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Abstract: In this paper we investigate the m-calculus guards, proposing a formalism
which use exclusively machine tradition concepts: state, resource, transition. The re-
duction mechanism is similar to the token-game of Petri nets. We provide a multiset
semantics for the m-calculus by using this formalism. Moreover, our machines have a
graphical representation which emphasizes their structure. As a consequence, we give
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1 Introduction

There are various formalisms for concurrent distributed computations. Among
them, there exist two important classes coming from two different classical ap-
proaches of computability. On one hand, there are machines such as Petri net-
s, communication automata, ...where the central concepts, emerged originally
from Turing machines, are state and transition. On the other hand, there are
process algebras such as CSP , CCS , m-calculus, ... where the central concepts,
emerged originally from A-calculus, are term and redex. Process algebras have
nice theoretical properties determined mainly by compositionality. Machines are
more effective and closer to implementation. These two traditional research lines
are strongly connected. It is well-known that A-calculus and Turing machines
have the same computation power. In this sense, Turing machines correspond to
the A-calculus. The m-calculus [Mil93] is a process algebra (modulo an equation-
al theory) coming along the tradition started by A-calculus. It is an extension
of CCS. While for CCS there exist corresponding machines (see for instance
[Tau89]), there is no machine widely accepted for m-calculus. Two semantics
[Eng93, BG95] for the m-calculus use Petri nets as a corresponding machine.
However, these approaches did not pay a particular attention to input guard-
ing, an important interaction operator of the 7w-calculus. In fact, this operator is
interpreted by a similar term-like abstract construction. In this way, the corre-
sponding Petri nets lose some features of the automata tradition. We investigate

1 C. S. Calude and G. Stefinescu (eds.). Automata, Logic, and Computability. Special
issue dedicated to Professor Sergiu Rudeanu Festschrift.
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deeply the m-calculus guards, proposing a formalism which use exclusively ma-
chine tradition concepts: state, resource, transition. The reduction mechanism is
similar to the token-game of Petri nets. We provide a semantics of the m-calculus
by using this formalism. Moreover, our machines possess a graphical representa-
tion which emphasizes their structure. As a consequence, we get a new improved
graphical representation for the m-calculus.
Since identical machines correspond to structural congruent m-processes, our ma-
chines could be thought as normal forms for the mw-processes with respect to the
equational theory imposed by structural congruence.
Consequently, concerning interaction, we remark that machines are more effec-
tive than processes. In order to identify a redex within a w-process, we sometimes
have to transform the m-process according to the structural congruence axiom-
s. We have not such a need for our machines, where all possible reductions
are available at any time. Such aspect of effectiveness is suitable and desirable
for implementation. Our machines provide also a modular description of the -
processes, well visualized by their graphical representations; this can be quite
useful for programming.

The paper is self-contained. Section 2 provides preliminary notions. Section
3 is devoted to R-machines and its graphics. In section 4 we define abstract R-
machines. P-machines are introduced in section 5 as an algebra of R-machines.
To aid their presentation, we use the graphics of R-machines already introduced
in section 3. Section 4 defines abstract R-machines, and we introduce then our
P-machines. In section 5 we give a characterization theorem for (quasi-finite) P-
machines. Section 6 introduces abstract P-machines. Dynamics of these machines
is described in section 7, together with some properties. Section 8 is devoted to
the expressive power of our machines; we give a translation from 7w-calculus to
P-machines together with some results related to this translation. The most
important result asserts a faithful operational correspondence. This section ends
with an example. Section 9 presents conclusions and comparisons with related
works.

2 Preliminaries

We use in this paper an extension of natural numbers set N, = N U {w}, where
w is a special element which is not in N. We denote by N* the set N\ {0}. The
usual order relation < and operations + and — over N are extended to N, such
that foreveryn e Nyw4+n=n+w=wt+w=w,w—n=w,n—w=w-—-w =0,
and n < w. We denote by < the reflexive closure of <. The addition operation +
over N, is associative, and thus it can be extended to finite and infinite sums.
If such a sum has a term w, then the whole sum is w. If an infinite sum of terms
from N diverges, then its value is defined to be w.

A multiset over a set X is a function r : X — N,,. The set X is the support
of the multiset r. If x € X, then r(z) is the multiplicity of  in the multiset r.
The set of all multisets over X is denoted by M (X). We shall use two particular
members of M(X) : empty multiset Ox given by Ox(z) = 0 for every x € X and
singleton multiset {z]} x, determined by z in X, and given by {z} x () = 1, and
{z}x(y) = 0 for every y € X, y # x. We shall write §§ and {af} instead of Bx
and {af} x whenever the support X is clear from the context.
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We extend some usual set operations to multisets and discuss a few properties
of them. Let r € M(X) and r; € M(X;), i =1,2. Then

EmTELTifzeX A r(x)>0.

=m 71 =m 12 iff © €, rq implies © €, r2 A r1(x) = r2(z) and
x €, o implies x €, 11 A 71(x) = ro(z) for every z.

W orWry € M(X1 U X>y) is defined by (11 Wry)(x) = s1(x) + s2(z)
for z € X1 UX> and s; € M(X1 U X3) such that s; =, r;,1 = 1,2.

— rp —ry € M(X)) is defined by (r; — r2)(z) = max{ri(z) — s(z),0}
for z € Xy and s € M(X; U X») such that s =, ro.

Remark. (i) If r,s € M(X) and r =, s, then r = s. (i7) Given a set ¥ and
r € M(X), there exists an unique s € M(X UY') such that r =, s.

The second assertion in the previous remark ensures that W and — are well de-
fined. To be precise, the multisets s always exist and their uniqueness shows that
these operations do not depend on the choice of them. Moreover, the multiset
equality =, can be considered not only as a predicate to compare two multisets,
but also as an assignment operator. Thus, if we have a multiset » € M(X) and
consider s € M(X UY), then by writing s =, r the multiset s is uniquely
determined by r.

Given a function f : X — Y, we can extend it to pairs and multisets. We
define f*: X x X = Y xY by f*(z1,z2) = (f(z1), f(x2)) for any z1,22 € X. If
Z is a countable subset of X and r € M(Z), then r is either the empty multiset,
or a singleton multiset, or it is a multiset union of singleton multisets (multiset
union can be extended to countable sets of multisets). Consequently, the image
of the multiset r by the function f is the multiset f(r) € M(f(Z)) defined by
f0z) = 0pz), F{2h2) = {f(2)}s(2), and f(Brer k) = Wrek f(ry) for some
countable set K.

Remark. We consider a function f: X — Y, two countable subsets Z and Z' of
X, and two multisets r and 7’ over Z and Z'. (1) If r =,,, ', then f(r) =, f(r').
(2) If z €, 7, then f(z) €, f(r). Moreover, if k and [ are the multiplicities of z
and f(z) in r and f(r), then k <.

3 Resource Machines

To define our resource machines, we assume given two uncountable infinite mutu-
ally disjoint sets N and T of nonterminals and terminals. We shall use z,y, z . ..
to range over NV and a,b,c... to range over 7. Let R = N UT be their union,
ranged over by «a, 3,7y ... We shall write & for an enumeration of nonterminals
T1,Z2,..., @ for an enumeration of terminals aq,as,..., and & for an enumer-
ation of terminals or nonterminals ay,as,... Given such an enumeration, its
components are distinct, and the enumerated set is countable. For the sake of
simplicity, we keep the same notation to denote the enumerated set.

Definition 1. Let I be a subset of N containing 0. A R-machine indexed by [
is a structure A = (g, r, —); where

— ¢ = (¢i)iers 1s a family of countable sets ¢; C R called states
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— r = (r;)ier is a family of resources r; € M(q; x ¢;) for g;
— = = (—=4j)i,jer is a family of transitions —;; C ¢; x ¢; from g; to ¢; .

To every R-machine, a directed graph called state graph is associated. Given
a R-machine A = (q,7, )1, qo is called the initial state of A. By I* is denoted
the set I\ {0}. The associated state graph of A is Hy = (I, E), where E =
{(G,j) € IXI| —;;#0}. Ais called quasi-finite if every path in H4 has a finite
length, |g;|,| —; | are finite, and r;(a, 8) < w, Va, B € ¢;, Vi, j € I. To simplify
the notation, whenever f is a family of (multi)sets, we use the same f to denote
the (multiset) union of the component (multi)sets.

The graphical representation of a R-machine is given by a pseudo-graph. The
nodes of the pseudo-graph are labeled injectively by elements of R. They are
connected by directed edges and by hyperedges. Finally, the nodes connected by
a hyperedge serve as the vertex set for some directed multigraph. To be precise,
given a R-machine A = (q,r, —)r, the elements of the set ¢ represent the labeled
nodes and the elements of the family ¢ represent the hyperedges of the pseudo-
graph; e.g. go = {x,a,y} is the hyperedge represented by an oval labeled with
go and connected through tentacles to the nodes labeled by x,a, and y of the
pseudo-graph, as in the following figure:

The elements of the family r are directed multigraphs. In particular, r; is a
directed multigraph having the vertex set g;. This multigraph is represented
inside the hyperedge labeled by g;; e.g. for the above ¢o and

ro(z,a) = ro(a,a) =ro(y,y) =2
T‘o(l',y) = TO(yam) =1
ro(a, ) = 0, otherwise

we have the following graphical representation:

The elements of the set — are the directed edges of the pseudo-graph; e.g.
(a, B) € =4, denoted by a —;; 3, is the directed edge from the node labeled
by a to the node labeled by § of the pseudo-graph, represented as in the figure:
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4 Abstract Resource Machines

We don’t want to distinguish between two R-machines which differ by some
irrelevant information. We shall identify them by a notion of isomorphism. We
shall call abstract machine such an isomorphism class.

Definition 2. Let A = (g,7, —); be a R-machine. For every i € I we define
a set useful(g;) of the useful elements in ¢; as the smallest set closed to the
following rules

— if (a, B) €m 7, then a, 8 € useful(q;)
— if @ —;; B, then a € useful(g;)
— if @ —; B, then B € useful(q;) .

Definition 3. Let A = (¢,r7,—); be an R-machine. We define the R-machine
useful(4) = (¢/,r',—=")r by

— ¢} = useful(q;), i €T
i = Ti|useful(qi)xuseful(qi)7 iel
— —);j = —>ij i,7€1.

Definition4. Given A and B two R-machines, and their corresponding R-
machines useful(4) = (¢*,r4, ="); and useful(B) = (¢%,rB, =P);, we say
that A and B are isomorphic if there exist two bijective mappings ¢ : ¢* — ¢®
satisfying ¢(z) = = whenever z € N, and o : I — J satisfying 0(0) = 0 which

fulfill the following conditions

— ¢ (rf) :Tf(i); =
— ¢ (=8) ==y bIET.

We use the notation (¢,0) : A= B, or simply A & B.

We can remark that the conditions within the definition of weak isomorphism
refer to resources and transitions. These conditions are enough, they ensure a
suitable correspondence for states.

Proposition5. Let A and B be two R-machines, and their corresponding
R-machines useful(4) = (¢4, 74, =) and useful(B) = (¢%,rB,—B);. If
(p,0) : A= B, then ¢(q*) = qf(i), Viel.

The previous defined isomorphism is an equivalence. Modulo this equivalence,
we can rename the states of an R-machine, remove elements which are not useful,
and rename the elements of 7" which appear within the R-machine.

Abstract machines have almost the same graphical representation as R-
machines. To be precise, the graphical form of an abstract machine corresponding
to a R-machine A = (q,r, =)y, i.e. its isomorphism class, is obtained starting
from the graphical representation of A. For every hyperedge g;, a tentacle which
leads to a vertex bearing a label that is not in useful(g;) is removed. The reached
vertex is also removed, excepting the case when it is used by another hyperedge.
All the labels from T together with the labels of hyperedges are removed.
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5 P-Machines

When we describe the graphical representation of an abstract machine, we did
not explain how we identify the initial state, after we remove the labels of the
hyperedges. In fact, we are working with a subset PM® of the R-machines where
states form a directed rooted tree; the initial state is the root of this tree, and
it is easily to be identified.

We define now the endomorphisms over R-machines.

Definition 6. Given a R-machine A = (¢,7,—); and a function f : R — R, the
image of A by f is a R-machine fA = (¢',r',—')s defined by

f>< (T‘i), 1€1

'j: fx(_>ij)7 Z:.] € I -

!

q;

!

— 7
_)

S~

Substitutions are particular endomorphisms.
Definition 7. Let & and 3 be two enumerations from R such that |@| = |3]. A
substitution {&/f} : R — Ris given by {a/5}(y) = if (y = Bk), then ay, else ~.
We present some simple properties of substitution in the next lemma.

Lemma8. Let A= (q,r7,—)r be a R-machine. Then

1. {a/BYA=A, if Bng=10

2iajajd=d

3. {a/BB/aYA = {a/a}A, if g =0 S

4. {a/BHo /B A ={a/[B'Ha/BYA, if BN =anp =o' NB =0 .
Definition 9. The set PM® of P-machines is defined inductively by starting
from two simple machines

nil : PM¥ contains the R-machine nil "</ (¢,r,—)r where I* = () and

-
*7‘0:@ Y%
*—)00:0.

def

basic : If z,y € N, then PM® contains the R-machine 1(z,y) = (q,r,—)1
where I* = () and

- qOZ{xay} x a, Y
—ro={ () [ °
— —)00:0 .

and using the following operations:

prefizing : Let x,y € N, A= (¢,7,—) € PMY, a €T\ ¢q,and k € N\ I. If we

note {a/y}A = (¢',r',—=')r, then PM" contains the R-machine (z,y)q 1 4 def

(¢',rt, =)k where K = I'U {k} and
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% = qp Y {a}

q = {«}
—rl=rliel*

r% =mTh

ro =
- 2= LjeTr

b= (@)

— 1. = (), otherwise.
restriction : If A = (¢,r,—)r € PM®, & C N, and @ C T\ ¢ such that |Z| = |a|,
then PM" contains the R-machine (%)zA4 e {a/z}A.
parallel composition : Let K be a countable set. If Ay = (¢¥,r*, —*); € PM¥,
k € K such that each of the families (7' N ¢*)rex and (7, )keK has mutually
disjoint sets, then PM® contains the R-machine Qe g Ak = (q,r —); where

I = Ugek Ik and
LA

fqi:qf,iEI,j,kEK

CIo—Ukequ
fr,—r e, ke K

k
To =m UkEK L)

- === i€, ke K

—ij = 0, otherwise.

In PM® we consider the subset PM of the quasi-finite R-machines.
Lemma 10. Given a R-machine A, if A € PMY, then useful(A) = A.
Lemmall. Let A, B € PM" such that A= B. If A € PM, then B € PM.

Lemma 12. If all constructions involved are valid, then

1. {&/B}nil = nil ) )

2. {a/Bi1(z,y) = 1({a/B}z,{a/B}y) N
3. {a/BY (@, 9)arA = ({&/B}2,9)ar{@/BYA, if y,a g GU S
4. {a/BH@)aA = (%)a {a/B}A, ifani=FNi=FNa=10
5. {&/B} ®rex Ax = ke {a/B} Ay .

Lemma13. Given a R-machine A = (q,r,—), whenever the constructions in-
volved are valid, we have

(@, 9)akA = (2,9 )ar{y' /y}A, if y € N\ q
(@)aA = (a")a{z'/2}A, if ' TN\ (qUZ) .

position14. If A € PMY, then {Z/Z}A € PM? for any two enumerations

1.
2.
Pro

Z,% from N such that |Z| = |Z|.
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The following result gives a characterization for PM. The proof of the theorem
is included into an appendix.

Theorem 15. Let A = (q,r,—)r be a quasi-finite R-machine. A € PM” if and
only if for any i,j € I, A satisfies the following conditions

2. its state graph H 4 is a directed rooted tree having 0 as root
3. useful(q;) = g;
4. if oo =45 B, then
(a) B €T and
(b) whenever B € q (k # j), then there exists a jk-path in Ha.

6 Abstract P-Machines

We denote by APM" the set of all abstract P-machines, and by APM the
set of all abstract quasi-finite P-machines. For every abstract P-machine A, we
associate the set A(A) of the nonterminals, and the number x(A) of the shared
terminals of any P-machine A € A.

Definition 16. Function \ : APMY — 2% is defined by A(A) = ¢ N N, where
Ae PMYNA.

Definition17. If A € APM* and A € PM"” N A, then we define

k(A= J ¢'ng'nT |
ijET 4
i
Definition 18. We define the following operations upon APM® :

L (@AY [(@,y).xdls, A€A;
2. (1)AY [(3):4]x, A€ A;
3. Qrer Ar s [®rer Ak ]~, Ar € Ax, k€ K .

Lemmal9.

1 If A= B, then (z,Y)arA = (2,9)5, B .
2. If A= B, then ()zA = (2);B .
9 If Ay, = Bk for every k € K, then Qpex Ar = QrexBi -

This lemma is not enough to prove that the previous introduced operations are
well-defined. Next proposition comes to show that this is true.

Proposition20. Let z,y € N and let & be an enumeration in N. If A, A €
APM" where k belongs to the (countable) set K, then

(z,y)A € APM” ;
€ APM” ;

1.
2. (2)A
3. ®LGKALEAPMw
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The following lemma is useful in the proof of the previous proposition, but it
suggests also that the requirement that some sets are uncountable is not essential.

Lemma21. Let B € PM* and let S C T, L C N* be two infinite countable
sets. There exits A € PM* such that ¢ NT C S, I CL, and A= B.

Definition 22. If 21,25 € N, then the function {z1/z5} : APMY — APM is
defined by {z1/z2}A = [{#1/22}A]~, where A € PM“ N A.

Lemma23. Let A,B € PM". If A2 B, then {x1/x2}A = {z1/22}B.

Some results given for P-machines are valid for abstract P-machines too. We use
the notations : nil = [nil]~ and 1(z,y) = [1(z,y) |~

Lemma 24.

1. {z1/z2}nil = nil ;

2. w2} (w,y) = 1({z1 /wa}w, {1 [22}y)

3 Axy /w2 }(z,y) A = ({ﬂfl/ﬁfz}ﬁf,y){ﬂfl/ﬂfz}fl, ify € {x1, 22} ;
4. {z [z Ha)A = (z){x1 /22 } A, if & & {z1,22} ;

5. {x1/x2} Orer Ax = Opex {x1/z2} A .

Lemma 25.

1- (z,y)A = (z,y'){y'/y} A, if y' & MA) ;
2. (2)A = (e){&' |2} A, if ' € A(A) |

Lemma?26. If A € APM and A € PM* N A, then A € PM.

S

7 Dynamics

Until now we talked about the static part of our machines. We proceed with our
approach, and we present the dynamics. The static part of our machines uses
concepts as those of state, transition or resource derived from the formalisms that
belong to the tradition of machines. The dynamics of our machines also uses a
token-game mechanism similar to that of Petri nets. However, our machines have
a flexible structure.

First we focus our attention on the helpful relation — C PM x APM.

Definition 27. Let A = (¢*, 74, —=4);, € PM. If we have (ai,7) € ro and
v —or 2, then A — [{al/ag}B]~ where B = (¢%,r8,—%), is given by
I =14\ {k} and

7q]B:q]A7]€I§)

quqajuq;?;
—_ > *
- —r]-,]EIB,

T(?B:m (ﬁi— {(an, ) @ ri;
- =g =i L ey,
-t == U=, i ey,

—)5 = (), otherwise.
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The multiset equality 7& =, (r§' — {(a1,8)}) @ r is the core part of the
reduction mechanism. We can remark some similarity with the token-game of
Petri nets. But what makes the difference is that in our machines the tokens are
consumed. Resource (a1, 3) €,, 1o — which corresponds to a token in Petri nets
—is consumed, and not sent. Moreover, our machines have a flexible structure,
and not a fixed one as that of Petri nets. After the resource of the initial state is
consumed, this state, qo, is enriched (by fusion) with the resources of the state g
determined by the transition f —or as. We call (1,7, az; k) a reduction tuple
of A. We shall use p, 7 ... to range over reduction tuples. If p is a reduction tuple
of A, then we write A —* A for the reduction of A by p.

Proposition 28. — is well-defined.

The proof of this proposition is mainly based on theorem 15. We extend now +»
to a relation = upon APM.

Definition 29. We define A = B if A — B for some A € A.

The next lemmas can be proved by analyzing the corresponding reduction tuples.
Lemma30. Let A BE PM. If A= B and A — A, then B — A.

Lemma 31.

1. If Al = ./42, then (57)./41 = (CE).AQ
2. If () A1 = A, then there exists Ay such that Ay = Ay and A = (£) A, .

Lemma 32.

1 1(,2) @ (5,5)A = {z/y}A
2. IfAl :>./42, then A1 ®./4:>./42®A andA®A1 :>./4®./42 .
3. If A® B = C, then one of the following possibilities holds

la) A=A 1) B=B
C=A®B C=A®B
2a) A=A ®1(z,z) 2b) A= (a)((z,v)A: ® As)
B = (a)((z,v)B1 ® B2) B =B ®1(z,z)
C=.A1®(ﬁ)({z/v}81 ®82) CZBl®(ﬁ)({Z/U}.A1 ®A2)
3a) A= (w)(A ®1(z,w)) 3b) A= (@)((z,v)A4 ® As)
B = (it)((x,v)B1 ® Bs) B = (w)(B1 ® 1(z, w))
where %U: (Qf)s) gélsg(gggr(l{cg/i%}lgl ®B2)) where Cﬂ?w( ?s) ngleé?il(lgr)l(ciazl/nv}Al ©42))

w
N\ M A ® B) such that |a| < k(B) N\ MA ® B) such that 2| < k(A)

8 From m-calculus to P-machines

To show the expressiveness of our machines we compare them with w-calculus.
This is a calculus for interaction which has the full power of Turing machines.
We show that m-calculus can be simulated with our machines. Consequently,
everything the Turing machines can do, our machines can also do. A natural
question is the following : can our machines do more ? The well-known Turing-
Church thesis seems to give us a negative answer. Nevertheless, in a recent paper
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[Weg98] it is stated that Turing machines can not simulate interaction. In this
way, a machine with a reduction mechanism based on interaction — and this is
our case — can do something that a Turing machine can not do. This is not an
argument to infirm the recalled thesis, but just one more step towards a better
understanding of the power of interaction.

8.1 m-calculus

First we introduce the formal m-calculus framework. We use the asynchronous
version of the 7-calculus [HT91, Bou92, ACS96], i.e. a fragment of the m-calculus
with a particular form of replication, where there is no output prefixing and
nondeterministic sum. Therefore we don’t use the output guards Z(z).P, but
only the output messages T(z); an output message denotes the emission of a
name z along a channel z. It is well-known that asynchronous m-calculus can
simulate full 7-calculus.

Let X C N be a infinite countable set of names. The elements of X' are
denoted by z,y, z... The terms of this formalism are called processes. The set
of processes is denoted by P, and processes are denoted by P,Q, R... .

Definition 33. The processes are defined over the set X of names by the fol-
lowing grammar

P:=0 | %) | z@).P | z(y).P | veaP | P|Q

0 is the empty process. An input guard z(y).P denotes the reception of an
arbitrary name z along the channel z, and afterwards behaving as {z/y}P. A
replicated input guard !z (y).P denotes a process that allows to generate arbitrary
instances of the form {z/y} P in parallel, by repeatedly receiving names z along
channel the . The informal meaning of the restriction vz P is that z is local in
P. P | @ represents the parallel composition of P and Q.

In z(y).P, the name y binds free occurrences of y in P, and in vz P, the name x
binds free occurrences of z in P. We denote by fn(P) the set of the names with
free occurrences in P, and by =, the standard a-conversion.

Over the set of processes it is defined a structural congruence relation; this
relation provides a static semantics of some formal constructions.

Definition 34. The relation = C P x P is called structural congruence, and it
is defined as the smallest congruence over processes which satisfies

- P=QifP=,Q
-~ Pl0=P,P|Q=Q|P,(P|Q)|R=P[(Q|R),!P=P]|IP
— vz0 =0, vavyP = vyvaP, vz(P | Q) =vzP | Q if z & fn(Q).

The structural congruence deals with the aspects related to the structure of the
processes. Dynamics is defined by a reduction relation.

Definition 35. The reduction relation over processes is defined as the smallest
relation — C P x P satisfying the following rules

(com) Z(2) | x(y).P — {z/y}P

(par) P — @ implies P| R — Q | R

) P — @ implies (vz)P — (vx)Q

str) P=P' P'—Q, and Q' = Q implies P — Q.
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8.2 The encoding of w-calculus by P-machines

Definition 36. The function of interpretation 7 : P — APM is defined by

—I(P | ) =1I(P) @ Z(P) .
Proposition 37. 7 is well-defined.

!

Proof. The proof is mainly based on proposition 3 and lemma 11.
Proposition 38. fn(P) = A(Z(P)).

Proof. A simple induction on P.

Proposition39. Z({z,/z2}P) = {z1/22}Z(P).

Proof. By induction on P, by using lemmas 9, 10, and the previous proposition.
Proposition40. If P, = P», then Z(P,) = Z(P,).

Proof. By induction on the derivation of =. It is based mainly on lemma 10, and
the previous proposition.

Lemmad4l. |[AN(Z(P))| and k(Z(P)) are finite.
Theorem 42.

1. IfPl — PQ, then I(Pl) :>I(P2)
2. If Z(Py) = A, then there exists P» such that P, — Py and A =1(P,).

Proof. Using lemmas 31,32, and the previous propositions. The first part follows
by induction on the derivation of —. The second, by induction on P;. Note that
for the second part, previous lemma plays an important role.

8.3 An example

In this section we use our machines to model a problem of synchronization: a
process P is waiting for a channel z, and then for a channel y along a public
channel u to stock them in z’, and respectively y’'. We deliberately choose this
problem that Milner also uses to explain his graphical form of the 7-calculus
given by the m-nets [Mil94]. In this way, we could compare Milner’s graphical
form of the m-calculus with ours (obtained via the interpretation). A solution
proposed by Honda and Tokoro is to consider two m-processes, a sender S =
vw(u(w) | w(vy).(01(z) | w(ve).V2(y))), and a receiver R = u(w).vvy(w(vy) |
01 (&) o (@(wa) | va(y')-P)).

We translate the processes S (figure a), R (figure b), and S | R into machines by
using their interpretation. Afterwards, we show how our machines dynamically
work by analyzing the reduction sequence of the machine which corresponds to
the process S | R.
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9 Conclusion and Related Works

We introduce in this paper a new formalism for concurrency, namely a 7-calculus
machine with joined resources. We translate the m-processes into these machines,
giving at the same time a refined multiset semantics for the m-calculus. This
approach asked a deep investigation of the input guards. We give a graphical
description for our m-calculus machines. Taking into account that we give a
semantics of the w-calculus by using these machines, we get a new graphical
representation of the m-calculus. This new graphical representation improves the
faithful m-nets we already presented in [CR98].

The description of concurrent processes has been approached from different
points of view. In particular, machine-like formalisms and various process al-
gebras. These different descriptions can be seen as expressing complementary
views of concurrent processes. Machines are used to describe processes with all
details of their operational behaviour. Process algebras are considered as ab-
stract specifications or concurrent programming languages, and they are based
on compositionality. By our machines, we describe the details of the operational
behaviour, but preserving also the compositionality and the expressive power
of the m-calculus. Using the semantics given by Engelfriet or by Busi and Gor-
rieri, someone cannot reach the details of the operational behaviour, and the
corresponding machines for the w-processes are not so effective as ours. Our for-
malism is in fact close to that described by Engelfriet in [Eng93]; our semantics
conservatively extends Engelfriet’s approach.

On the other hand, our translation from m-calculus to P-machine is somehow

similar to the translation from action calculi to molecular forms presented in
[Mil96].
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A Proof of theorem 15

In the proof of the theorem we use the following lemma:

Lemmad43. If A = (q,r,—)r is a quasi-finite R-machine, where I* = (), and
the following requirements

1. —00= 0
2. useful(qy) = qo
3. go C N

hold, then A € PM".

Proof. By induction on |go].

If |go| = 0, then gqo = § and 7o = 0; thus A is nil € PM*.

If |go| > 0, then let = € go. By keeping in mind the graphical form of A, we
consider the labels of those vertices linked by (multi)edges to the vertex labeled
by z, i.e. the set

AI = {y € Qo | (may) €EmTo V (y,x) Em TO}
We also consider the labels of the vertices linked only by (multi)edges to the
vertex labeled by x, i.e. the set

vl‘ = {y € Aﬂv | Vz € do \ {CU}, To(y,Z) = TO(Zvy) = 0}

We now build the following two R-machines:
Az = (¢*%, 7 =), where

—qp = As U{z};

— ry(z1, ) = ro(21,72), (21,22) € (¢§ X {z}) U ({z} x ¢5),

re (z1,22) = 0, otherwise

and
A_x = (q_.t’ r_.t’ _>)Ia where

— g =q0\ (V. U{z}); o

— r¥(x1,22) = ro(z1,%2), T1,22 € ¢3.

First, we show that A, € PM®. To this end we take the following machines
of PM" (parallel compositions of 0 machines is considered nil) :

ro(z,x) times

B, = rl(a:,a:) ®...0 l(x,a:)‘;
B, =1(z,y)®.. 0 1(z,y) ®1(y,2) ® ... ® 1(y,x), wherey e A\ {z}.
rg(z,y)vtimes ro(y,z)‘:uimes

It is easy to show the following decomposition A4, = ®@zeqz B.. It follows that
A, € PM”.

Second, we prove by induction that A, € PM”. To this end, it is easy to
see that |¢¥| < |qo| and that A, satisfies the conditions 1 and 3. It remains to
show that A, satisfies the condition 2. If we suppose it does not, then Iz, € @
such that Vy € ¢¢ we have r¥(zo,y) = rg(y,zo) = 0. By definition of rZ, it
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follows that ro(zo,y) = ro(y,z0) = 0, Yy € ¢&. Since zo € useful(g), Jyo €
qgo such that ro(zo,y0) > 0V ro(yo,z0) > 0. Thus yo € V, U {z}. If yo € V.,
then Vz € qo \ {z}, ro(z,%0) = 70(y0,2) = 0; considering z = xy we get a
contradiction. Consequently, yo = x. This implies zg € A,. We show moreover
that xp € V., and in this way we also get a contradiction. To this end, let
y €qo\{z}. Iy gV,, then y € ¢f and so ro(zo,y) = r0(y,z0) = 0. If y € Vg,
then Vz € go\{z}, ro(z,y) = ro(y, z) = 0; considering z = zo we obtain zy € V,,
contradiction.

We prove that A = A, ® A,. Parallel composition is valid, and let 4, ® 4, =
(¢',r'",—)r. Immediately, go = ¢. It is enough to verify ro =, r{. To this end
we take the multisets k1, k2 € M (qo X go) uniquely determined by k; =, r§ and
ks =m . To show the above multiset equality it suffices to prove that

V1,22 € qo, ro(z1,w2) = ki (w1, 22) + ka1, 72) (%)
Let 21,22 € qo. We proceed by cases.
a) Ifzy =xy =, then z1,22 € ¢F, and 80 k2(z1,z2) = 0. On the other hand,
since x1,z2 € ¢f, we have ki (z1,x2) = r§(z,z) = ro(z1, z2), thus (%).

b) If z; = z and z2 # x, then z; & ¢, and so kz(z1,22) = 0. We proceed by
sub-cases:

—if &g € A,, then 22 € ¢¥, and so ki (z1,22) = r¥(x,22) = ro(z1,x2), thus (x);
—if zo & A,, then ki (z1,22) = 0 because z2 & ¢¥. On the other hand, since
x2 & Ay, we have ro(x, z2) = 0, i.e. ro(z1,22) = 0, thus (x).

c) Ifz; #x and x2 = x ; similar to b).

d) Iz # 2z and x2 # z, then r§(z1,22) = 0 whenever x;,z5 € ¢f. Then
k1 (z1,z2) = 0. We proceed by sub-cases:

—if L1,T2 g Vm, then x1,To € %, and so kQ(CEl,ZEQ) = r_””o(:vl,mg) = 7“0(.271,372),
thus (%);

— if some z; € V,, then z; € ¢¢, and this implies ko (z1,z2) = 0. On the other
hand, since z; € V,, we have Vz € o \ {z}, ro(z,z;) = ro(zi,2) = 0. If we take
z as being the another z;, we obtain ro(x1,z2) =0, so (x).

We have A = A, ® A,, where A,, A, € PM¥. Therefore A € PM".

We are ready now to prove theorem 15:

Proof. " =" By induction on the structure of A given by definition 9.
<" @) Tt will be enough to prove this implication when ¢o C N.

Indeed, let @ be an enumeration of the set go N T". N is large enough to allow an
enumeration § from N \ ¢ with |a| = ||

By lemma 8(2,3), we have A = {a/a}A = {a/§}{y/a}A. Let B = {g/a}A =
(¢',r',—")1. It is easy to show that the R-machine B is quasi-finite and satisfies
conditions 1—4 of the hypothesis. The only difficult part is related to the condition
4. To overcome it, note that the substitution {§/a} does not modify the targets
of transitions in A. If we suppose that the substitution modify them, then there
exists a transition a —;; ¢ in A with ¢ € a. Since A satisfies condition 4(b) and
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¢ € qo, it follows that there exists a jO-path in the tree H4 which has 0 as root.
Thus, we get a contradiction.

B has the required particular form, namely ¢ C N. If the implication is true
for these machines, we get B € PM®. We have angq = 0, and A = (§);B. So
A e PM"~.

b) Moreover, it will be enough to prove this implication when gg C N and
ro = ¢. By a) we can consider ¢y C N. By keeping in mind the graphical repre-
sentation of A, we take the labels of those vertices which are linked by tentacle
to the hyperedge labeled by gy and also are the sources of some transitions, i.e.
the set

A:{I’EQO|1’—)0]',B}.
We consider also its subset

V={z€A|VyE€q, ro(z,y) = ro(y, =) = 0}.
We build now the following two R-machines:

A= (q,7,—)r, where

7Gz:ql7 iEI*,
%:AE_

—Ti=r;, 1 €1,
To =

and

A= (q,r,—")1,, where It =0, and also

— 4, =0 \V;
—I'o=m7To;
— —=g0=10.

First, by using lemma 43, we show that A € PM". To this end we have only
to verify the equality useful(g ) = g . This is equivalent to show that Vz €

4, Jyo € 4, such that (z,y0) €m 1o V (Yo,Z) Em 1. Let g € 4, Since zg €

useful(qp), we have Jyy € qo such that (zo,y0) Em 70 V (Y0,Z0) Em To. Using
the multiset equality ro =, r, we obtain (zo, o) €m o V (Yo, Z0) Em -

Second, it is easy to show that the R-machine A is quasi-finite and it satisfies the
conditions 1-4. Moreover, A has the required particular form, namely g, C N
and Ty = (). If the implication is true for these machines, we get A e PM¥. Let
A® A= (¢,r,—)r be a parallel composition. For every i € I'*, we have ¢; = ¢}
and r; = r!. Immediately, go = ¢, and ro =, rh. Then A = A ® A. Therefore
A e PM"”.

¢) By induction on h4, the depth of the tree H4 = (I, E). By b), we assume
go C N and rg = 0.

If hy =0, then Hy4 is the empty tree having only the root 0 € I and no edges.
Then I'* = . Trivially, —go= 0. Since ro = 0}, we get useful(qgy) = (). A verifies
condition 3, and so gg = (). We obtain that A is nil € PM“.
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If ha > 0, then we proceed again by induction on |go|.

i) If |go] = 1, then let go = {x}. We take the (nonempty) set K = {k €
I'|(0,k) € E}. We consider an arbitrary k in K. Since A verifies conditions 1
and 4(a), there exists a unique ay, € g N7T such that z —o; ar. We take the set
I, C I containing 0 given by I = {j € I | there exists a kj-path in Hq}. We
consider a set Vi, C g. If (ag, @) €, Tk, (@, a) E€m Tk OF a, —g; « for some a,
then we set Vj, to 0, otherwise we set it to {a}.

We build now a R-machine Ay = (¢*, 7%, —*);,, where

QQZQk\ka
-ri=r, 1€},
TS = Tk

k _ . .
— —)ij——>ij, 1,] € I]: R
k _ .
—0;="kj> J € I,
—4;= 0, otherwise .

One can prove that Ay is quasi-finite, satisfies the conditions 1-4, and h4, < ha.-
By induction, we obtain A € PM®.

We can choose y € N \ ¢. Since ¢* C ¢, we have y & ¢*. If By, is the machine
{y/ar} Ay, then one can prove that By, is quasi-finite, satisfies conditions 1-4, and
hp, = ha,. The only difficult part is related to the condition 4. To overcome it,
note that the substitution {y/ax} does not modify the targets of the transitions
of Ay. Suppose this substitution modifies them. Then there exists a —)fj ar a
transition in Ay. By definition of —*, we obtain a —;; ay, where j € I}. Since
A satisfies condition 4(b) and ay € g, there exists a jk-path in the tree H 4.
Then this tree has a cycle. Contradiction. Consequently, by induction we get
Bj, € PM"”.

The machine Cy = (2,y)q, xBr is well-defined, then Cj, € PMY. Let ¢ be an
enumeration of the set

U (& ndnm)

k,IEK

k£l
We can choose an enumeration 2z from N \ ¢, y € Z with |¢| = |Z|. We show by
contradiction that aj & é Suppose there exists [ € K (I # k) such that a € ¢'.
Then ay, € g;, where j € I}U{l}. Since A satisfies condition 4(b) and ay, € g;, then
there exist two 0j-path which are distinct in the tree H4. Contradiction. One
can prove similarly by induction that {Z/¢}B), € PM”. By lemma 12(3), we get
{2/E}C’k = (x,y)ak,k{é/é}Bk. If D}, is the machine {Z/E}Ck, then D), € PM".
The machine B = Qe Dy, is well-defined, then B € PM®. One can prove that
A = (2)zB. Therefore A € PM*.

i1) If |go| > 1, then there exists z € go. Consider the set K = {k € I'| (0,k) €
E}, and also its subsets K1 = {k € K |t —or a} and Ky = K \ K;.
We build now the following two R-machines
Ay = (¢%,r®, =), where I} = {j € I | Ha has a kj-path, k € K1}, and also
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*Qf—fh,ie-rf,
2@ = {z};
-ri=r,t€Iy,

re=0;

A, = (%, 7%, =?%)1,, where I3 = {j € I | Ha has a kj-path, k € K>}, and also

7£:qi)i€]—;>

@ =\ {7}
*ﬁ:T‘i,Z’EI;,
ré¢=0;

2 _ . -
— —)ij ——)i]’,l,]EIQ.

By induction, it follows that A,, A, € PM¥. Let ¢ be an enumeration of the set
¢* Ng*NT. We can choose Z an enumeration from N \ ¢ with |[é| = |Z|. As above,
one can prove that the following machines B, = {#/é}A, and B, = {2/é}A,
are from PM*“. B = B, ® B, is well-defined and thus B € PM*. One can prove
that A = (£)zB. Therefore A € PM*.

B Proofs of the reduction lemmas

B.1 Sketch of proof for lemma 30

Proof. Let A= (¢*,r*, =), and B = (¢B,rP,—P),. There exist two bijec-
tive mappings ¢ : ¢ — ¢® and o : [4 — Ig with 0(0) = 0 s.t. (¢,0) : A = B.
Suppose we have the reduction A —* A by some p = (a1,7,as; k). One can
prove that 7 = (¢(a1), ¢(7y), ¢(az); o(k)) is a reduction tuple of B and B —7" A.

B.2 Sketch of proof for lemma 31

Proof. 1. There exists A € A; st. (£)A; = [(£)zA]~. We have the re-
duction A —* As by a p = (a1,7,a9;k). One can prove that = =
({a/z}an,{a/z}y, aqz; k) is a reduction tuple of (Z)z A, and (£)zA —™ Ay. Thus
(57)./41 = (CE)AQ

2. There exists A € Ay st. (£)A; = [(£)ad]~. Let (£)s4 —»™ A. This
means that 7 = ({a/Z}ay,{a/Z}y, as; k), where p = (ay,7, as; k) is a reduction
tuple of A. If we define Ay by A —* As, then A = As. As in 1, we obtain
(i’)aA —T (i‘)Az Thus A = (i’)Az

B.3 Sketch of proof for lemma 32

Proof.

1. An easy verification by using the definitions.

2. There exist 4; € A; and A € Ast. A1 @ A =[A; ® A]l~. We have a
reduction A; —? As. One can prove that p is a reduction tuple of A; ® A and
Al @ AP Ay ® A. Thus A1 ® A = As ® A. The other part follows similarly.
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3. Thereexist A € Aand B € Bs.t. AQB = [ A® B ]~. We have the reduction

A® B " C by a reduction tuple p = {a1,7,as; k). Let A = (¢4,r4, =47, and
B = (¢®,r8, =B),. There are two cases:
e p is not coming from the parallel composition. Then either i) p is a reduction
tuple of A or ii) p is a reduction tuple of B. We analyse i). If we define A’ by
AP A then A= A'. Asin 2, wehave A B—~? A @ B. Thus C = 4' ® B,
i.e. 1a). Similarly, ii) leads to 1b).

e p is coming from the parallel composition. Then either i) (a1,v) € 7§ and
v =B as orii) (a1,7) €Em rf and v —=§} as. We analyse i). 7 € T because the
sets ¢4 NT and ¢® NT are disjoint. Let * = v and I}, = {k} U{i € I | 3 ki-path
in Hg}. Let é be an enumeration of the set

U éndPnrc | #nefnT
i€l i,jEIR
JEIG\Iy i#j

Immediately, |é| < &(B). There exists an enumeration @ from N \ A\(A® B) with
|é| = |a|. Then B = {¢/é}B = {¢/a}{a/é}B. As in the proof of theorem 15,
we find a decomposition {@/¢}B = (z,v)q,,kB1 ® Bs (take By the substructure
of {@/¢}B induced by I; and considering the state k as the initial one, and
B, the remaining part), where v is chosen from N \ A\(A ® B) and v ¢ @. Let
B; = [Bj]~, i = 1,2. We proceed by sub-cases.

* If @y € N, then let 2z = ;. We have a decomposition A = 4; ® 1(x, z). Let
A = [A1]~. Then AQB = A3 ® (@):( (1(x, 2) @ (%, Y) s,k B1 )@ B2). Asin 1, we
have 1(x, 2)®(x, v) qy 5 B1 —* {z/v}B1. Asin 2, we have (1(z, 2)®(2, y)as,xB1 )®
By —? {z/v}B; ® By. As in lemma 31, we have (@)z((1(z, 2) @ (2,0)a, £B1) ®
By) =™ (4)({z/v}B1 ® B2) where 7 = ({¢/u}aq, {¢/i}7y, az; k) = p. Finally as
in 2, we have AQ B —* Ay ® (@) ({z/v}B1®B2). So C = A1 ® (4)({z/v}B1®Bs).
Thus we obtain 2a).

* If ay € T, then we consider w € N \ AM(A® B), w # v, and w € 4. Then
A ={ar1/an}A = {a1/w}{w/a; }A. There exists a decomposition {w/as}A =
A; ® 1(z,w). Then A = (w)q, (A1 ® 1(z,w) ). Similar to the previous case, we
obtain 3a). Similarly, ii) leads to 2b), and respectively 3b).



