):

To satisfy this condition, it is important to reuse the data of a code block

as much as possible by a suitable restructuring of the computations. In the next

subsection, the importance of reuse is derived theoretically from the cost function

of the caching algorithm. After that, an example is given where the restructuring

of the program leads to improved performance by increasing the reuse.

2.3.1 Cost Function and Reuse Factor

The goal of a caching algorithm is to minimize the time needed to process a

certain reference string !. The cost function indicates how many cache misses

the program with reference string ! experiences, given a certain caching policy.

971Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

The cache misses/memory-cache data transfers that do not hinder the execution

of the program, e.g. when prefetching, are not added up to the cost function.

FT (Adr(P!
i)) denotes the time needed to fetch the unique data elements ref-

erenced in P!
i into the cache. CT (P!

i) gives the time needed to execute C!
i ,

the code block associated with P!
i . The cost function for the cache remapping

caching policy is:

C(!;Cs) = FT (Adr(P!
0
))

+
X
P!
i

max
�
0; FT

�
Adr(P!

i+1)
�
� CT (P!

i)
�

The �rst term indicates the time needed to fetch the data used in the �rst

trace partition, which is not overlapped by useful computation. The last term

is the summation of all trace partition fetching not overlapped with useful com-

putations. The cost can be reduced by minimizing FT (Adr(P!
i+1)) � CT (P!

i).

Reusing the same data in as many useful computations as possible leads to an

increased P!
i with a constant Adr(P!

i+1). So, increasing the reuse factor, de�ned

as the average number of accesses to the same element in a partition, decreases

the cost.

2.3.2 Reuse-Enhancing Program Transformation

The above caching policy could in principle be applied to any program. However,

to make the code partitioning implementable in a compiler, we focus on loops

kernels, which typically account for most execution time in scienti�c code.

Most program transformation theory is focused on array-based normalized

perfect loop nests with aÆne array index expressions and aÆne loop boundaries.

In this section, we build on this theory to maximize the reuse factor inside a trace

partition. First, a couple of de�nitions about array-based perfect loop nests are

given.

The iteration space[Irigoin et al.1988] of an n-deep loop nest is a polytope in

Zn bounded by the loop boundaries. Every point in the iteration space represents

the execution of a single iteration. The iteration space can be plotted in an

iteration space graph, as can be seen in [Fig. 2]. The loop nest dictates in which

order the program traverses the iteration space.

Reuse vectors[Mowry1994] indicate the reuse of data between iterations. Only

temporal reuse vectors are considered here. A temporal reuse vector is the iter-

ation space distance between the use and the reuse of the same data element. In

[Fig. 2] for example, the temporal reuse vectors are (0; 1) and (1; 0).

Reuse vectors de�ne a distance in the iterations space, but here the distance

of reuse in the reference string ! is more interesting. If to much data is accessed

(and cached) in between the use and the reuse of a word, the cache cannot

972 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

DO i=1,N

DO j=1,N

A(i,j) = A(i-1,j) + A(i,j-1)

(a) The 2-deep loop nest

i

j

(b) The iteration space

traversal de�ned by the
loop nest.

Traversal Order

Temporal Reuse Vector

Partition Boundary

i

j

(c) The reordered iteration space traversal, resulting

in 58% more computations per partition.

Figure 2: An example of a 2-deep loop nest, together with the original iteration

space traversal and the iteration space traversal with improved reuse character-

istics. The iterations that are executed in the same partition are surrounded by

a dotted box. The reordered iteration space traversal results in shortening the

fetch time with 58% relative to the computation thread.

retain that word until it is reused. The reuse vectors don't immediately give the

number of intervening references between the use and the reuse of a memory

word. Therefore, the reference distance[Pyo et al.1997] of an element of ! is

introduced, which is the number of references since the last use of the same data

element.

The goal of reordering the iteration execution is to produce a modi�ed

reference string ! with shorter reference distances, enabling more reuse in-

side a trace partition. It increases the reuse factor because of the equation

jAdr(P!
i)j+#reuses in P!

i = jP!
i j.

To increase reuse inside a partition, the iterations which are linked together

by reuse vectors should be executed in the same partition as much as possible. To

973Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

Figure 3: The distribution of reference distances of the matrix multiplication

(N = 256) before and after tiling (tile size=20). From the graph, it is clear

that tiling has shortened the reference distances; references with distance 211

have distance 27 and references with distance 218 have distance 211 after tiling.

A closer look at the graph of the tiled execution reveals a small number of

references at distance 215; 219 and 223. These result from the reuse of data in

between di�erent trace partitions.

achieve this, the following heuristic to traverse the iteration space of the example

in [Fig. 2] is used. First, the �rst point in the iteration space is executed. Next,

the iteration point with the most reuse from previously executed iteration points

within the current trace partition is executed. This is repeated until the complete

iteration space has been traversed.

If this algorithm is applied to the example in [Fig. 2(a)], with Cs = 128, the

iteration space traversal in [Fig. 2(c)] is obtained. In the original traversal order,

30 reuse vectors are captured inside a partition. In the optimized traversal, 84

reuse vectors are inside a partition. Because of the increased reuse, 49 consecutive

iterations access 63(� Cs

2
) di�erent data elements, the same amount of data as

31 iterations in the original order. As a result, the total number of partitions

needed to execute the complete loop nest is only 31

49
= 63% of the number of

partitions in the original traversal. The reuse factor is increased by 58%.

If the traversal order of the iteration points inside a partition permutes, the

reuse factor doesn't change because Adr(P!
i) and jP

!
i j still have the same value.

When the iterations inside a trace partition are traversed in lexicographical

order, the same traversal as resulting from loop tiling[Wolf et al.1991] is found.

In [Section 4], it is shown how loop tiling and cache remapping can be combined

to optimize loop kernels automatically in a compiler. As a last example of how

974 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

tiling can shorten the reference distance, [Fig. 3] shows the reference distances

found when executing the matrix multiplication kernel both before and after

tiling. It is clear from this �gure that tiling shortens the long reference distances

and enables a higher reuse factor.

3 Multithreaded Cache Remapping

Instead of bringing the data in the cache by doing a conventional load or prefetch

and letting the hardware decide where the data will be stored in the cache,

cache remapping uses the advanced possibilities of new semantics of memory

instructions. These new instructions indirectly allow the software to control the

data placement in the cache.

Normally, the cache hardware decides which cache location the data will

be stored into, depending on the address of the data and the past references.

The software directed data placement allows the programmer or the compiler to

control the cache location used, leading to new possibilities for optimizations.

3.1 Computation and Communication Threads

The work done by the processor while executing the program is partitioned into

two threads as follows:

1. the computation thread, which performs all the computational work in the

program;

2. the data-fetch thread which ensures that the computation thread does not

experience cache misses.

The data-fetch thread remaps data elements to new addresses, corresponding

to a free area in the cache. Consequently, the addresses of the memory references

in the computations must also be altered. Since this is done at compile time, no

run time overhead is incurred. After the data is fetched into the cache, the com-

putation thread performs the calculations without main memory latency. Finally,

the data-fetch thread copies the changed data back to the original locations in

main memory.

Parallel operation is obtained by executing the computation and data-fetch

threads in a pipelined fashion (see [Fig. 4]). The data relocation allows to take

advantage of the full potential of the cache by �lling the cache lines completely

and eliminating cache conicts by ensuring that data elements are never placed

in the same cache location at the same time. The reduction in conict miss stall

time signi�cantly improves the execution speeds, provided the execution time

of the data-fetch thread is smaller than the execution time of the computation

thread.

975Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

synchronization

������
����
����������������

�� ��
�
�
�
�
������
��
��
��

����

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
���

time

data fetch thread: brings data in the cache

data fetch thread: copies data back to main memory
computing thread: processes data

Figure 4: The data is pipelined through the data-fetch thread, the computing

thread, and the data-fetch thread again. First, the data-fetch thread places it in

the cache. Then the computing thread processes the data. Finally, the data-fetch

thread copies the changed data back to main memory.

3.2 Data Prefetch and Remapping

3.2.1 Cache Shadow

Even with instruction sets equipped with prefetching instructions and cache

hints, the cache cannot be addressed explicitly. However, cache hints can be

used to bypass the cache. In order to fully control the data cache, a free main

memory region is reserved and maps one-to-one on the cache memory. This free

region is called the cache shadow (see [Fig. 5]).

The cache remapped code uses the cache shadow as follows:

1. the computation thread operates only on data in the cache shadow;

2. the communication thread moves data between the program data area and

the cache shadow;

3. no other memory references address the cache.

Only the communication thread accesses data outside the cache shadow.

These data accesses bypass the cache, so they can't remove data already present

in the cache. Only data inside the cache shadow is allowed to enter the cache.

As a consequence there are no conicts inside the cache shadow and its contents

cannot be evicted from the cache.

The cache shadow can now be used as a very fast local memory. To place data

in the cache, it must be copied to an address in the cache shadow. Because it

cannot be evicted, the data remains in the cache until it is explicitly overwritten

with some other data.

976 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

Computing Thread

Data-Fetch Thread

1

2

3

4

Data

Cache
Shadow

Address Space

ProcessorCache

Figure 5: The computing thread only accesses addresses in the cache shadow(1).

Since the cache shadow is located in the cache, all references are cache hits. The

data-fetch thread is responsible for timely copying the data needed by the com-

puting thread into the cache shadow. Cache hints allow the data-fetch thread to

access addresses outside the cache shadow without bringing them in the cache(2).

Once the requested data is in a register, it can be put in the cache by writing it

to an address in the cache shadow(3). Since the cache is write-back, operations

on the cache shadow are not mirrored on the bus(4).

3.2.2 Data Placement

Cache hints, emerging in new instruction set architectures[IA64 ADAG1999,

Kane1996, Kathail et al.2000], are used to control whether load/store instruc-

tions cache data or not. The computing thread �nds all its data in the cache.

The load/store instructions in this thread can have the normal semantics: bring

the data in the register and at the same time move the data into the fastest cache

level. Because the data is already in the fastest cache level, there will be no data

movement in the memory hierarchy besides movements between registers and

L1 cache.

The data-fetch thread loads data bypassing the cache using a cache hint, and

stores it into the cache shadow, i.e. the fastest cache level (see [Fig. 5]). The load

must have di�erent semantics: bring the requested data into a register, but do

not move the data into a faster cache level. Cache hints change the semantics of

a load instruction to have exactly this meaning. The relocation of a single data

element is performed by a code sequence such as the following, using PlayDoh-

instructions [Kathail et al.2000]:

move_into_cache_at_address(int* data_address, int* cache_address)

{

977Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

LD_C3_C3 data_address, Rx ; load into Rx, bypassing cache

ST_C1 Rx, cache_address ; store Rx into cache

}

LD_C3_C3 loads the value at address data_address into register Rx. The �rst

cache hint (C3) tells the scheduler that it must assume that the data will be found

in cache level 3. The second cache hint (C3) states that the loaded data must

not be moved closer than cache level 3 (which is the main memory on a system

with a 2-level cache). Cache hint C1 in the store instruction tells the processor

that the data should be stored in the L1 cache.

3.2.3 Shadow Memory Partitioning

The computing thread only references addresses in the cache shadow and always

hits the cache. The data-fetch thread is responsible for copying variables needed

for the computation into the cache shadow.

To avoid conicts and to facilitate the synchronization between the threads,

the cache is partitioned into three parts, P1; P2 and P3 (see [Fig. 6]). P1 is used to

store data that is used and reused throughout the complete program part under

consideration, such as constants, induction variables, etc. This data is copied

into P1 at start-up. During the execution of the program, only the computing

thread accesses P1.

The partitions P2 and P3 are used alternatively by the computation and

communication thread, e.g. while the computation thread uses the data in P2,

the communication thread stores new data into P3.

As can be seen in [Fig. 4] a kind of pipelined double bu�ering is applied. The

data-fetch thread loads and relocates data for the computing thread into either

cache partition P2 or P3. After a block of data is copied in the cache, a syn-

chronization follows. After the synchronization, the threads use the other cache

partition. Assume the data-fetch thread accesses P2 and the computing thread

accesses P3. After the next synchronization, the computing thread accesses P2
and the data-fetch thread accesses P3. After the synchronization, the computing

thread starts processing the data brought into P2 before the synchronization.

The data-fetch thread concurrently frees P3 by copying the changed values back

to their original place in main memory. After the partition is freed, the next

block of data is read.

3.3 Synchronization and Alias Resolution

Synchronization between the threads is needed when the computing thread has

�nished processing all data in its cache partition. Assume that the computing

thread was processing the data in P2. During the processing of the data in P2

978 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

��������������
��������������
��������������
��������������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

cached data
permanently

processed data
currently

currently
fetched data

Thread
Computing Data-fetch

Thread

�����
�����
�����
�����

���
���
���
���

��
��
��
��m

ai
n

m
em

or
y

ca
ch

e
pr

oc
es

so
r

P3

P2

P1

Figure 6: The data-fetch thread puts the next to be used data in one cache

partition (P3) while the computing thread processes the previously cache relo-

cated data, present in P2. After the next synchronization, the computing and

the data-fetch thread will access P3 and P2 respectively.

no synchronization is needed because the computing thread only accesses data

in P2 and P1 (both in the cache) and the data-fetch thread only accesses data

in P3 and the main memory.

Once the computing thread �nishes processing the data in P2, it must start

using the next data, placed in P3 by the data-fetch thread. After the synchro-

nization, the data-fetch thread uses P2 to place the next data in, while the

computing thread uses P3.

An aliasing problem arises when data dependencies between the computation

and the communication thread are not respected. It is possible that the same

data object is needed for computations now, and after the next synchronization.

As it is needed now, it will be located in the computing cache partition. As it

is needed after the next synchronization, the communication thread will fetch

979Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

main memory

x=5

Cache Processor

x=5

x=10

data fetch thread

computing thread1

3

2

P3

P2

Figure 7: An example of the aliasing problem. The object x is currently being

processed by the computing thread(1), which assigns it the value 10 (the old

value was 5). At the same time (2) the data-fetch thread copies the old value (5)

of object x in the other cache partition because the computing thread will use

that object after the next synchronization. After synchronization, the computing

thread will use (3) x and read the old and incorrect value 5, instead of the correct

value 10.

it from main memory to bring it in the communication partition. However, if

the computing thread changes the value of the data object, the communication

thread reads the value from main memory before it has been updated and a

WAR hazard occurs. An incorrect execution caused by not respecting the data

dependency is illustrated in [Fig. 7].

To resolve this problem, the WAR hazards that have occured during the

parallel execution of both threads are undone by copying the newest value for

the data object from the computation partition to the communication partition

during the synchronization phase. This doesn't incur to much overhead, as it is

a copy operation from one cache location to another cache location. This time

is small in comparison to the fetch time from main memory.

3.4 Architectural Requirements

The underlying architecture should have the following characteristics to allow a

fast implementation of the proposed multithreading technique:

1. the processor provides the possibility to load data from main memory with-

out bringing it into the cache, e.g. using cache hints,

2. multiple instructions can execute concurrently, e.g. a superscalar processor,

3. the processor does not stall on a cache miss, as long as independent instruc-

tions are available,

980 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

4. synchronization between threads is possible.

To our knowledge, no commercially available processor satis�es all above

requirements. Some superscalar processors satisfy the �rst 2 conditions, but the

third one is not met.

At �rst sight, it seems that out-of-order processors can continue executing

independent instructions during a cache miss. However, they stall on main mem-

ory access[Pai et al.1999, Mowry et al.1998]. On current systems, a main mem-

ory access typically takes between 50 and 100 cycles. A current microproces-

sor is typically able to execute 4 instructions per cycle. To bridge the main

memory access with useful computations, at least 50 � 4 = 200 independent

instructions must follow the cache-missing instruction. The reservation stations

in current processors can contain at most about 80 instructions. This results

in a processor executing a maximum of about 80 independent instructions af-

ter the cache-missing instruction. When all these instructions are executed, the

processor cannot get new instructions in the reservation station before the cache-

missing instruction is completed because instructions must leave the reservation

station in-order after �nishing execution. When the processor can't �nd any

more executable instructions in the reservation station, it stalls and waits until

the requested data returns from main memory. In general, this limit is not a

real problem, because only in a limited number of programs, 200 independent

instructions following the memory access can be found. In this case, the limited

instruction level parallelism would not allow faster execution with larger reserva-

tion stations. However, with cache remapping, when the communication thread

accesses main memory, plenty of parallel instructions ready to execute can be

found in the computation thread. To completely overlap the data fetch time,

the computation thread must be able to continue computation on main memory

access.

In a simultaneous multithreaded processor[Kwak et al.1999, Farcy et al.1996,

Tsai et al.1999, Loikkanen et al.1996, Tullsen et al.1995] this problem does not

arise since the cache-missing instructions reside in the data-fetch thread and the

independent instructions reside in the computing thread. In multithreaded pro-

cessors, instructions can leave the reservation station as soon as their execution

is �nished and all previous instructions in the same thread have �nished. The

computing thread can continue to fully use the computational resources of the

processor while the data-fetch thread is waiting for the values returned from the

main memory.

A processor allowing multiple non-blocking outstanding memory requests,

and which is equipped with a pipelined memory subsystem, such as the Tera

MTA memory system[Carter et al.1999], the execution time of the fetch thread

can further be minimized by pipelining the data fetching.

981Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

4 Compiler Generated Data Fetch Thread

In the previous sections the framework of pipelined data-fetch and execution

phases was laid out. In order to allow continuous computations, the data fetch

phase should take less time than the parallel executing computation phase. This

requires that the reuse and the locality of the data is optimized with respect to

the limited cache footprints P2 and P3. Here one can use the results of a fertile

area of data locality research, i.e. loop tiling.

4.1 Data Locality Transformation

Tiling is a well-known data locality improving transformation for array-based

loop nests. It improves data locality by shortening the distances between consec-

utive reuses of array elements. It enables performing more useful computations in

a smaller cache footprint. This is achieved by the following loop transformation.

De�nition. Tiling[Wolf et al.1991] transforms an n-deep loop nest into a 2n-

deep loop nest. The tiled loops in the resulting loop nest are the n inner loops.

The tiling loops are the n outermost loops. A loop nest will be denoted by L. The

tiled and the tiling loops for L are Td(L) and Ti(L) respectively. An iteration tile

is the iteration space traversed by Td(L). The part of an array that is referenced

during the execution of an iteration tile is a data tile. A tile set is the union of

the data tiles of all the arrays accessed during an iteration tile execution. Tiling

is legal when the loop nest is fully permutable.

The loop nest performing a matrix multiplication and the corresponding tiled

loop nest is given in [Fig. 8].

Tiling eliminates many capacity misses, by making the long reference dis-

tances shorter. However, the low associativity of a cache may lead to a high

number of conict misses and slow down execution such that only a fraction

of the attainable performance is obtained. Additional �ne tuning of the tiling

transformation is needed to reduce the conict misses.

Cache remapping will eliminate the conict misses by choosing a proper data

placement in the cache. The tiling increases the reuse factor so that the cache

remapping caching policy can work eÆciently. The partitioning of the program

is done as follows. Every execution of the tiled loops is mapped to one code

partition. To make sure that condition (2) is satis�ed, the tile sizes will be

adapted.

4.2 Compiler Implementation

Pro�tability Analysis

The decision to apply the transformation to a loop nest can be made based on a

prediction of the number and the kind of cache misses in the nest. The compile-

982 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

do i=1,N,1
 do j=1,N,1
 do k=1,N,1
 C(i,j) = C(i,j) + A(i,k) * B(k,j)

(a) Original matrix multiplication

 do JJ = 1,N,Bj
do II = 1,N,Bi

 do i = II,min(II+Bi-1,N),1
 do j = JJ,min(JJ+Bj-1,N),1
 do k = KK,min(KK+Bk-1,N),1

 do KK = 1,N,Bk

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

L

Ti(L)

Td(L)

(b) Tiled matrix multiplication

Figure 8: Tiling applied to the matrix multiplication

time analysis of a loop nest's cache behavior has been described in [Ghosh1999,

Harper et al.1999].

If the analysis predicts a lot of conict misses, the threading transformation

can improve execution speed. The �rst step is to tile the loop nest. Tiling a loop

nest is simple, the transformation is described in [Section 4.1]. However, tiling

should preserve the data dependencies of the original loop [Wolf1992].

Special Alias Resolution

To reduce the overhead of alias resolution during synchronization, described in

[Section 3.3], the compiler techniques developed for scheduling independent tiles

on multiprocessors can be used. For example, [Ramanujam et al.1992, Xue1997,

Boulet et al.1994] all describe how to �nd independent tiles and how to sched-

ule independent tiles to execute concurrently on di�erent processors. The same

techniques can be used to schedule the tiles on a uniprocessor such that two

consecutive tiles are always independent. When this can be achieved, no data

movement is necessary during the synchronization because no aliases arise.

Choosing Tile Sizes

In order to �t a maximal amount of data into a tile, the number of di�erent

memory elements addressed by one iteration tile Td(L) must be found. The

iteration space of a tile is an integer polytope[Schrijver1986]. The number of

983Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

iterations can be expressed as an Ehrhart polynomial[Clauss1996] with the tile

sizes Bi, Bj, and Bk as parameters.

After generating a closed form expression for the number of iterations in the

tiled loop and the number of data elements accessed during the execution of

those iterations, the tile sizes are chosen such that:

{ the total size of the accessed elements doesn't exceed the size of cache par-

tition P2 or P3.

{ the ratio r of the number of iterations to the number of elements that must

be moved by the data-fetch thread is maximal.

The �rst choice ensures that every data tile set can completely reside in

either cache partition P2 or P3. The data-fetch thread fetches the next data tile

into one partition while the computing thread executes the current data tile in

the other partition. The second constraint makes sure that the tile size will be

chosen such that the reuse factor inside a partition is as large as possible.

Generating the Data-Fetch Thread

After the optimal tile size has been calculated, the data-fetch thread can be

created. For the automatic creation of the data-fetch thread, the source code

must meet the following requirements:

{ The loop under consideration can be tiled.

{ Every index in the array expression has the form xi+ c, where x and c are

loop-independent and i is an induction variable. x can be equal to 0.

{ All references to the same array have the same index expressions, therefor all

references to the same array access the same data region in an iteration tile.

It is assumed that di�erent arrays do not overlap, as is the case in Fortran.

The data-fetch thread must scan the data tile, and remap every element in

it to a unique location in the cache shadow. The following procedure creates the

data-fetch thread:

1. For every unique array reference A(x1i1+c1; : : : ; xkik+ck), a loop nest scan-

ning the elements in the data tile is created. Let IA be the vector containing

the di�erent induction variables in the reference. Then the statement

if (inside loop boundaries) then

X(t) = A(x1i1 + c1; : : : ; xkik + ck)

t=t+1

984 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

is embedded into a loop nest iterating over the values that the induction

variables in IA reach in the given tile. DA is the diagonal matrix where

element DA

ll has the value
Ql�1

j=1 BIAj
, where IAj is the jth element of IA, and

BIA
j
is the tile size of induction variable IAj . D

AIA results in the value of t at

iteration point IA in the constructed loop.

The variable t is initialized to zero after each synchronization, and X is the

set to the start of either cache partition P2 or P3. The reference to A is

annotated with the appropriate cache hints.

2. The loop nests created in this way are concatenated and synchronization is

added. The code generated so far copies one data tile from the main memory

to the cache shadow.

3. Put the generated code in the loop nest which iterates over the di�erent

tiles. In [Fig. 8], this is Ti(L).

Compile-time Address Relocation in the Computing Thread

The data-fetch thread moves array elements from its original locations to new

locations in the cache shadow. Therefore, the references to the array elements

in the computing thread must be substituted with references to the correspond-

ing elements in the cache shadow. This is achieved by changing the references

A(x1i1 + c1; : : : ; xkik + ck) into X(DAIA).

Before executing a tiled loop nest, the computing thread synchronizes with

the data-fetch thread to ensure that the next tile has completely been copied in

the cache.

5 Evaluation

Between synchronization points, the number of iterations and data movements

done by both threads is constant because the tile sizes are constant. Therefore,

the exact amount of work between synchronization points is known and enables

the interleaving and scheduling of both threads. This assumes no exceptional

behavior like I-cache misses or exceptions. Because this technique works on tight

scienti�c loop kernels, the static amount of code is small enough to �t in the

instruction cache. Also, it is very uncommon for exceptions to occur inside these

loop kernels.

No actual hardware implementation of an architecture meeting the require-

ments stated in [Section 3.4] is known to the authors. Therefore, the performance

of the transformation was measured by simulating it on an explicitly parallel

computing architecture (EPIC) which does meet the requirements. The execu-

tion speed of the multithreaded program is compared with the same program

transformed by standard tiling algorithms.

985Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

5.1 Thread Scheduling

The instructions of the data-fetch thread are merged with the computation

thread, so that the main memory accesses are equally spread over time. In this

way the load on the memory subsystem to deliver data from main memory will

be evenly divided over the complete computation.

The ratio r of main memory accesses to the number of computation iterations

is introduced in [Section 4.2]. One main memory access is inserted after every r

computation iterations, to evenly spread the main memory accesses.

The interleaving of iterations of both threads occurs at the source level. First,

the loop nests from the data fetch thread are coalesced[Polychronopoulos1987]

into single loops. Since the resulting loops are single loops, every iteration de-

pends only on one iteration variable. The innermost loop of the computation

thread is unrolled r times. After the unrolled loop body, the code for a single

iteration from the data-fetch thread is inserted, after which the data-fetch loop

index variable is updated. Every r computation iterations, one main memory

access will be performed to update the cache shadow.

After this source level transformation, enough information about the inde-

pendence of the instructions coming from the di�erent threads is communicated

to the instruction scheduler, to schedule the data-fetch thread instructions in

parallel with the instructions of the computation thread. Also, the load and

store instructions in the data-fetch thread which access memory locations out-

side the cache shadow are annotated to let the scheduler know that these will miss

the cache and fetch from main memory. The scheduler takes this into account

to hide the latency by issuing independent instructions from the computation

thread during the memory fetch.

5.2 Results

Most capacity misses are resolved by the tiling transformation. The largest part

of remaining cache misses are conict misses. The data-fetch thread is able to

resolve or hide the remaining misses, resulting in improved performance. The re-

sulting performance is compared with other techniques to reduce the conict

misses[Lam et al.1991, Panda et al.1999, Rivera et al.1999, Temam et al.1993]

in tiled algorithms. The conict-reducing techniques do not hide the cold and

left-over capacity misses. The only way to eliminate these misses is using some

sort of prefetching. If prefetching is used without relocating the data, no im-

provements can be made[Saavedra et al.1996].

To get an idea of the e�ectiveness of threading the main memory accesses,

we choose to simulate the execution of the matrix multiplication. This algorithm

has become the de facto standard for comparing di�erent tiling transformations.

The original matrix multiplication and the di�erent tiled versions are simulated

986 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

P
er

fo
rm

an
ce

 (
F

lo
p/

C
lo

ck
 C

yc
le

)

Matrix Dimension

detail: see fig.10

cache remapping
original

padding
copying

LRW
naively tiled

Figure 9: Smoothed plot of the performance of the tiled matrix multiplications

for dimensions 20 to 400. This shows that cache remapping outperforms the

alternative tiled algorithms for matrix size 150 and above. A zoom of the actual

data can be found in [Fig. 10]

on a 8-issue EPIC processor. This also tests the e�ectiveness of compile-time

thread scheduling. The Trimaran compiler and simulator[Trimaran1998] were

used to optimize and execute the di�erent versions of the matrix multiplica-

tion. The cache behavior was measured using the well known Dinero cache

simulator[Hill et al.1989]. The following 2-level cache memory hierarchy was

used. The L1 cache is 16Kb direct mapped with 32 byte lines. The L2 cache

is 256Kb 4-way set associative with 64 byte lines. The access latency of the L2

cache is 20 clock cycles and the access latency of the main memory is 65 clock

cycles.

The threaded version of the matrix multiplication is compared with the orig-

inal program, a naively tiled version and three optimized versions corresponding

to existing tiling algorithms[Panda et al.1999, Temam et al.1993, Lam et al.1991].

Each algorithm was coded, compiled and simulated for matrices with dimensions

between 20 and 400.

In [Fig. 9], the average number of oating point operations per clock cycle is

plotted. The plot is smoothed because of the irregularity in the data. The �gure

shows that cache remapping outperforms the alternative tiled algorithms from

987Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

0.2

0.22

0.24

0.26

0.28

0.3

200 250 300 350 400

P
er

fo
rm

an
ce

 (
F

lo
p/

C
lo

ck
 C

yc
le

)

Matrix Dimension

cache remapping
padding

copying
LRW

Figure 10: The performance of the cache remapping, padding[Panda et al.1999],

copying[Temam et al.1993] and LRW[Lam et al.1991] on matrix dimensions 200

to 400. The threaded algorithm has the same performance as the next best

algorithm at worst. At best, a speedup of 10% over the next best algorithm is

obtained.

the point where the matrix dimension is big enough to hide the overlap of the

pipeline start-up. In [Fig. 10], the actual data points are plotted for the range of

matrix dimensions between 200 and 400. In this plot, we see that the threaded

version outperforms the other versions.

At the border of the iteration space, the tiles are not completely �lled with

useful computation. The pipelined nature of cache remapping does not allow

to process the less-�lled tiles faster than completely �lled tiles, because the

processing of a less-�lled tile in one thread is synchronized with the processing of

a completely �lled tile in the other thread. To alleviate this problem, the code was

restructured to �rst process all complete tiles. After all completely �lled tiles are

processed, the less-�lled tiles are processed. The amount of computations, data-

fetch and the ratio r for these less-�lled tiles vary with the matrix dimension.

Therefore, the copying technique was used instead of cache remapping to process

these tiles.

Variations in matrix dimension result in variations in the percentage of com-

putation time needed to process the less-�lled tiles. As the matrix dimension

988 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

grows, the tiles at the borders become more and more �lled with useful com-

putations. Once the matrix dimension grows to big and a new set of tiles are

needed to process the border, a new set of very sparse �lled data tiles arise, and

the performance drops a little. This explains the saw-toothed pattern observed

in [Fig. 10].

The average speedup of the threaded code for matrix dimensions between

200 and 400 is 454% over the original code, 11% over the naively tiled code and

5% over the next best code, copying. The saw-tooth pattern leads to variations

in the speedup over copying between 0 and 10%.

5.3 Related Work

Many optimizations have been proposed to ameliorate the memory behavior of

programs (see introduction). Here, we'll only shortly discuss the techniques most

closely related to ours.

Threaded processors have been proposed to hide the memory latency, by

switching to another thread on a cache miss[Tullsen et al.1995, Mowry et al.1998],

or by eliminating caches altogether and interleaving threads cycle-by-cycle to ob-

tain a large amount of time between dependent instructions[Alverson et al.1995].

These multithreading techniques hide the memory latency, but do not amelio-

rate the cache use by minimizing conicts, as cache remapping does. Because of

the concurrent use of the cache by several threads, cache conicts might even

get worse because of the increased working set.

The combination of prefetch (to hide latency) and relocation (to resolve con-

ict misses) has been proposed by Yamada[Yamada et al.1994]. Instead of using

an all-software multithreaded technique, Yamada proposes a hardware exten-

sion and new instructions allowing to fetch strided data from memory and place

them in a single cache line. Loop unrolling and strip-mining are used as com-

piler transformations to overlap the prefetch latency with useful computations.

In our work, we use the tiling transformation which allows a coarser grained syn-

chronization between fetching and using the data. Basically, Yamada's technique

allows to prefetch a constant number of cache lines, dependent on a small hard-

ware bu�er. Our technique allows to prefetch data tiles up to the half the cache

size. This allows for a higher cache reuse when the algorithm processes O(n2)

data by O(n3) computations, as is the case in many matrix computations.

The on-the-y relocation in tiled algorithms has been described and studied

in [Temam et al.1993, Wolf et al.1991]. However, during the data relocation no

useful computations are performed. This leads to a lower overall performance.

The other techniques to eliminate conicts in tiled algorithms are choosing tile

sizes without conict misses[Lam et al.1991, Coleman et al.1995], which poten-

tially results in small tiles and high loop overhead, and padding[Panda et al.1999]

989Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

the complete array to obtain an array with a dimension which doesn't created

many conicts.

The idea to use multiple threads to improve the performance of single threaded

programs has also been proposed at the micro-architectural level. Simultane-

ous subordinate microthreading[Chappell et al.1999] are threads written in mi-

crocode to support the execution of the main thread. The microthreads aim at

improving the branch prediction, cache hit rate and prefetch e�ectiveness. The

compiler is responsible for deciding when and which subordinate microthreads

should be executed. The possibility to load the microcode of the subordinate

threads into the processor makes it possible to implement multithreaded data-

fetching on such a processor.

5.4 Future Work

The data-fetch thread resolves conict misses and hides the latency of cold

misses and capacity misses. If the number of capacity misses is too high, not

enough computations can be found to hide the latency of the memory accesses.

Tiling is one technique to reduce the number of capacity misses, but also other

loop transformations can be used. Examples of such loop transformations can

be found in [Yamada et al.1994, McKinley et al.1996]. Recently, some program

transformations to shorten the reuse distance in irregular applications have been

proposed[Mellor-Crummey et al.1999, Ding et al.1999]. It needs to be investi-

gated how cache remapping can be used in these applications to remove the

remaining conict misses.

Software controlled cache placement gives rise to a number of interesting

future research directions. As the compiler is able to control the caching behavior,

it can incorporate full-program knowledge into the cache replacement algorithm

as opposed to the online algorithms used in hardware. As knowledge of future

references can be extracted at compile time, it would be very interesting to see

how this could be used to implement a better replacement policy, e.g. based on

the optimal algorithm of Belady[Belady1966], which indeed requires knowledge

of future memory requests.

6 Conclusion

A technique is presented that allows a software controlled cache replacement

policy on advanced processor architectures. This software control allows new

advanced compiler optimizations, because the cache recently became visible to

the software through cache hints. The proposed optimization improves the mem-

ory performance of single-threaded applications by spawning a second compiler

generated thread which controls the caching of the data. Once the data-fetch

thread is created, the program can run eÆciently on a multithreaded processor.

990 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

Via explicit thread scheduling, it is possible to schedule both threads at com-

pile time and run the resulting code on EPIC processors, where the dependence

between instructions is explicitly coded in the instructions.

The proposed multithreaded technique can be exploited on any processor

where parallelism can explicitly be communicated from the compiler to the pro-

cessor. After measuring the execution time, we found that the proposed tech-

nique resulted in a speedup up to 10% compared with the next best memory

optimization technique. Compared with the original code an average speedup of

450% has been obtained.

Acknowledgements

This research was supported by the Belgian government under contracts IWT-

SB/991147 and GOA-12.0508.95.

References

[Alverson et al.1995] G. Alverson, S. Kahan, R. Korry, and C. McCann. Scheduling
on the Tera MTA. Lecture Notes in Computer Science, 949, 1995.

[Baer et al.] J.-L. Baer and T.-F. Chen. An e�ective on-chip preloading scheme to
reduce data access penalty. In Proceedings, Supercomputing '91.

[Belady1966] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78{101, 1966.

[Boulet et al.1994] P. Boulet, A. Darte, T. Risset, and Y. Robert. (pen)-ultimate
tiling? In IEEE, editor, Proceedings of the Scalable High-Performance Computing
Conference, May 23{25, 1994, Knoxville, Tennessee, pages 568{576, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 1994. IEEE Computer Society
Press.

[Carter et al.1999] Larry Carter, John Feo, and Allan Snavely. Performance and pro-
gramming experience on the Tera MTA. In SIAM Conference on Parallel Processing,
March 1999.

[Chappell et al.1999] Robert Chappell, Jared Stark, Sangwook Kim, Steven Reinhardt,
and Yale Patt. Simultaneous subordinate microthreading (ssmt). In Proceedings of
the The 26th International Symposium on Computer Architecture, may 1999.

[Clauss1996] Philippe Clauss. Counting solutions to linear and nonlinear constraints
through ehrhart polynomials: Applications to analyze and transform scienti�c pro-
grams. In ACM Int. Conf. on Supercomputing. ACM, May 1996.

[Co�man et al.1973] E. G. Co�man and P. J. Denning. Operating Systems Theory.
Prentice Hall, Englewood Cli�s, 1973.

[Coleman et al.1995] Stephanie Coleman and Kathryn McKinley. Tile size selection
using cache organization and data layout. In SIGPLAN'95: conference on program-
ming language design and implementation, pages 279{290, June 1995.

[Ding et al.1999] Chen Ding and Ken Kennedy. Improving cache performance of dy-
namic applications through data and computation reorganization at run time. In
Proceedings of SIGPLAN'99 Conference on Programming Languages Design and Im-
plementation, pages 229{241, May 1999.

[Farcy et al.1996] A. Farcy and O. Temam. Improving single-process performance
with multithreaded processors. In FCRC '96: Conference proceedings of the 1996
International Conference on Supercomputing, pages 350{357, 1996.

991Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

[Ghosh1999] Somnath Ghosh. Cache Miss Equations: Compiler Analysis Framework
for Tuning Memory Behaviour. PhD thesis, Princeton University, November 1999.

[Harper et al.1999] John S. Harper, Darren J. Kerbyson, and Graham R. Nudd. Ana-
lytical modeling of set-associative cache behavior. IEEE Transaction on Computers,
48(10):1009{1024, oct 1999.

[Hill et al.1989] Mark D. Hill and Alan Jay Smith. Evaluating associativity in CPU
caches. IEEE Transactions on Computers, 38(12):1612{1630, December 1989.

[IA64 ADAG1999] IA-64 Application Developer's Architecture Guide, May 1999.
[Irigoin et al.1988] F. Irigoin and R. Triolet. Supernode partitioning. In POPL '88.
Proceedings of the conference on Principles of programming languages, pages 319{329,
1988.

[Jouppi1990] Norman P. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch bu�ers. In The 17th ISCA,
pages 364{373, May 1990.

[Kane1996] Gerry Kane. PA-RISC 2.0 architecture. Prentice Hall, 1996.
[Kathail et al.2000] Vinod Kathail, Michael S. Schlansker, and B. Ramakrishna Rau.
HPL PD architecture speci�cation: Version 1.1. Technical Report HPL-93-80(R.1),
Hewlett-Packard, February 2000.

[Kwak et al.1999] Hantak Kwak, Ben Lee, Ali R. Hurson, Suk-Han Yoon, and Woo-
Jong Hahn. E�ects of multithreading on cache performance. IEEE Transactions on
Computers, 48(2):176{184, February 1999.

[Lam et al.1991] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance
and optimizations of blocked algorithms. In Proceedings of the 4th International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 63{74, April 1991.

[Loikkanen et al.1996] Mat Loikkanen and Nader Bagherzadeh. A �ne-grain multi-
threading superscalar architecture. In Proceedings of the 1996 Conference on Paral-
lel Architectures and Compilation Techniques (PACT '96), pages 163{168, October
20{23, 1996.

[McKinley et al.1996] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Im-
proving data locality with loop transformations. ACM Transactions on Programming
Languages and Systems, 18(4):424{453, July 1996.

[Mellor-Crummey et al.1999] John Mellor-Crummey, David Whalley, and Ken
Kennedy. Improving memory hierarchy performance for irregular applications. In
Proceedings of the 1999 Conference on Supercomputing, pages 425{433, June 20{25
1999.

[Mowry et al.1992] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design
and evaluation of a compiler algorithm for prefetching. ACM SIGPLAN Notices,
27(9):62{73, September 1992.

[Mowry et al.1998] Todd C. Mowry and Sherwyn R. Ramkissoon. Software-controlled
multithreading using informing memory operations. Technical report, School of Com-
puter Science - Carnegie Mellon University, 1998.

[Mowry1994] T. Mowry. Tolerating Latency Through Software Controlled Data
Prefetching. PhD thesis, Dept. of Computer Science, Stanford University, March
1994.

[Pai et al.1999] Vijay S. Pai and Sarita Adve. Code transformations to improve mem-
ory parallelism. In Proceedings of the 32nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 147{155, november 1999.

[Panda et al.1999] P. Panda, H. Nakamura, N. Dutt, and A. Nicolau. Augmenting
loop tiling with data alignment for improved cache performance. IEEE transactions
on computers, 48(2):142{149, Feb 1999.

[Polychronopoulos1987] C. D. Polychronopoulos. Loop coalesing: A compiler trans-
formation for parallel machines. In International Conference on Parallel Processing,
pages 235{242, August 1987.

992 Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

[Pyo et al.1997] Changwoo Pyo and Gyongho Lee. Reference distance as a metric for
data locality. In HPC-ASIA 97, pages 151{156, 1997.

[Ramanujam et al.1992] J. Ramanujam and P. Sadayappan. Tiling multidimensional
iteration spaces for multicomputers. Journal of Parallel and Distributed Computing,
16(2):108{120, October 1992.

[Rivera et al.1998] Gabriel Rivera and Chau-Wen Tseng. Data transformations for
eliminating conict misses. In Proceedings of the 1998 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI'98), pages 38{49, June
1998.

[Rivera et al.1999] G. Rivera and C.-W. Tseng. A comparison of compiler tiling algo-
rithms. In 8th International Conference on Compiler Construction (CC'99), March
1999.

[Saavedra et al.1996] R.H. Saavedra, W. Mao, D. Park, J. Chame, and S. Moon. The
combined e�ectiveness of unimodular transformations, tiling, and software prefetch-
ing. In 10th Int. Parallel Processing Symp. (IPPS'96),, april 1996.

[Schrijver1986] A. Schrijver. Theory of Linear and Integer Programming. John Wi-
ley&Sons, New York, 1986.

[Seznec et al.1993] Andr�e Seznec and Francois Bodin. Skewed-associative caches. In
Proceedings of PARLE '93 { Parallel Architectures and Languages Europe, pages
305{316, Munich, Germany, June 14{17, 1993.

[Temam et al.1993] Olivier Temam, Elana D. Granston, and William Jalby. To copy
or not to copy: A compile-time technique for assessing when data copying should be
used to eliminate cache conicts. In Proceedings, Supercomputing '93, pages 410{419,
March 1993.

[Trimaran1998] Trimaran. The Trimaran Compiler Research Infrastruc-
ture for Instruction Level Parallelism. The Trimaran Consortium, 1998.
http://www.trimaran.org.

[Tsai et al.1999] Jenn-Yuan Tsai, Jian Huang, Christo�er Amlo, David J. Lilja, and
Pen-Chung Yew. The superthreaded processor architecture. IEEE Transactions on
Computers, 48(9):881{902, sept 1999.

[Tullsen et al.1995] Dean M. Tullsen, Susan Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proceedings of the 22th Annual
International Symposium on Computer Architecture, June 1995.

[Weber et al.1989] Wolf-Dietrich Weber and Anoop Gupta. Exploring the bene�ts of
multiple hardware contexts in a multiprocessor architecture: preliminary results. In
Proceedings of the 16th Annual International Symposium on Computer Architecture,
pages 273{280, May 1989.

[Wolf et al.1991] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm.
In Proceedings of the ACM SIGPLAN '91 Conference on Programming Language
Design and Implementation, pages 30{44, 1991.

[Wolf1992] M.E. Wolf. Improving locality and parallelism in nested loops. Ph.d. thesis,
Stanford University, 1992.

[Xue1997] Jingling Xue. On tiling as a loop transformation. Parallel Processing Let-
ters, 7(4):409{424, 1997.

[Yamada et al.1994] Yoji Yamada, John Gyllenhaal, Grant Haab, and Wen mei Hwu.
Data relocation and prefetching for programs with large data sets. In Proceedings
of the 27th Annual International Symposium on Microarchitecture, pages 118{127,
November 30{December 2, 1994.

993Beyls K., D’Hollander E.H.: Compiler Generated Multithreading ...

