
Type Speci�cation by Regular Expressions

Lout� Soufi
(University of Bourgogne, Lirsia
Fac. Sciences Mirande BP 47870

21078 Dijon France
sou�@crid.u-bourgogne.fr)

Abstract: Generally, programming problems are formally described as function com-
putation problems. In this paper they are viewed as language recognition problems.
More precisely, we sugget to specify types, and programs using the concept of lan-
guages of concatenation of level n, i.e, languages built from regular languages on which
language transformation operations are applied to them. Regular languages denoted
by regular expressions allow an easy connection between those languages of concate-
nation and programming. This connection is naturally done via recurrence relations.
We explain our approach through some examples.

1 Introduction

The formal methods of program development, as for example the algebraic meth-
ods, (see the di�erent approaches in [San91, LUO95, ST95, PAR90]), describe
programming problems as function computation problems. They propose speci-
�cation and/or programming languages incorporating mechanisms and concepts
(such as parametrisation, modularisation..., and subtyping, dependent types,
higher-order functions etc.) for specifying and implementing data types and
functions. We can view these languages, and also those formal methods as \me-
chanical" devices to solve programming problems.
This paper suggests to describe programming problems as language recognition
problems (in the sense of formal language theory). Such languages could be
transformed into executable functions by mechanical devices. As mentionned in
[MG87] a function f : N ! N (N being the natural numbers) can be speci�ed
by a grammar G. Consequently a type (program) speci�cation can be stated as
a problem of recognizing a language in �� (� being some alphabet). Indeed,
generally, in programming a type is a collection of elements. We can put these
elements in a bijective correspondence with the words of ��, i.e strings over �
(see again [MG87] for more details).

Let us illustrate our talk by the following simple examples.

Example 1. A type integer.
The usual integer type can be speci�ed by L(G) = f1n j n � 0g where xi denotes
the word obtained by concatenation of x with itself i times, and x0 = � (the
emtpy word). Thus one can imagine a programming environnment (a mechanical
device) in which 1n corresponds to the integer n.

Example 2. A type directory
The elements of this type can be given by the words of
L(G) = f(1na)k j n > 0; k � 0g.
In our mind 1n is an integer, and a a string of characters.

Journal of Universal Computer Science, vol. 5, no. 9 (1999), 622-631
submitted: 10/6/99, accepted: 15/7/99, appeared: 28/9/99 Springer Pub. Co.

Example 3. A type function f : N ! N
For instance f(n) = n2 can be speci�ed by the context-sensitive language

L(G) = f1nm1n
2

j n � 0g.

\given 1n interpreted as an integer, the outcome of f is 1n
2

(the marker m
separates the input from the output).

Generally, in programming one, gradually, specify complex types in a structured
and modular way. This way is reected in our grammatical approach to type
speci�cation. Our approach consists in specifying types as a \system" of lan-
guages based on regular languages. It proposes to build complex languages up
from regular languages as stated by the theorem 6 (section 3) which is our main
result. It suggests to construct languages from simpler ones using what we call
word transformations. These transformations explicit the construction steps of
a language:
given a complex language, C, we extract regular languages (such an extraction
is decidable). Suppose that we extract only one language L such that the words
of L are subwords of words of C and there is a bijection between M and L. The
problem, now, is to reconstruct C from L. Then we apply to it a transformation,
T 1. We then obtain a new language T 1L (not necessarily regular). To T 1L we
apply Tn: we, obtain the language T 2(T 1L), and so on. At the end of this con-
struction process we get a language M =Tn:::(T 2(T 1L)). The transformations
are choosen in such a way that one can prove that M = L.

Since the regular languages are very simple then their use and transformation
into another languages make easy and natural the speci�cation of types as for-
mal languages. They facilitate the translation of type speci�cations into objects
of a mechanical device. Here, we propose to translate the former speci�cations
into recurrent speci�cations.
Now, if we have a tool for constructing type speci�cations in our sense then it
will become possible to make accessible programming to unskilled persons. This
is our hope in the use formal languages for describing programming problems as
language recognition problems.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations and the DOL systems. The section 3 deals with hierarchy of languages.
In section 3, we discuss type speci�cation and give the example of a tree. The
section 4 shows how type speci�cations can be represented by recurrent speci�-
cations. Finally, in Section 5, a short summary is given.

Related Work

At �rst, we can mention that the presents work is included in the general topic
of the relationship between grammar systems and Programming. Examples of
grammar systems are [CS94, DAS98, WOR97]. The particularity of our work is
the use of a kind of hierarchy languages for specifying types in a structured and
modular way.
The expressive power of the recurrence relations, and of the induction as well are
well known [DB95, GKP94, LOC70]. That is why we suggest the use of recurrent
speci�cation in our approach. Finally, our work has nothing to do with work on
tree grammars and related topics as discussed in [TOM99]. In our approach a
word over an alphabet is not viewed as a term in the algebraic sense.

623Soufi L.: Type Specification by Regular Expressions

2 Preliminaries

We use the following general notation: �� (possibly subscripted) is the set of
all �nite words (sentences, strings) over the alphabet �, � = is the empty word,
and �+ = �� � �.
If w and v are words w; v 2 ��, then so is their contatenation, written xy or w:v.
For further elements of formal language theory we refer to [SAL81, SAL73]. We
suppose that the reader is familiar with the notion regular expressions, and type-
0, type-1, type-2, type-3 languages called respectively recursively enumerable,
context-sensitive, context-free, and right-linear (regular) languages.
We recall that a grammar is termed right-linear if all productions have the form
A! x; A! xB with A;B non-terminals and x a terminal string. As showed in
[HOW91] every right-linear grammar can be transformed into a regular grammar
generating the same language. This paper makes indistinct the regular and right-
linear languages.
It is well known that regular languages are denoted by regular expressions. For
instance, the regular expression a(bb)� denotes the language fab2ig j i � 0g.
Now, we de�ne a DOL system as given in [SAL73]. First we recall that a mapping
h : �� ! ��

1 is a morphism if

h(vw) = h(v)h(w); for all words v and w

A DOL system is a triple D = (�; h; w), where h : �� ! �� is a morphism
and w 2 ��. The system D de�nes the following sequence S(D) of words:

w = h0(w); h(w) = h1(w); h(h(w)) = h2; h(h(h(w))) = h3; h4; ::::

the word h0 is referred to as the �rst element of S(D), denoted by h0, and h
1 as

the second, denoted by h2, and h2 as the third, h3, and so on.

The system D de�nes the following language

L(D) = fhi(w) j i � 0g:

Example 4. D = (fa; bg; h; ab) where h(a) = (ab)2; h(b) = �
L(D) = f(ab)2n j n � 0g.
S(D) = ab; abab; abababab; ::::

The proofs of theorems given in the next section can be found in [SOU99b].

3 Hierarchy of Languages

The goal of this section is to de�ne the languages of concatenation of level n,
for n � 0 in order to build languages of type 0 � i � 3 from languages of type
3 (regular languages). First we introduce the notion of transformation and we
explain how to structure languages as languages of concatenation of level n. We
conclude this section by a theorem related to this structure.

Transformations

By a transformation T de�ned on � and �1 we shall understand a single-
valued correspondence between �� and �1� (where possibly �� = �1�). It is
represented by:

[w1=v1; w2=v2; :::; wi=vi]

624 Soufi L.: Type Specification by Regular Expressions

where wi 2 �� and vi 2 �1� and the wis are all distinct and the same holds
for the vis and such as we have [�=�]. Now, its e�ect on a word � 2 �� is a
word belonging to ��

S
�1� , written T�, that is the same as � but with all

wis occuring in � replaced by the vis. This simultaneous replacement in � of
subwords of � by words is called word transformation. We de�ne the product
(do not confuse with the concatenation) ST by (ST)� =S(T�). In general
[w1=v1; :::; wi=vi]� is di�erent from [w1=v1]:::[wi=vi]�, as illustrated by the fol-
lowing two word transfromations:

Example 5. [a=b; b=c]a = b [b=c][a=b]a = c.

The sum S+T is the transformation such as (T+S)� = T�+S� denoting ei-
ther the word T� or the word S�. Thus from such a sum we can construct
the set SUM = fT�g

S
fS�g. If T=S we have T (� + �) or more generally

T (�+ �) = T�+ T�, where � 2 ��. Obviously sum is associative and commu-
tative. But the product is not commutative. Furthermore sum and product are
not mutually distributive. We have only : T (U + S) = (TU) + (TS).
The two operations, product and sum, are re�ered to as tranformation opera-
tions.

Leftmost Transformations

Suppose that we apply T= [w=v] on a word �. It could happen that � contain
overlapping occurences of w. We decide that a transformation is to be applied
to the leftmost occurence in � reading � from the left to right. Such transforma-
tions are called leftmost transformations. From now we consider only leftmost
transformations. For a language L over � and given a transformation T , on �
and �1 we de�ne

TL = f�0 j �0 = T� for all � 2 Lg

(In fact some � can remain unchanged that means (T� = �. And also these
words � belong to TL. In addition to that it is important to note that T is the
letfmost transformation).

Theorem1. For a given transformation T if L is a regular language then TL
is a regular language.

Corollary 2. If a language L is obtained from regular languages by transforma-
tion operations then L is regular.

Proof. The product is an associative operation and, consequently according to
the theorem 1 we obtain a regular language. Given a regular language, since the
sum corresponds to the union of two regular languages then we obtain a regular
language:

(S+T)L = f�0 j �0 = T� for all � 2 Lg
S
f�00 j �00 = S� for all � 2 Lg.

Generalized Transformations

Generalized transformations are transformations with DOL systems, say D, i.e
transformations of the form either

[(�; v; hk)=(�; v; hi)] = [sk=si] where sj is the jth element of the sequence S(D),

or [(�; v; hk)=(�; v; h
i)] =

625Soufi L.: Type Specification by Regular Expressions

[(�; v; hk)=(�; v; hi)][(�; v; hk)=(�; v; hi�1)]:::[(�; v; hk)=(�; v; h1)]

or [(�; v; hk)=(�; v; hi)] =
[(�; v; hk)=(�; v; h

i)][(�; v; hk�1)=(�; v; h
i)]:::[(�; v; h1)=(�; v; h

i)]

Note 3. A DOL system, D, in a transformation is such that L(D) de�nes a reg-
ular language. As proved in [SAL73], given a regular language, R, it is decidable
if L(D) is contained in R.

Theorem4. If L is a regular language and T a generalized transformation then
L can be transformed into another language
TL = f�0 j �0 = [sk=si]� for all � 2 Lg of type 1 � i � 3.

Note 5. About the theorem 4, we do not know if TL can be a language of type0.

Example 6. The language L1 = fan
2

j n � 1g can be constructed from the reg-
ular language L = fan j n � 2g using the transformations
T= [b=a],
S= [a=(fa; bg; a; hn)], where h(a) = ab; h(b) = b, and
U= [a=ab] .
We can prove that L1 = T (SL+Ufag).
Given n; R1 =SL = f(abn)n j n � 2g, so we have

TR1 = fan
2

j n � 2g and T fabg = fa2g.

In the sequel the term \transformation" will also denote generalized transfor-
mations. Consequently the corollary 2 holds if the transformations are not gen-
eralized transformations.

Structure

We recall that our objective is to express complex languages in terms of simpler
ones as illustrated in the above example. The theorem 4 asserts that some lan-
guages can be obtained by applying transformations on regular languages. Now
we are going to strength that theorem. This strengthening is our main result
(theorem 6) and is based on a manner to classify the languages.
We construct hierarchies by considering the concatenation product and the trans-
formation operations only.
A regular expression over �� is termed a regular expression of level 0. The reg-
ular languages over �� and the empty language are regular expressions of level
0, denoted by RE(0) (more shortly RE(0) languages). Obviously, the concate-
nation of languages RE(0) is a RE(0) language.
If P is a RE(0) language and T a transformation then the language TP is a
RE(1) language. The concatenation of RE(0) languages and RE(1) languages
is a RE(1) language (1 is the higher level) in this product of concatenation.
If L is a RE(1) language then SL is a language RE(2) and so on. More gen-
erally, in a product of languages, the higher level n is determined by a �nite
combination of n transformation operations. A RE(n) language is of the form:

L1L2:::Lk

where L1; L2; :::; LK are RE(m) languages for 0 � m � n, k � 1 and there
exists at least a language Li, 1 � i � k, of level n.

626 Soufi L.: Type Specification by Regular Expressions

Languages transformed into RE(n) languages, n � 0, without using intersec-
tion, di�erence, union, and the complementation operations, are called languages
of concatenation of level n.

Note 6. One can use transformation operations in order to get the same e�ect
that the set operations (union,...). For example let's take the di�erence operation.
fa1; a2; :::; ang� fb1; b2; ::::; bng = f[b1=�; :::; bi=�](A+B)g.

Theorem7. The languages of type 0 � i � 3 are languages of concatenation of
level n, n > 0.

We have not yet an algorithm which transforms a language of type i into aRE(n)
language. However this theorem suggests a bottom-up method. Given a language
L we decompose L into RE(0) languages, R1; R2; :::; Rk for k � 1, such that
the words of Rj are subwords of words of L and there is a bijection between Rj
and L, for j = 1; 2; :::; k. Then we construct a language of concatenation of level
1. After that we construct a language of concatenation of level 1, and so on until
we obtain the words of L. So at each step i of our construction process of L we
build a RE(i) language.

Example 7. The sensitive-context language L = fanbncn j n � 1g can be ob-
tained as follows.
Step 0 from L we choose to extract L0 = fan j n � 1g.
Step 1 L1 = [a=(fa; bg; hn; a)]L0 where h(a) = ab,
Step 2 L2 = [a=b]L1 and L21 = [b=(fb; cg; hn; b)]L2 where h(b) = bc
Step 3 L3 = [b=c]L21 and M = L0:L2:L3.
By construction we have M = L:
From L0 we obtain L1 = fabn�1g. Then we construct L2 = fbng. .
From L2 we obtain L21 = fbcn�1g. Finally we construct L3 = fcng.

Now we are in the position to give a relationship between the languages of
concatenation of level n and programming.

4 Type Speci�cation

This section deals �rst with the use of RE(n) languages to specify types, and
computation and then with the representation of type speci�cations by recurrent
speci�cations.

A type (a program) is just a collection of elements (all the possible outcomes) . In
our grammatical approach, elements (outcomes) of types (programs) are seen as
words of languages. Consequently, type (program) speci�cation become language
recognition problems. Thus in our approach \type speci�cation" and \program
speci�cation" are interchangeable. We will use the term \type speci�cation".
A type speci�cation is given by a language of concatenation of level n, n � 0.

Example 8. A type TREE over fa; (;) can be speci�ed by the following structure.
Let R be a type: R = f((a+)+g R is a RE(0) language.

TREE = R:[a=(fag; hi; a)][(=)]R
where h(a) = aa; h(a) = �; h(a) = a.

627Soufi L.: Type Specification by Regular Expressions

The parentheses play the role of levels in a tree, and the as nodes. The node of
the root is optional.
The word (a(aa)a)a is an element of TREE.
Read the tree from the right to the left. The �rst a is the node root.

Our goal is to construct TREE by induction on the words. This question is not
tackled in this paper. Let us give a second example.

Example 9. A type FIN (for the Fibonacci numbers) over ff0; f1g f1; f0 are
terminal symbols. FIN = [f0=(ff0; f1g; hi; f0)]ff0g.
where h(f0) = f1; h(f1) = f0:f1
The elements of FIN are f0; f1; f0:f1; f1:f0:f1: :::.
The length of a word of FIN is a �bonacci number.

The connection between languages of concatenation of level n and programming
is done via recurrence relations. These relations form what can be called a re-
current speci�cation.

Recurrent Speci�cations

To construct a recurrent speci�cation from a type speci�cation in a systematic
way we �rst adopt the following convention:

A symbol formed by capital letters, say T , denotes a type speci�ed by a lan-
guage. When we rewrite such a symbol in lower-case with a barre then it denotes
any element of T , written t. We call barred symbols typed symbols.

This convention allows us to use typed symbols as terminal symbols. To estab-
lish recurrence relations we introduce special identi�ers called linear symbols.
A linear symbol is an identi�er of the form a1:a2:::::an for n > 1 where \:" is
a linear symbol constructor and each ai denotes either an identi�er, elements of
types, or typed symbols. The special symbol � is the neutral element of \:": u:�
is equivalent to u and to �:u. Now, we can translate words of a type into linear
symbols.

Example 10. A type directory DIR = fempty(t name tel)�g, where empty and
t are terminal symbols, can be translated into the recurrence relation :

diri == diri�1:t:name:tel

(Read: The words of DIR are de�ned by dir0; dir1; :::; dirn).
One can de�ne dir0 == empty. Thus empty is the �rst value computed by means
of these recurrence relations; dir1 de�nes the word empty:t:name:tel, dir2 the
word empty:t:name:tel:t:name:tel, and so on.
The type DIR is built from the types NAME and TEL. Thus we have
DIR � femty; tg�

S
NAME

S
TEL.

Now, we give the construction rules of a recurrent speci�cation from a type
speci�cation.
Let S be type speci�ed by a language L. We denote by ! the �rst value of
recurrence relations.

R1 S = L! S =rep S

628 Soufi L.: Type Specification by Regular Expressions

(Read A! B: A is translated into B. Thus R1 says that:
\the type speci�cation S, speci�ed by L, is represented by the recurrent speci-
�cation S -the names should be the same-."
It remains to see how to translate L into a recurrent speci�cation S.

R2 S = f��g ! s0 == !; si == si�1:�

This rule establishes a relationship between regular expressions of the form ��

and recurrence relations as follows:
�0 corresponds to s0 the initial value,i.e. !
�1 corresponds to the �rst value, s1, generated by means of those relations, i.e.
si�1:�, and so on.

Note 8. We do not write si since si denotes a particular word of S.

R3 S = L:R! s == l:r

Parametrized Recurrent Speci�cation
A transformation of a language, R = TL, means that R depends on L and,
consequently the recurrent speci�cation L becomes a parameter of R.

R4 R = T1T2...TnL!
Pn = TnL; Pn� 1 = Tn� 1Pn; :::; P1 = T1P2

R =rep R(Pn; Pn� 1; :::; P1)
r == pn:pn� 1:::::p1

Pn =rep Pn(L)
pn == Tnl
::::

P1 =rep P1(P2)
p1 == T1p2

Read: The type speci�cation R parametrized by the type speci�cations P1; :::Pn
is represented by the parametrized recurrent speci�cation, R(P1; :::; Pn) where
P1; :::Pn are now recurrent speci�cations.

Note 9. The transformations and the trasformation operations are used as prim-
itive operations in the recurrent speci�cations.

Example 11. The type speci�cation TREE is translated into the recurrent spec-
i�cation TREE as follows.

TREE =rep TREE(P1; P2)
tree == r:p1:p2

P1 =rep P1(R)
p1 == [(=)]r

P2 =rep P2(P1)
p2 == [a=(fag; hi; a)]p1

R =rep R
r0 == �; ri == ri� 1:(:ag

629Soufi L.: Type Specification by Regular Expressions

In this recurrent speci�cation we have left unspeci�ed the type A (a). We come
to realize a polymorphism.
The polymorphism rule (R5): In a recurrent speci�cation any typed symbol not
speci�ed can be speci�ed by any recurrent speci�cation.

About the correctness

The repetitive application of the above four rules (R1; R2; R3; R4) assure the
correctness of a recurrent speci�cation wrt a type speci�cation.

Proof. It is trivial. Our rules are purely syntactic, except the rule R2 which is
rather a semantical rule. Concerning R2 we have already justi�ed the connection
between regular expressions of the form a� and the recurrence relations.

In order to experiment the representation of type speci�cation we de�ned a
language for writing recurrent speci�cations [SOU99c, SOU99a].

5 Conclusion

We have presented a grammatical approach to type speci�cation based on a no-
tion of hierarchy languages. We have said that any language of type 0 � i � 3
can be characterized by languages of concatenation of level n. Then we have
used these languages to specify types, i.e. collection of elements. We saw how to
translate type speci�cations into recurrent speci�cations using syntactical rules.
Finally, we hope to bridge the gap between the intuitive concepts of a program-
mer and the concepts de�ned in any particular programming (speci�cation) lan-
guages using formal languages.

References

[CS94] CSUHAJ-VARJ E.DASSOW J.KELEMEN .JPAUN G. Grammar systems:
A grammatical approach to distribution and cooperation. Gordon and Breach
London, 1994.

[DAS98] DASSOW J.PAUN G.ROZENBERG G. Grammar systems. Chapter in
G.Rozenberg and A. Salomaa Handbook of Formal Languages Springer-
Verlag, 1998.

[DB95] H. DOORNBOS and R.C. BACKHOUSE. Induction and recursion
datatypes. LNCS 947, 1995.

[GKP94] R. GRAHAM, D. KNUTH, and T. PATASHNIK. Concrete mathematics a
fundation for computer science. Addison-Wesley, 1994.

[HOW91] J.M. HOWIE. Automata and languages. Oxford Science, 1991.
[LOC70] BELLMAN R. COOKE K. LOCKETT J.A. Algorithms, graphs, and com-

puters. Academic Press, 1970.
[LUO95] Z LUO. Program speci�cation and data re�nement in type theory. Report

LFCS Edinbourg, 1995.
[MG87] D. MANDRIOLI and C. GHEZZI. Theoritical foundations of computer sci-

ence. John Wiley Sons, 1987.
[PAR90] A. PARTSCH. Speci�cation and transformation of programs. Springer Ver-

lag, 1990.
[SAL73] A SALOMAA. Formal languages. AP, 1973.
[SAL81] A SALOMAA. Jewels of formal language theory. Pitman Publishing, 1981.

630 Soufi L.: Type Specification by Regular Expressions

[San91] Bidoit M., Kreowski H., Orejas F., Lescanne P., Sannela D. . A compre-
hensive algebraic approach to system speci�cation and development annoted
bibliography. LNCS, 1991.

[SOU99a] L SOUFI. Designing types as automata. BCTS15 Keele University April,
1999.

[SOU99b] L SOUFI. Formal languages and programming. draft lirsia, 1999.
[SOU99c] L SOUFI. A language of transformations. Rapport lirsia Dijon, 1999.
[ST95] SANNELLA D. and TARLECKI A. Foundations for program development

basic concepts and motivation. LFCS Edinbourg Report, 1995.
[TOM99] COMMON,H. DAUCHET,M. GUILLERON,R. JACQUEMARD,F.

LUGIEZ,D. TISON,S. TOMMASI,M. . Tree automata techniques and ap-
plications. web Ecole Normale Sup, 1999.

[WOR97] WOR. Workshop on grammar systems. Opava Gzech Republic, 1997.

631Soufi L.: Type Specification by Regular Expressions

