The Automorphism Group of a Hypercube¹

Frank Harary (Applied Computational Intelligence Laboratory Department of Electrical and Computer Engineering University of Missouri at Rolla, USA Email: fnh@crl.nmsu.edu.)²

Abstract: We present explicitly in this expository note the automorphism group of the hypercube Q_d of dimension d as a permutation group acting on its 2^d nodes. This group $\Gamma(Q_d)$ acts on the node set V_d of Q_d and thus has degree 2^d . It is expressed as the binary operation called exponentiation which combines the two symmetric groups S_2 (of degree and order 2) and S_d (of degree d and order d!). Specifically,

$$\Gamma(Q_d) = [S_2]^{S_d}$$

has order $2^d d!$.

Key Words: Automorphism group, hypercube, permutation graph. **Category:** F.4.1.

1 Introduction

For completeness, in this mainly expository note, we include some definitions that can be found in the books [4,6].

A graph G = (V, E) consists of a finite nonempty set V of n vertices or nodes and a subset E of the set of all unordered pairs of distinct nodes, called *edges*. We may write $V = \{v_1, v_2, \ldots, v_n\}$ and $E = \{e_1, e_2, \ldots, e_m\}$. Two nodes of G are *adjacent* if they are joined by an edge.

An isomorphism between two graphs G, G' is a 1-1 correspondence between V and V' that preserves adjacency. An *automorphism* of G is an isomorphism of G with itself. Hence each automorphism of G is a permutation of V (but not conversely, unless $G = K_m$, the complete graph, or its complement, the graph with n nodes and no edges).

It is well known that the set $\Gamma(G)$ of all automorphisms of a graph G forms a permutation group of degree n = |V| acting on the object set V = V(G).

2 Two Binary Operations on Permutation Groups

Consider two permutation groups A, B acting on object sets X, Y with orders a, b, and degrees d, e, respectively. Their composition or wreath product, written A[B] and called "A around B" (see Polya [9]) acts on the cartesian product $X \times Y$ as follows. For each permutation $\alpha \in A$ and any sequence $(\beta_1, \beta_2, \ldots, \beta_d)$

¹ C. S. Calude and G. Stefănescu (eds.). Automata, Logic, and Computability. Special issue dedicated to Professor Sergiu Rudeanu Festschrift.

 $^{^2}$ On leave from New Mexico State University, Department of Computer Science, Las Cruces, NM 88003, USA.

of d (not necessarily distinct) permutations in B, there is a unique permutation $\gamma \in A \times B$ such that for each ordered pair (x_j, y_j) in $X \times Y$, we have

$$\gamma(x_i, y_j) = (\alpha x_i, \beta_i y_j).$$

Frucht [1] made the following observation on the automorphism group $\Gamma(G)$ of a graph G consisting of k copies of a connected graph H:

$$\Gamma(G) = S_k[\Gamma(H)].$$

The symmetric group S_k serves to permute the k copies of H.

3 The Exponentiation

The exponentiation group written $[B]^A$ of B raised to the A is the permutation group acting on Y^X , the set of all functions from X into Y, as follows:

For each $\alpha \in A$ and each sequence $(\beta_1, \beta_2, \ldots, \beta_d)$ of permutations in B, we obtain the permutation $\gamma \in [B]^A$ which takes a function $f \in Y^X$ to the function γf defined for all $x_i \in X$ by

$$\gamma f(x_i) = \beta_i f(\alpha x_i).$$

By these definitions, the two *abstract* groups A[B] and $[B]^A$ are isomorphic.

4 Graphs with These Two Operations

It is well known [4, p. 165] that a graph G and its complement \overline{G} have isomorphic automorphism groups.

The complement of the octahedron O_3 is the graph consisting of three disjoint edges, written $3K_2$. Similarly, the complement of the *d*-dimensional hyperoctahedron O_d is the graph dK_2 . By the result of Frucht [1], $\Gamma(O_d) = S_d[S_2]$.

For the definition of the cartesian product $G \times H$ of two graphs, see [4, p. 163]. One of the many equivalent ways [5] to define a hypercube Q_d uses the recursive cartesian product equations:

$$Q_1 = K_2, \ Q_{d+1} = Q_d \times K_2.$$

Thus $Q_3 = K_2 \times K_2 \times K_2$.

Theorem 1. The automorphism group $\Gamma(Q_d)$ of the d-dimensional hypercube Q_d is the exponentiation group $[S_2]^{S_d}$.

The proof was extensively generalized by Palmer and Robinson [8]. Earlier, Slepian [11] in 1953 developed painstakingly the cycle index (see [9]) of this exponentiation group in order to enumerate the types of Boolean functions of a given number of variables. And still earlier, Polya [10] in 1940 did the same thing but only for $d \leq 8$. Neither of these specified the group of the theorem explicitly.

References

- R. Frucht, On the groups of repeated graphs, Bull. Amer. Math. Soc. 55 (1949) 418-520.
- [2] F. Harary, On the number of bi-colored graphs, Pacific J. Math. 8 (1958) 743-755.
- F. Harary, Exponentiation of permutation groups, Amer. Math. Monthly 66 (1959) 572-575.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading (1969) p. 164.
- [5] F. Harary, Presentations of a hypercube, Proceedings of the First Hong Kong Conference on Artificial Intelligence (1988).
- [6] F. Harary and E. M. Palmer, *Graphical Enumeration*, Academic Press, New York, 1973.
- [7] E. M. Palmer, The exponential group as the automorphism group of a graph, in Proof Techniques in Graph Theory (F. Harary, ed.) Academic Press, New York, 1969, 125-131.
- [8] E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, *Acta Mathematica* 131 (1973) 123-143.
- [9] G. Polya, Kombinatorische Anazahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937) 145-253.
- [10] G. Polya, Sur les types des propositions composées, J. Symbolic Logic 5 (1940) 98-103.
- [11] D. Slepian, On the number of symmetry types of Boolean functions of n variables, Canad. J. Math. 5 (1953) 185-193.