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1 Introduction

Computing Science concepts often take birth observing and studying practical
situations and phenomena encountered in the process of development of soft-
ware systems. For this reason, well established mathematical concepts and tools
seem not to be perfectly suitable for some computing aspects. A concrete case
is modularization [GB92, DGS93, Ro�s99], whose purpose is to formalize and
give semantics to operations on software modules, such as importing, aggrega-
tion, hiding, parameterization, etc. Most of the operations on modules involve
the notion of inclusion as a unique interpretation of a module into another; the
\uniqueness up to an isomorphism" does not re
ect the intuition behind these
operations. Therefore, categorical notions like (mono) subobjects and factoriza-
tion systems are not proper for some areas of computing.

At the authors' knowledge, the �rst formal de�nition of a factorization sys-
tem of a category was given by Herrlich and Strecker4 [HS73] in 1973, and a
�rst comprehensive study of factorization systems containing di�erent equiva-
lent de�nitions was done by N�emeti [N�em82] in 1982. However, the idea to form
subobjects by factoring each morphism f as e;m, where e is an epimorphism
and m is a monomorphism, seems to go back to Grothendieck [Gro57] in 1957,
and was intensively used by Isbell [Isb64], Lambek [Lam66], Mitchell [Mit65],
and many others. At our knowledge, Lambek was the �rst to explicitly state and
prove a diagonal-�ll-in lemma for factorization systems [Lam66] in 1966.
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In general terms, this paper is a sequel to our paper Weak Inclusion Systems
[CR97]. It develops the notion of inclusion in a categorical setting, emphasizing
the idea of unique factorization. In [CR97], we de�ned the weak inclusion systems
as a natural extension of inclusion systems and as an alternative to factorization
systems. In this paper, we further explore weak inclusion systems' properties,
our main goal being to present them as a real useful tool for computer scientists
and, why not, for mathematicians in search of elegant, clear, and smooth proofs.

Section 2 just introduces some notations and basic categorical properties,
and section 3 presents a bunch of easy but useful properties of weak inclusion
systems. Section 4 introduces the notion of complete weak inclusion system as an
alternative to inclusion systems. Section 5 explores relations between reachable
and generated objects in a category. A criterion to say if a category has enough
projectives is also given. Finally, section 6 is concerned with lifting (weak) inclu-
sion systems to comma categories, functor categories, and categories of algebras
and coalgebras of an endofunctor.

Acknowledgements We would like to thank to professor Sergiu Rudeanu for
his remarks and suggestions on the application of inclusions systems in Birkho�-
like axiomatizability results for generalizations of equational logics, and to pro-
fessor Joseph Goguen for his comments on previous versions of this paper.

2 Preliminaries

The reader is supposed to be familiar with the basics of category theory (e.g., see
[Lan71, HS73]). In this section we present our formalism and remind the reader
some notions used later in the paper.

Calligraphic letters denote categories and functors. If A is a category then
jAj denotes its class of objects. The composition of morphisms is written in
diagrammatic order, that is, if f : A ! B and g : B ! C are two morphisms,
their composition is written f ; g : A ! C. Sometimes, we use the word epic
(monic, iso) instead of epimorphism (monomorphism, isomorphism). Some basic
properties of epics and monics are supposed known, such as \f ; g is an epic
implies g is an epic", etc.

An important notion in category theory is that of subobject of an object. To
be more precise and to avoid confusion with another kind of subobject introduced
later in the paper, we call it mono subobject. A mono subobject of an object
A in a category A is a coset (an equivalence class) of the equivalence relation �
de�ned on monics of target A as follows: m � m0 if there exist two morphisms f
and g such that f ;m = m0 and g;m0 = m (actually, f and g are isomorphisms).

Inclusion systems are related to an old and useful concept in category theory,
namely factorization systems (see [HS73] and also [N�em82]). There are many
equivalent de�nitions of factorizations systems; we remind the reader the one we
think is the closest to our approach:

De�nition 1. A factorization system of a category A is a pair hE; Mi, such
that

{ E and M are subcategories of epics and monics, respectively, in A,
{ all isomorphisms in A are both in E and M, and
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{ every morphism f in A can be factored as e;m with e 2 E and m 2 M
\uniquely up to isomorphism", that is, if f = e0; i0 is another factorization of
f then there is a unique isomorphism � such that e;� = e0 and �;m0 = m.
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There also are many equivalent de�nitions of adjointness in the literature.
Within this paper we adopt the following two:

De�nition 2. A functor F : X ! A is a left adjoint of U : A ! X i� for each
pair of objects X 2 jX j, A 2 jAj there is a bijection X (X;U(A)) �= A(F(X); A)
which is natural in X and A.

De�nition 3. A functor F : X ! A is a left adjoint of U : A ! X i� there
exists a natural transformation � : 1X ) F ;U having the universal property: for
every X 2 jX j, A 2 jAj and every f : X ! U(A) there is a unique f \ : F(X)!
A such that �X ;U(f \) = f . � is called the unit of adjunction. Given an object

A in A, let �A denote the morphism 1\
U(A).

Then � : U ;F ) 1A is also a natural transformation and it is called the counit
of adjunction. It has the couniversal property: for every g : F(X) ! A there
exists a unique g[ : X ! U(A) such that F(g[); �A = g. Many useful properties
of adjoint functors are known [Lan71, GB84a, GB84b], including the following:

Proposition4. Let X;Y 2 jX j and A;B 2 jAj, and let f : X ! U(A),
g : F(X)! A, u : Y ! X and h : A! B. Then

1. �\X = 1F(X) and �[A = 1U(A),

2. (f \)[ = f and (g[)\ = g,
3. (u; f)\ = F(u); f \ and (g;h)[ = g[;U(h),
4. (f ;U(h))\ = f \;h and (F(u); g)[ = u; g[.

3 Basic De�nitions and Properties

It is well-known that a small category can be associated to any partially ordered
set: there exists exactly one object A for each element a in the set and there exists
a morphism from A to B, written A ,! B, if and only if a � b. Furthermore, there
is a bijection between partially ordered sets and small categories in which there
is at most one morphism from A to B for every objects A and B (partiality), and
if there is a morphism from A to B and a morphism from B to A then A = B
(anti-symmetry). The correspondents of in�mum and supremum are the product
and the coproduct, respectively. Generalizing all these to categories which are
not required to be small, we get:
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De�nition 5. A category I is called a category of inclusions if and only if

{ I(A;B) has at most one element, and
{ I(A;B) 6= ; and I(B;A) 6= ; implies A = B.

for every pair of objects A and B. If I(A;B) 6= ; then let A ,! B denote
the unique morphism in I(A;B). It is called an inclusion and A is called a
subobject of B. We say that I has (�nite) intersections i� I has (�nite)
products and we say that I has (�nite) unions i� I has (�nite) coproducts.
For every pair of objects A, B, let A \B denote their product (also called their
intersection) and let A [ B denote their coproduct (also called their union).

A small category of inclusions with �nite intersections and �nite unions cor-
responds to nothing else than a lattice [Rud63, Bir67, Gr�a71]. Consequently,
many properties of lattices hold in categories of inclusions. The following are
only a few:

Proposition6. For any category of inclusions I and any objects A, B and C
in jAj (assume that I has �nite intersections and/or �nite unions whenever \=[
appear),

1. A ,! A [B and A \ B ,! A,
2. A ,! B implies A [B = B and A \ B = A,
3. A \ (A [B) = A [ (A \ B) = A,
4. A ,! B implies A [ C ,! B [ C and A \ C ,! B \ C,
5. The union and intersection are commutative, associative and idempotent,
6. (A \ B) [ (A \ C) ,! A \ (B [ C),
7. A [ (B \ C) ,! (A [ B) \ (A [ C),

De�nition 7. A category of inclusions I which is a subcategory of A having the
same objects as A is called a subcategory of inclusions of A (alternatively,
we can say that A has inclusions I). I is a subcategory of strong inclusions
of A (or A has strong inclusions I) i� I is a subcategory of inclusions of A,
I has �nite intersections and unions, and for every pair of objects A, B, their
union in I is a pushout in A of their intersection in I.

Example 1. We look at the following examples within the paper:

Set the category of sets and functions, in which the inclusions are the ordinary
inclusions of sets. It is easy to see that these inclusions are strong for Set.

Top the category of topological spaces and continuous functions. The continu-
ous inclusions form a subcategory of strong inclusions of Top: given A and
B two topological spaces, their intersection is the set intersection of A and
B together with the initial topology of its inclusions in A and B, and their
union is the set union of A and B together with the �nal topology of the
inclusions of A and B in their union.

Sign the category of many sorted algebraic signatures and morphisms of sig-
natures. The signature inclusions form a subcategory of strong inclusions of
Sign.

Alg� the category of �-algebras and morphisms of �-algebras over a signature
�. The inclusions of �-algebras form a subcategory of inclusions of Alg� ,
but it is not strong.
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Alg�;E the full subcategory of Alg� containing all �-algebras that satisfy the
�-equations E. Notice that depending on � and E, Alg�;E can be any cat-
egory of important structures in mathematics or computer science: monoids,
modules, groups, abelian groups, rings, commutative rings, etc. The inclu-
sions in Alg�;E are not strong either.

We will not insist on the notion of strong inclusions in the present paper.
However, strong inclusions together with semiexactness [DGS93] seem to play a
major role in modularization. Abstract semantics is given for modularization in
[Ro�s99], based on strong inclusions; no factorization (see De�nition 8) is involved,
which means that, perhaps, strong inclusions are good enough technical tools to
handle complex modularization concepts.

De�nition 8. hI; Ei is a weak inclusion system of A, or A has a weak
inclusion system hI; Ei, i� I is a subcategory of inclusions of A, E is a sub-
category of A having the same objects as A, and every morphism f in A has a
unique factorization f = e; i with e 2 E and i 2 I. hI; Ei is called an inclusion
system if E contains only epics, and it is called a regular inclusion system
if E contains only coequalizers.

Example 2. All structures in Example 1 have weak inclusion systems:

Set with I the set of inclusions and E the set of surjective functions. It is regular
as each surjective function is a retract, so a coequalizer.

Top has two interesting weak inclusion systems (see [CR97]). One is hI1; E1i,
where I1 is the set of continuous inclusions and E1 is the set of �nal contin-
uous surjections, and the other one is hI2; E2i, where I2 is the set of initial
continuous inclusions and E2 is the set of continuous surjections. hI1; E1i is
not an inclusion system as there are continuous surjective functions that are
not �nal; hI2; E2i is a regular inclusion system.

Alg� with inclusions of �-subalgebras and surjective morphisms of �-algebras
is a regular inclusion system.

Alg�;E with inclusions of �-subalgebras satisfying E and surjective morphisms
of �-algebras satisfying E is a regular inclusion system.

If f : X ! Y is a morphism in A, let ef ; if denote its factorization and f(X)
denote the factorization object of f , that is, the target object of ef . Moreover,
we use the same notation, f(A), for the factorization object of the morphism
A ,! X ; f , where A is a subobject of X .

Notice that every category A admits a trivial weak inclusion system in which
I contains only identities and E = A. The following fact contains properties of
weak inclusion systems proved in [CR97]:

Proposition9. If hI; Ei is a weak inclusion system of A, e 2 E and i 2 I, then

1. I contains only monics.
2. Each morphism in I \ E is an identity.
3. right-cancellable: If f ; i 2 I then f 2 I.
4. If f ; i 2 E then i is an identity and f 2 E.
5. If f ; g 2 E then g 2 E.
6. Any coequalizer is in E.
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7. Any retract is in E.
8. All isomorphisms in A are in E.
9. diagonal-�ll-in: If f ; i = e; g then there is a unique morphism h 2 A such

that e;h = f and h; i = g:

�
f //

e

��

�� _
i

��
�

g
//

h

??

�

The following proposition is also proved in [CR97] and it says that inclusions
are preserved under pullbacks:

Proposition10. If A has pullbacks and a weak inclusion system hI; Ei, and
if i : B ,! Y is an inclusion and f : X ! Y is any morphism, then there is a
unique pullback of the pair hi; fi such that the opposite arrow of i is an inclusion,
too.

The pullback object given by the proposition above is written f�1(B). An im-
mediate consequence is that f�1(B) is a subobject of X .

Lemma11. Let hI; Ei be a weak inclusion system of A and f : X ! Y be a
morphism in A. Suppose that A has pullbacks whenever f�1 appears. Then

1. If A ,! A0 ,! X then f(A) ,! f(A0) ,! Y ,
2. If B ,! B0 ,! Y then f�1(B) ,! f�1(B0) ,! X,
3. (f ; g)(A) = g(f(A)) for every g : Y ! Z and A ,! X,
4. (f ; g)�1(C) = f�1(g�1(C)) for every g : Y ! Z and C ,! Z,
5. A ,! f�1(f(A)) and E(f�1(f(A)); f(A)) 6= ; for every A ,! X,
6. f(f�1(B)) ,! B for every B ,! Y ,
7. A ,! f�1(B) i� f(A) ,! B, for every A ,! X and B ,! Y ,

Proof.

1. Let j be the inclusion A ,! A0. Factor A ,! X ; f as e; i and A0 ,! X ; f
as e0; i0, and let f(j) be the unique morphism given be the diagonal-�ll-in
lemma for the diagram (j; e0); i0 = e; i in the picture below:

A
e //� o
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i

||z z
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z z z

z � _
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X
f // Y

A0
/�

>>~~~~~~~~

e0
// f(A0)
0 P

i0
bbD D D D D D D D

Since f(j); i0 = i, by the right-cancellable property, f(j) is an inclusion, i.e.,
f(A) ,! f(A0) ,! Y .
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2. Let j be the inclusion B ,! B0, let hf�1(B) ,! X; uf i denote the pull-
back of hB ,! Y ; fi, and let hf�1(B0) ,! X; vf i denote the pullback of
hB0 ,! Y ; fi. Then de�ne f�1(j) : f�1(B) ! f�1(B0) as the unique mor-
phism such that f�1(j); f�1(B0) ,! X = f�1(B) ,! X and f�1(j); vf =
uf ; j (this is because f

�1(B0) is a pullback object):

X
f // Y

f�1(B0)
?�
OO

vf // B0
?�
OO

f�1(B)
1�

BB����������������� �+ f�1(j)

99

uf
// B
?�
j

OO

By the right-cancellable property, f�1(j) is an inclusion, that is, f�1(B) ,!
f�1(B0) ,! X .

3. It follows from the uniqueness of factorization for the morphism A ,! X ; f ; g.
4. Let iZ be the inclusion C ,! Z, and let hiY ; ugi, hiX ; uf i and hi0X ; uf ;gi

denote the pullbacks of the pairs hiZ ; gi, hiY ; fi and hiZ ; f ; gi, respectively,
as in the diagram below:

X
f // Y

g // Z

f�1(g�1(C))
uf //

?� iX

OO

jJ
j

ww

g�1(C)
ug //

?� iY

OO

C
?�
iZ

OO

(f ; g)�1(C)
* 
 i

77

/�

i0X

>>~~~~~~~~~~~~~~~~~~~
v

33

uf;g

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Since hiX ; uf ;ugi is a cone of hiZ ; f ; gi, there is a unique j such that j;uf ;g =
uf ;ug and j; i0X = iX . By the right-cancellable property, j is an inclusion.
On the other hand, since hi0X ; f; uf ;gi is a cone of hiZ ; gi there is a unique
v such that v;ug = uf ;g and v; iY = i0X ; f . Therefore, hi0X ; vi is a cone
of hiY ; fi, so there is a unique i such that i;uf = v and i; iX = i0X . By
the right-cancellable property, i is an inclusion. Consequently, (f ; g)�1(C) =
f�1(g�1(C)).

5. Factor A ,! X ; f as e; i, and let hf�1(f(A)) ,! X; uf i be the pullback of
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hi; fi as in the diagram below:

X
f // Y

A
?�
OO

e //lL
j

zz

f(A)
?� i

OO

f�1(f(A))
2�

CC���������������� uf

55lllllllllllllll

By the pullback property, there is a unique morphism j : A ! f�1(f(A))
such that j;uf = e and j; f�1(f(A)) ,! X = A ,! X . By the right-
cancellable property, j is an inclusion, and by 5. in Fact 9, uf 2 E . Therefore,
A ,! f�1(f(A)) and E(f�1(f(A)); f(A)) 6= ;.

6. Let i be the inclusion B ,! Y , let hf�1(B) ,! X; uf i be the pullback of
hi; fi, and let e0; i0 be the factorization of f�1(B) ,! X ; f

X
f // Y

f�1(B)
?�
OO

uf
//

e0 ))SSS
SSSS

SSSS
SSSS

B
?�
i

OO

f(f�1(B))
R2

j

dd

, L

i0

[[6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

By the pullback property, there is a unique j : f(f�1(B)) ! B such that
e0; j = uf and j; i = i0. By the right-cancellable property, j is an inclusion,
that is, f(f�1(B)) ,! B.

7. If A ,! f�1(B) then by 1., f(A) ,! f(f�1(B)), and by 6., one gets f(A) ,!
B. On the other side, if f(A) ,! B then by 2., f�1(f(A)) ,! f�1(B), and
by 5., A ,! f�1(B).

De�nition 12. If hI; Ei is a weak inclusion system of A and D is a subcate-
gory of A then let ID and ED denote the restrictions of I and E , respectively,
to D. Sub(A) is the full subcategory of A generated by all subobjects of an
object A; it is called the subobject category of A and we write IA and EA
instead of ISub(A) and ESub(A). As usual, a subcategory D of A is closed under
subobjects i� A 2 jDj whenever A ,! B and B 2 jDj.

Proposition13. Let hI; Ei be a weak inclusion system of A. Then

1. If D is a full subcategory of A closed under subobjects then hIS ; ESi is a
weak inclusion system of S.

2. If A is an object in A then hIA; EAi is a weak inclusion system of Sub(A).
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Proof. It is straightforward that ID is a subcategory of inclusions of D. If f
is a morphism in D then ef and if belong to D because D is full and closed
under subobjects, so f admits a factorization in hID; EDi. Furthermore, the
factorization is unique as it is unique in A. 2 follows from 1 observing that
Sub(A) is a full subcategory of A closed under subobjects.

Theorem14. If hI; Ei is a weak inclusion system for A then every morphism
f : X ! Y yields a pair of adjoint functors, f : IX ! IY and f�1 : IY ! IX ,
where f : IX ! IY is a left adjoint of f�1 : IY ! IX .

Proof. 1., 2., 3. and 4. in Lemma 11 say nothing else than f : IX ! IY and
f�1 : IY ! IX are functors. An easy way to show that f is a left adjoint to f�1

is to use De�nition 2: 7. in Lemma 11 says that for every A 2 IX and B 2 IY
there is a bijection IX(A; f

�1(B)) �= IY (f(A); B); this bijection is natural in A
and B because there is at most one inclusion between any two objects both in
IX and IY .

Corollary 15. Any category A admitting a weak inclusion system is an existen-
tial Lawvere doctrine.

Proposition16. In the context of Proposition 14,

1. f ; f�1; f = f in Cat,
2. f�1; f ; f�1 = f�1 in Cat, and
3. If f is an isomorphism and f� : Y ! X is its inverse, then f�1 = f� as

functors IY ! IX .

Proof. 1. It su�ces to show that f(f�1(f(A))) = f(A) for every A ,! X .
Applying 1. in Lemma 11 for the inclusion A ,! f�1(f(A)) given by 5. in
Lemma 11, we get f(A) ,! f(f�1(f(A))). On the other hand, applying 6.
in Lemma 11 for B = f(A) we get f(f�1(f(A))) ,! f(A).

2. Similar to 1..
3. Notice that f ; f� = 1IX and f�; f = 1IY . Composing f ; f�1; f = f in 1.

with f� on the left, we get f�; (f ; f�1; f) = f�; f , that is, f�1; f = 1IY .
Composing with f� on the right we get (f�1; f); f� = f�, that is, f�1 = f�.

4 Inclusion Systems vs. Complete Weak Inclusion Systems

The notion of weak inclusion system is too general because it catches very un-
interesting cases (for example, the case where I contains the identities and E
contains all the morphisms). For this reason, stronger results usually require a
stronger version of weak inclusion systems, such as inclusion systems.

This section presents an alternative of the inclusion system, called complete
weak inclusion system, which does not require the morphisms in E be epimor-
phisms, still having much of the power of inclusion systems. For example, [Ro�s96]
presents Birkho�-like axiomatizability results for a categorical generalization of
equational logic strongly based on inclusion systems; all the results in that pa-
per could be very well done in a framework based on complete weak inclusion
systems instead of inclusion systems.
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Proposition17. The following assertions are equivalent in any category A ad-
mitting a weak inclusion system hI; Ei:

1. Each monomorphism in E is an isomorphism,
2. Each monomorphism is factored as an isomorphism and an inclusion,
3. Each mono subobject contains exactly one inclusion.

Proof. 1:) 2: Let m be a monic and let em; im be its factorization. Then em
is a monic, too, and by hypothesis it is an isomorphism.
2:) 3: Each mono subobject contains at most one inclusion because if i � i0

then there exist f and g such that f ; i = i0 and g; i0 = i, so by the right
cancellable property f and g are inclusions, that is, i = i0. To show that each
mono subobject contains at least one inclusion, let m be a monic and consider
em; im its factorization; then em is an isomorphism. Thus m � im.
3: ) 1: Let m be a monic in E and let i be the unique inclusion such that
m � i. Then there exist f and g such that f ;m = i and g; i = m. Since m is in E ,
i is an identity (see 4. in Fact 9). Therefore f ;m = 1; moreover, (m; f);m = m
implies m; f = 1 because m is a monic. Consequently, m is an isomorphism.

The fact above presents conditions under which the inclusions given by a weak
inclusion system give a complete and independent system of representatives of
the mono subobjects. The following de�nition introduces formally the notion of
complete weak inclusion system:

De�nition 18. A (weak) inclusion system hI; Ei verifying the equivalences in
the proposition above is called a complete (weak) inclusion system.

Example 3. Among the structures in Example 2, only Top with hI2; E2i is not
complete because there are monics which are continuous surjections but which
are not isomorphisms.

The following propositions show relations between inclusion systems and com-
plete weak inclusion systems:

Proposition19. Any regular inclusion system is both an inclusion system and
a complete weak inclusion system (i.e., it is a complete inclusion system).

Proof. It follows immediately from the fact that any monomorphism which is a
coequalizer, actually is an isomorphism.

De�nition 20. We let Mono and Epi denote the subcategories of A containing
all monics and epics of A, respectively. A category in which any morphism that
is both an epic and a monic is an isomorphism is called a balanced category.

Proposition21. Let hI; Ei be a weak inclusion system of A. Then

1. If A is balanced then Epi � E,
2. If A is balanced and E = Epi then hI; Ei is complete,
3. If A is balanced and hI; Ei is an inclusion system then hI; Ei is complete,
4. If hI; Ei is a complete weak inclusion system and hE; Mi is a factorization

system of A then E � E,
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5. If hI; Ei is a complete weak inclusion system and A has a factorization
system then hI; Ei is an inclusion system,

6. If A is balanced and has a factorization system then hI; Ei is an inclusion
system i� hI; Ei is a complete weak inclusion system,

7. If hI; Ei is a complete inclusion system then hE ; Monoi is a factorization
system of A.

Proof. 1. Let g be any epic and let eg; ig be its factorization. Then ig is an epic,
too. Since ig is a monic (1. in Fact 9) and A is balanced, ig is an iso. Hence
ig is an identity (see 8. and 2. in Fact 9), so g = eg 2 E .

2. Let m be a monic in E = Epi. Then m is an iso as A is balanced.
3. It is an immediate consequence of 1. and 2..
4. Let e 2 E and let e0;m0 be a factorization of e in hE; Mi. By 5. in Fact 9

m0 is in E , and since hI; Ei is complete, m0 is an isomorphism. So e = e0;m0

is in E.
5. Immediately from 4..
6. It follows from 3. and 5..
7. Every morphism f admits a factorization in hE ; Monoi, namely ef ; if , be-

cause if is a mono (1. in Fact 9). Now, let us consider two factorizations
e;m = e0;m0 and let m = em; im and m0 = em0 ; im0 be factorizations in
hI; Ei; then (e; em); im = (e0; em0); im0 , so im = im0 (the factorization is
unique in hI; Ei). Since hI; Ei is complete, em and em0 are isomorphisms.
Consequently, there exists an isomorphism � = em; e

�1
m0 such that e;� = e0

and �;m0 = m. Since E � Epi, we conclude that hE ; Monoi is a factorization
system.

Example 4. Looking to the categories in Example 2, it can be easily seen that Set
and Alg� are balanced. Top is not balanced. Alg�;E can be either balanced
or not. For example, groups form a balanced category but rings do not: the
inclusion of integers in rationals is both a monic and an epic without being an
isomorphism.

5 Reachability and Projectivity

De�nition 22. Let I be a subcategory of inclusions of A. An object A is I-
reachable i� it has no proper subobjects, i.e., B ,! A implies B = A. If A
admits an initial object I and E is a class of morphisms in A, then A is E-
generated i� the unique morphism �A : I ! A is in E .

Proposition23. If A admits an initial object and hI; Ei is a weak inclusion
system of A then an object is I-reachable if and only if it is E-generated.

Proof. Let A be a an I-reachable object and let e; i be the factorization of the
unique morphism �A : I ! A. Since A is I-reachable, i is an identity. Hence �A
is equal to e 2 E . Conversely, if A is E-generated and B is a subobject of A (let
i denote the inclusion B ,! A) then �B ; i = �A 2 E , so i is an identity (see 4.
in Fact 9).
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It is well-known that a category A admits an initial object i� U : A ! f�g
has a left adjoint, where f�g is the category having one object and one morphism
and U takes every object/morphism to the object/morphism of f�g. Generalizing
that, from now on in this section, let U : A ! X be a functor having a left adjoint
F : X ! A.

De�nition 24. Let I and E be classes of morphisms in A. An object A in
A is (U ; I)-reachable i� there exists no proper subobject B of A such that
U(B ,! A) is an isomorphism. A is (U ; E)-generated i� there exist some free
objects F and some morphisms e : F ! A in E .

Theorem25. Let hI; Ei be a weak inclusion system of A. Then

1. A is (U ; E)-generated i� �A 2 E,
2. A is (U ; I)-reachable i� A is (U ; E)-generated.

Proof. 1. If �A : F(U(A)) ! A is in E then obviously A is (U ; E)-generated as
F(U(A)) is a free object. Conversely, if A is (U ; E)-generated then there exist an
X in jX j and a morphism e : F(X)! A in E . Since e = F(e[); �A, by 5. in Fact
9, �A is in E .

2. Firstly, assume that A is (U ; E)-generated and let B ,! A such that U(B ,!
A) is an isomorphism. Since � : U ;F ) 1A is a natural transformation, �B ; (B ,!
A) = F(U(B ,! A)); �A, and since F(U(B ,! A)) is an isomorphism and E
contains all isomorphisms, �B ; (B ,! A) is in E . By 5. in Fact 9, B ,! A is in E ,
so by 2. in Fact 9, B = A. Therefore A is (U ; I)-reachable.

Conversely, let A be (U ; I)-reachable and factor �A as e; i. Then by Fact 4,
1U(A) = �[A = e[;U(i). Let B be the factorization object of �A, i.e., the target of
e.

U(A)

e[

��

F(U(A))

F(e[)

��

e

""D
DD

DD
DD

DD
DD

DD
DD

DD
D

�A // A

U(B)

U(i)

OO

F(U(B))

F(U(i))

OO

�B
// B
?�
i

OO

Then
�B ; i = F(U(i)); �A (� is natural)

= F(U(i); e[;U(i)); �A ( as e[;U(i) = 1U(A))
= F(U(i); e[); (F(U(i)); �A)
= F(U(i); e[); �B ; i (� is natural)

Since i is a monic, �B = F(U(i); e[); �B , so U(i); e
[ = �[B = 1U(B). Therefore

e[;U(i) = 1U(A) and U(i); e[ = 1U(B), that is, U(i) is an isomorphism. Since
A is (U ; I)-reachable, i is an identity, so �A = e 2 E , which means that A is
(U ; E)-generated.
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De�nition 26. Given a class E of morphisms in A, then an object P is E-
projective i� for every morphism e : A! B in E and every morphism f : P !
B in A, there are some g : P ! A such that g; e = f

A
e2E // B

P

g2A

__@ @ @ @ @ @ @ f2A

??~~~~~~~

A has enough E-projectives i� for every object A there are some E-projective
objects P and some morphisms e : P ! A in E .

E contains exactly the surjective morphisms in many practical examples.
From now on in this section, let U : A ! X be a functor having a left adjoint
F : X ! A. In some situations free and projective objects con
ate, such as
in groups or abelian groups, and in most situations free objects are projective.
However, there are situations in which free objects are not necessary projective,
such as the discrete Housdor� spaces in the category of Housdor� spaces and
continue functions5. On the other hand, projective objects are not necessary free
because, for example, there can be built an adjunction for each category with
initial object such that the initial object is the only free object, but of course
there could be more projective objects in that category.

In this section we show some conditions under which free objects are projec-
tive, and also conditions under which a category has enough E-projectives.

Proposition27. If E is a class of morphisms in A then

1. X 2 jX j is U(E)-projective if and only if F(X) is E-projective,
2. If every object in X is U(E)-projective then every free object in A is E-

projective.

Proof. Suppose that X is U(E)-projective, let e : A! B be any morphism in E ,
and let f : F(X)! B be any morphism in A.

A
e // B U(A)

U(e) // U(B)

F(X)

g\

aa

f

=={{{{{{{{{
X

g

aa

f[

=={{{{{{{{

Since X is U(E)-projective, there exist some g : X ! U(A) such that g;U(e) =
f [. By Fact 4, f = (f [)\ = (g;U(e))\ = g\; e. Therefore F(X) is E-projective.

On the other hand, suppose that F(X) is E-projective, let e : A! B be any
morphism in E , and let f : X ! U(B) be any morphism in X .

A
e // B U(A)

U(e) // U(B)

F(X)

g

aa

f\

=={{{{{{{{{
X

g[

aa

f

=={{{{{{{{

5 This is because the epimorphisms are exactly the functions for which the image of
the source is dense in the target.
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Since F(X) is E-projective, there are some g : F(X) ! A such that g; e = f \.
By Fact 4, f = (f \)[ = (g; e)[ = g[;U(e), that is, X is U(E)-projective.

2. follows immediately from 1..

Theorem28. If hI; Ei is a weak inclusion system of A such that every object
in X is U(E)-projective, then A has enough projectives whenever every object in
A is (U ; I)-reachable.

Notice that X is Set in most practical situations, and that testing if an
object is (U ; I)-reachable is easy. Therefore, Theorem 28 can be viewed as an
easy criterion to say if a category has enough projectives.

Example 5. All categories in Example 2 have enough projectives.

6 Weak Inclusion Systems for Complex Categories

In this section, (weak) inclusion systems are built for comma categories, func-
tor categories and categories of algebras and coalgebras, from (weak) inclusion
systems for the categories involved.

6.1 Comma Categories

Given F : C ! A and G : D ! A, the comma category (F=G) has triples
hC; f : F(C)! G(D); Di as objects, where C and D are objects in C and D, re-
spectively, and f is a morphism inA. A morphism from hC; f : F(C)! G(D); Di
to hC 0; f 0 : F(C 0)! G(D0); D0i in (F=G) is a pair (c : C ! C 0; d : D ! D0) of
morphisms in C and D, respectively, such that f ;G(d) = F(c); f 0.

Proposition29. Let hIC ; ECi, hID; EDi and hIA; EAi be weak inclusion system
for C, D and A, respectively, and let F : C ! A and G : D ! A be functors such
that F preserves the EC-morphisms and G preserves the inclusions. Then

1. hI; Ei is a weak inclusion system for the comma category (F=G), where

I = f(iC ; iD) 2 (F=G) j iC 2 IC ; iD 2 IDg
E = f(eC ; eD) 2 (F=G) j eC 2 EC; eD 2 EDg

2. hI; Ei is an inclusion system if hIC ; ECi and hID; EDi are inclusion systems.

Proof. 1. It is straightforward that I and E can be organized as subcategories
of (F=G) having the same objects as (F=G); also, it can be easily seen that I is
a partial order. It remains to show that every morphism (c; d) can be factored
uniquely as a morphism in E composed with a morphism in I.

C

c

��

ec

��<
<<

<<
<<

F(C)
f //

F(c)

��

F(ec)

##G
GGG

GGG
G G(D)

G(d)

��

G(ed)

{{x x x
x x x

x x
D

d

��

ed

��� �
� �
� �
� �

c(C)Pp
ic��� �

� �
� �
�

F(c(C))
h //M m

F(ic){{x x x
x x x

x x
G(d(D))� q

G(id) ##FF
FFF

FFF
d(D)� n

id ��=
==

==
==

C 0 F(C 0)
f 0 // G(D0) D0
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We claim that (c; d) can be uniquely factored as (ec; ed); (ic; id). Let us show
that (ec; ed); (ic; id) is a correct factorization of (c; d), i.e., (ec; ed) and (ic; id) are
morphisms in (F=G) and (c; d) = (ec; ed); (ic; id). Since F and G are morphisms
of weak inclusive categories, by diagonal-�ll-in lemma there exists a unique
h : F(c(C)) ! G(d(D)) such that f ;G(ed)) = F(ec);h and h;G(id) = F(ic); f 0.
This certi�es that (ec; ed) and (ic; id) are morphisms in (F=G), from hC; f;Di
to hc(C); h; d(D)i and from hc(C); h; d(D)i to hC 0; f 0; D0i, respectively. Since
(ec; ed); (ic; id) = (ec; ic; ed; id) = (c; d), we deduce that it is a factorization of
(c; d). Now, suppose that (eC ; eD); (iC ; iD) is another factorization of (c; d). Then
eC ; iC = c and eD; iD = d, and because of the uniqueness of factorizations in C
and D, we deduce that (eC ; eD) = (ec; ed) and (iC ; iD) = ic; id). Therefore, hI; Ei
is a weak inclusion system for (F=G).

2. It follows from the fact that (eC ; eD) is an epic whenever eC and eD are
epics.

6.2 Functor Categories

The category CD has functors D ! C as objects and natural transformations
between them as morphisms.

Proposition30. Let hIC ; ECi be a weak inclusion system for C and let D be any
category. Then

1. hI; Ei is a weak inclusion system for the functor category CD, where

I = fi : F ) G j (8F;G 2 jCDj)(8D 2 jDj) iD 2 Ig
E = fe : F ) G j (8F;G 2 jCDj)(8D 2 jDj) eD 2 Eg

2. hI; Ei is an inclusion system whenever hIC ; ECi is an inclusion system.

Proof. 1. It is straightforward that I and E are subcategories of CD with the
same objects as CD, and that I is a partial order. It remains to show that every
natural transformation can be uniquely factored as e; i with e in E and i in I.
Let � : F ) G be a natural transformation and � : D ! D0 be a morphism in
D.

D

�

��

F (D)

F (�)

��

e�D

//

�D

**
HD

H�

��

� �
i�D

// G(D)

G(�)

��
D0 F (D0)

e�
D0 //

�D0

33HD0
�� i�

D0 // G(D0)

Denote by HD and HD0 the objects �D(F (D)) and �D0(F (D0)), respectively,
and by H� the unique morphism given by the diagonal-�ll-in lemma, such that
e�;H� = F (�); e�D0 and H�; i�D0 = i�D ;G(�). The reader may check that

H : D ! C de�ned by H(D) = HD and H(�) = H� is a functor. Thus, we
got the factorization � = e�; i�, where e� : F ) H and i� : H ) G are the
natural transformations e� = fe�D j D 2 jDjg and i� = fi�D j D 2 jDjg. The
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uniqueness of this factorization comes from the uniqueness of factorizations of
each �D with D 2 jDj.

2. It follows from the fact that e : F ) G is an epic in CD whenever each
eD : F (D)! G(D) is an epic in C, for each D in D.

6.3 Algebras and Coalgebras

Given a functor F : A ! A, a pair (�A; A) is an F-algebra i� �A : F(A)! A
is a morphism in A. Giving two F-algebras (�A; A) and (�B ; B), f : A ! B
is a morphism of F-algebras i� F(f);�B = �A; f . F-algebras together with
morphisms of F-algebras give a category, Alg(F). Dually, (A;�A) is an F-
coalgebra i� �A : A ! F(A), and f : A ! B is a morphism of F-coalgebras
i� f ;�B = �A;F(f). The category of F-coalgebras is written CoAlg(F).

Proposition31. Let hI; Ei be a weak inclusion system of A. Then hI; Ei is a
weak inclusion system of

1. CoAlg(F) if F preserves inclusions,
2. Alg(F) if F preserves E-morphisms.

Proof. We prove only 1., 2. being dual. Let f : (�A; A) ! (�B ; B) be a mor-
phism in CoAlg(F) and let ef ; if be its factorization in A, with ef : A! f(A)
and if : f(A) ,! B. Since F preserves inclusions we get that F(if ) is in I, so by
the diagonal-�ll lemma there is a unique morphism, let us denote it �f(A), from
f(A) to F(f(A)) such that ef ;�f(A) = �A;F(ef ) and if ;�B = �f(A);F(if ).
Therefore ef : (A;�A) ! (f(A); �f(A)) and if : (f(A); �f(A)) ! (B;�B) are
morphisms of F-algebras and they give a factorization of f in CoAlg(F). Obvi-
ously, this factorization is unique.
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