
Synchronization Expressions and Languages

Kai Salomaa
Department of Computing and Information Science, Queen's University

Kingston, Ontario K7L 3N6, Canada

Sheng Yu
Department of Computer Science, University of Western Ontario

London, Ontario N6A 5B7, Canada
Email: syu@csd.uwo.ca

Abstract: Synchronization expressions (SEs) were originally developed as practical
high-level constructs for specifying synchronization constraints between parallel pro-
cesses. The family of synchronization languages was introduced to give a precise seman-
tic description for synchronization expressions. In addition to its use for de�ning the
meaning of SEs, the family of synchronization languages is interesting on its own from
a formal languages point of view. We consider two variants of the de�nition of syn-
chronization languages, and survey characterization results for the language families.
Synchronization languages also provide us a systematic approach for the implementa-
tion and simpli�cation of SEs.

Category: F.4.3

1 Introduction

Synchronization is a crucial part of parallel computation. However, synchro-
nization mechanisms used in most parallel programming languages are at a too
low level to be compatible with other constructs of high-level languages. Syn-
chronization expressions (SE) were originally introduced in the ParC project
[Govindarajan et al. 91] as high-level constructs for specifying synchronization
constraints between parallel processes. Synchronization requests are speci�ed as
expressions of tags for statements that are to be constrained by the synchroniza-
tion requirements. The detailed imposition of the synchronization requirements
is left for the compiler in this approach.

The semantics of SEs is de�ned using synchronization languages. A synchro-
nization language can be viewed as the set of correct executions (as controlled
by the SE) of a distributed application where each action is split into two atomic
parts, its start and termination. It can be argued [Guo et al. 94, Guo et al. 96]
that synchronization languages are a more suitable semantic model for synchro-
nization expressions than traditional models such as traces, Petri nets, or process
algebra [Aalbersberg and Rozenberg 88, Hennessy 89, Sassone et al. 96]. An im-
portant feature of the semantics de�ned by synchronization languages is that it
splits each action into two parts, the start and the termination. For instance,
in trace semantics [Diekert and M�etivier 97] parallel execution is interpreted as
a k b = ab+ ba, but in order to control the execution of parallel processes it is
necessary to distinguish sequences like ab and ba from real parallel execution. By
having the start and termination of an action as separate instantaneous parts

Journal of Universal Computer Science, vol. 5, no. 9 (1999), 610-620
submitted: 10/6/99, accepted: 15/7/99, appeared: 28/9/99  Springer Pub. Co.

such distinctions can be made. Thus SEs provide a natural interpretation of a
synchronization control that allows two actions to (concretely) overlap in time.
Furthermore, synchronization languages can specify that certain occurrences of
given processes are parallel whereas other occurrences need to be executed in
a speci�ed sequential order. The relationship of and the di�erences between
synchronization languages and various formalisms used in concurrency will be
discussed in [Ciobanu et al. 00].

It was shown in [Guo et al. 94, Guo et al. 96] that synchronization languages
are closed under a number of naturally de�ned rewriting rules and there it was
also conjectured that synchronization languages would consist of the subset of
regular languages closed under these rules and satisfying the so called start-
termination property. The conjecture was proved for languages expressing syn-
chronization between two distinct actions (for a two-letter alphabet) by Cler-
bout, Roos and Ryl [Clerbout et al. 99, Ryl et al. 97] and they showed that the
conjecture is false in general. Furthermore, [Ryl et al. 98] establishes a more gen-
eral negative result showing that these languages cannot be characterized by any
set of rewriting rules.

By generalizing the syntactic de�nition of SEs and modifying the semantics
[Salomaa and Yu 98] considered a new de�nition of synchronization languages.
The new de�nition has the advantage that it allows us to eliminate the intu-
itively less well motivated rewriting rules describing closure properties of the
synchronization languages and, furthermore, the new set of rules always pre-
serves regularity. This gives us hope to avoid the negative results that were
obtained for the original de�nition of synchronization languages. The approach
allows us to obtain an exact characterization for the �nite synchronization lan-
guages in terms of simple semi-commutation rules [Salomaa and Yu 98] and a
characterization of the images of synchronization languages under st-morphisms
[Ryl et al. 99]. However, it is not known whether the family of synchronization
languages is closed under st-morphisms and, thus, it remains an open question
whether the rewriting rules can be used for the general family of synchronization
languages.

Besides giving rise to interesting questions in formal language theory, syn-
chronization languages provide us with a systematic method for implementing
SEs in a parallel programming language such as ParC. The corresponding syn-
chronization language (SL) describes exactly how an SE is to be implemented in
the parallel programming language ParC. Using this formalism, relations such
as equivalence and inclusion between SEs can be easily understood and tested.
Thus the synchronization languages provide a systematic approach for the im-
plementation and simpli�cation of SEs. In the last section we brie
y discuss the
practical implementation of SEs, and some di�culties encountered in it.

2 De�nitions

Here we recall some de�nitions and notation related to regular expressions and
rewriting systems, for more details the reader may consult [Book and Otto 95,
Salomaa 73, Yu 97]. The set of �nite words over a �nite alphabet � is denoted
��, � is the empty word, and �+ = �� � f�g. The catenation of languages
L1; L2 � �� is L1 � L2 = fw 2 �� j (9vi 2 Li; i = 1; 2) w = v1v2g and the

611Salomaa K., Yu S.: Synchronization Expressions and Languages

catenation of n copies of L � �� is Ln (n � 0). Note that L0 = f�g. The Kleene
star of a language L is L� = [1i=0L

i.
The shu�e of words u; v 2 �� is the language !(u; v) � �� consisting of all

words that can be written in the form u1v1 � � �unvn, n � 0, where u = u1 � � �un,
v = v1 � � �vn, ui; vi 2 ��, i = 1; : : : ; n. The shu�e operation is extended for
languages in the natural way:

!(L1; L2) =
[

w12L1;w22L2

!(w1; w2);

where L1; L2 � ��.
A string-rewriting system (or Thue system) over � is a �nite set R of rules

u ! v, u; v 2 ��. The rules of R de�ne the single step reduction relation
!R � ����� as follows. For w1; w2 2 ��, w1 !R w2 if and only if there exists
a rule u1 ! u2 2 R and r; s 2 �� such that wi = ruis, i = 1; 2. The reduction
relation of R is the re
exive and transitive closure of!R and it is denoted !�

R.
We de�ne synchronization expressions using the extended de�nition from

[Salomaa and Yu 98]. The operators !, k, j, & and � are called, respectively,
the sequencing, join, selection, intersection, and repetition operators. Later we
give also the original more restricted de�nition that di�ers only in the use of the
join operator.

The intuitive meaning of the operations will be apparent from the semantic
interpretation given below. For easier readability we omit the outermost paren-
theses of an expression. All the four binary operations will be associative, so
usually also other parentheses may be omitted.

Let � be an alphabet such that each symbol of � denotes a distinct process.
In order to de�ne the meaning of synchronization expressions, for each a 2 � we
associate symbols as and at to denote, respectively, the start and termination
of the process. Also, we denote

�s = fas j a 2 �g; �t = fat j a 2 �g:

The synchronization languages satisfy the condition that the termination of
an occurrence of a process always precedes the start of the next occurrence. The
condition is de�ned formally as follows. For a 2 � let pa : (�s[�t)

� �! fas; atg
�

be the morphism determined by the conditions

pa(x) =

�
x; if x 2 fas; atg;
�; if x 62 fas; atg:

A word w 2 (�s [�t)� is said to satisfy the start-termination condition (or st-
condition for short) if for all a 2 �, pa(w) 2 (asat)�. The st-condition means that
autoconcurrency of processes is not permitted. If we would allow sequences of the
form : : : as : : : as : : : at : : :at : : : (where the dots denote sequences not containing
symbols as, at) we could not know which at occurrence corresponds to which as
occurrence (without adding, for instance, pointers to the sequences). Naturally
we can allow a �nite amount of autoconcurrency simply by using distinct symbols
for the distinct occurrences of a process.

If w satis�es the st-condition, then w belongs to the shu�e of some languages
((a1)s(a1)t)�, : : : , ((ak)s(ak)t)� where ai 6= aj , when i 6= j, i; j = 1; : : :k. The

612 Salomaa K., Yu S.: Synchronization Expressions and Languages

set of all words over � satisfying the st-condition is denoted W st
� and subsets of

W st
� are called st-languages.
The synchronization expressions over an alphabet � and the languages de-

noted by the expressions are de�ned inductively as follows.

De�nition1. The set of synchronization expressions over alphabet �, SE(�),
is the smallest subset of (� [f�;!;&; j; k; �; (;)g)� de�ned inductively by the
following rules. The synchronization language denoted by � 2 SE(�) is L(�).

(i) � [f�g � SE(�). L(�) = ; and L(a) = fasatg when a 2 �.
(ii) If �1; �2 2 SE(�) then (�1 ! �2) 2 SE(�) and L(�1 ! �2) = L(�1)�L(�2).
(iii) If �1; �2 2 SE(�) then (�1 k �2) 2 SE(�) and

L(�1 k �2) = !(L(�1); L(�2)) \W st
� .

(iv) If �1; �2 2 SE(�) then (�1 j �2) 2 SE(�) and L(�1 j �2) = L(�1)[L(�2).
(v) If �1; �2 2 SE(�) then (�1&�2) 2 SE(�) and L(�1&�2) = L(�1) \ L(�2).
(vi) If � 2 SE(�) then �� 2 SE(�) and L(��) = L(�)�.

For concrete examples of synchronization expressions see the last section
or [Guo et al. 94, Guo et al. 96]. When de�ning the interpretation of the par-
allelization operator in (iii) we use intersection with the set of st-words. The
de�nition implies that L(a k a) = L(a! a).

The original de�nition of synchronization expressions required that the ex-
pressions appearing as arguments of the parallelization operator must be over
disjoint alphabets. The set of restricted synchronization expressions, SEr(�),
is de�ned as in De�nition 1 by substituting SEr(�) everywhere for SE(�) and
modifying the condition (iii) as follows. We denote by alph(�) the set of symbols
of� appearing in the expression �. (alph(�) can naturally be de�ned inductively
following De�nition 1.)

(iii)' If �1; �2 2 SEr(�) and alph(�1) \ alph(�2) = ; then (�1 k �2) 2 SEr(�)
and L(�1 k �2) = !(L(�1); L(�2)).

In restricted synchronization expressions, always when �1 k �2 is de�ned each
word of !(L(�1); L(�2)) satis�es the st-condition so we do not need the inter-
section with the set W st

� .
The family of synchronization languages L(SE) (respectively, restricted syn-

choronization languages L(SEr)) consists of all languages L(�) where � 2 SE(�)
(respectively, � 2 SEr(�)) for some alphabet �. Directly from the de�nition it
follows that L(SEr) � L(SE). Furthermore, the inclusion is strict since, for in-
stance, the expression (b ! a�) k (a� ! c) denotes a language that is not in
L(SEr) [Ryl et al. 97, Salomaa and Yu 98].

A regular expression � over an alphabet �s [�t is said to be well-formed
if always when �� is a subexpression of �, the language denoted by � is an st-
language. A language L over the alphabet �s[�t is well-formed if L is denoted
by some well-formed regular expression �. When trying to obtain a characteriza-
tion of the synchronization languages in terms of closure under rewriting rules,
it turns out that the problematic cases are languages that are not well-formed.

3 Rewriting Rules for Synchronization Languages

Synchronization languages are regular languages satisfying the st-condition and
furthermore they are closed under certain types of semi-commutation rules and

613Salomaa K., Yu S.: Synchronization Expressions and Languages

their extensions. It would be very useful if we could exactly characterize the syn-
chronization languages in terms of closure under some simple rewriting rules. A
characterization could yield more e�cient algorithms for testing the equivalence
of SEs since in many cases it would be easy to test whether a given �nite au-
tomaton accepts a language satisfying the given semi-commutation properties.
We can e�ectively decide whether a given regular language is closed under a
given semi-commutation system [Clerbout et al. 95].

De�nition2. Let � be an alphabet. We de�ne the rewriting system R� �
(�s [�t)� � (�s [�t)� to consist of the following rules, where a; b 2 �, a 6= b:

(R1) asbt ! btas; (R2) asbs ! bsas; (R3) atbt ! btat:

The set S� is de�ned to consist of all rules

(a1)t � � � (ai)t(a1)s � � � (ai)s(b1)t � � � (bj)t(b1)s � � � (bj)s (1)

! (b1)t � � � (bj)t(b1)s � � � (bj)s(a1)t � � � (ai)t(a1)s � � � (ai)s;

where where a1; : : : ; ai; b1; : : : ; bj are pairwise distinct elements of �, i; j � 1.
Then we denote

R0

� = R� [S� :

The rules of R� de�ne a semi-commutation relation [Clerbout et al. 95] on
�. By symmetry the rules (R2) and (R3) could be written also as two-directional
rules.

If R is a rewriting system over � and L � �� we denote ��

R(L) = fu 2 �� j
(9v 2 L)v !�

R ug. We say that L is closed under R if L = ��

R(L). The following
results hold.

Theorem3. Let L � ��.

(a) [Salomaa and Yu 98] If L is a synchronization language, then L is closed
under R�.

(b) [Guo et al. 94, Guo et al. 96] If L is a restricted synchronization language,
then L is closed under R0

�.

The intuitive explanation why restricted synchronization languages are closed
under rules (1) is that if we have a subword of the form : : : atasbtbs : : : (or the
given more general form), then all the following pairs of the given occurrences
of the symbols are parallel: (at; bt), (as; bs) and (as; bt), i.e., they correspond to
symbols occuring in di�erent arguments of the parallelization operator. On the
other hand, since the di�erent arguments may not contain occurrences of the
same symbol of �, the only possibility is that the symbols at; as correspond to
occurrences in one of the arguments, and bt; bs in the other argument. The proof
showing closure under the rules of R� is similar but simpler.

It was conjectured [Guo et al. 96] that closure under the rewriting system R0

�

together with the st-condition exactly characterizes the restricted synchroniza-
tion languages. The conjecture was proved in [Clerbout et al. 99] for alphabets
corresponding to two actions.

Theorem4. [Clerbout et al. 99] A language L � fas; at; bs; btg� is a restricted
synchronization language if and only if L is regular, satis�es the st-condition
and is closed under R0

�.

614 Salomaa K., Yu S.: Synchronization Expressions and Languages

At the same time [Clerbout et al. 99, Ryl et al. 97] established that the con-
jecture does not hold in general. The counter-example given there is the language

L1 = ��

R0

�

(bs(asat)
�csbt(asat)

�ct)

which is a regular st-language and it can be shown that L1 is not a restricted
synchronization language. The intuitive idea is that restricted synchronization
expressions cannot di�erentiate in L1 between instances of the action a that
occur during b and during c, respectively. Formally the fact that L1 62 L(SEr) is
proved by establishing a so called switching property for restricted synchroniza-
tion languages [Clerbout et al. 99, Ryl et al. 97].

One can show that L(SEr) is closed under certain in�nite extensions of R0

�

that satisfy nice projection properties onto subalphabets. However, the hope
of obtaining a rewriting characterization for this class was destroyed by the
following result.

Theorem5. [Ryl et al. 98, Clerbout et al. 98] There does not exist any rewrit-
ing system Q such that each L 2 L(SEr) is closed under Q and each regular
st-language closed under Q is in L(SEr).

It may be noted another undesirable property of the restricted synchroniza-
tion languages is that the corresponding rewriting rules (1) do not, in general,
preserve regularity of st-languages. Consider the language

L2 = asbs(atasbtbs)
�btat:

Using the rule atasbtbs ! btbsatas (and the semi-commutation rules of De�ni-
tion 2) every word of L2 can be rewritten to a word (bsbt)

m(asat)
m, and this

observation easily implies that ��

R0

�

(L2) is not regular.

Due to the negative result of Theorem 5 it is natural to consider the more
general de�nition of SEs given in De�nition 1. This allows us to drop the rules
(1) from the rewriting system describing closure properties of the synchro-
nization languages. Relying on general properties of semi-commutation systems
[Clerbout et al. 95] we can then prove:

Theorem6. [Salomaa and Yu 98] If L � (�s [�t)� is a regular st-language,
then ��

R�
(L) is also regular.

Using the more general de�nition, in the case of �nite languages we can
strengthen the result of Theorem 3(a) into an \if and only if" condition.

Theorem7. [Salomaa and Yu 98] Assume that L is a �nite language over �s[
�t. Then L 2 L(SE) if and only if L is an st-language closed under R�.

We conjecture that the characterization result of Theorem 7 can be extended
for the family of well-formed languages.
Conjecture. Assume that L � (�s[�t)� is a well-formed regular language. Then
L is a synchronization language i� L is an st-language closed under R�.

We do not know whether a similar characterization result holds for the gen-
eral family of synchronization languages. Even for some very simple looking

615Salomaa K., Yu S.: Synchronization Expressions and Languages

regular expressions it can be di�cult to �nd a synchronization expression for
the corresponding R�-closure language. By Theorem 6 the language

L3 = ��

R�
(as(bsatasbt)

�at)

is regular, and clearly L3 is an st-language. The language is denoted by the SE
((a! b)� ! a) k (a k b)�. However, there seems to be little structural correspon-
dence between the SE and the original regular expression as(bsatasbt)�at which
is not well-formed. The paper [Ryl et al. 99] gives an explicit regular st-language
closed under R� for which no synchronization expression is known.

Interestingly it is shown in [Ryl et al. 98, Ryl et al. 99] that closure under R�

exactly characterizes the images of synchronization languages under functions
called st-morphisms.

De�nition8. Let � and
 be alphabets and ' : �� �!
� a strictly alphabet-
ical morphism (that is, '(a) 2
 for each a 2 �). The morphism ' is extended
in the natural way to a morphism (�') : (�s [�t)� �! (
s [
t)� by setting
�'(as) = '(a)s and �'(at) = '(a)t for each a 2 �.

With each strictly alphabetical morphism ' : �� �!
�, we associate a
function '̂ called an st-morphism:

'̂ = f(u; �'(u)) j u 2W st
� and �'(u) 2W st

 g:

The family of st-morphisms is denoted �st.

Note that '̂ is equal to the relation (\W st

)� �'� (\W st

�) and an st-morphism
is not, strictly speaking, a morphism. For instance, if '(a) = '(b) = c then
'̂(asbsatbt) is not de�ned.

Theorem9. [Ryl et al. 99] �st(L(SE)) is equal to the family of regular lan-
guages L � (�s [�t)� that satisfy the st-condition and are closed under the
rewriting system R�.

According to Theorem 9, the question whether synchronization languages are
exactly the regular st-languages closed under R� is equivalent to determining
whether the equality �st(L(SE)) = L(SE) holds In [Ryl et al. 98] it is shown
that �st(L(SEr)) = �st(L(SE)) which implies that the restricted synchronization
languages are not closed under st-morphisms.

4 Implementation of synchronization expressions

In this section, we explain how the ideas of SEs and SLs can be used and im-
plemented in a programming language that is designed for a parallel or/and
distributed computing environment. The implementation follows strictly our se-
mantic interpretation of SEs using SLs. More speci�cally, for an SE, we construct
a �nite automaton that accepts the pre�x language of the SL denoted by the
SE at compile time. Then the constructed automaton is used to impose the
synchronization constraints speci�ed by the SE at runtime.

In the following, we will use examples written in the ParC concurrent pro-
gramming language [Govindarajan et al. 91]. The examples will be explained in
detail assuming that the reader knows the C programming language but not

616 Salomaa K., Yu S.: Synchronization Expressions and Languages

ParC. In ParC, (simple or compound) statements are considered as the basic
elements of synchronization. Statements that are involved in synchronization are
represented in SEs by statement tags. In other words, the alphabet of an SE is a
set of statement tags. This is a design decision speci�c to ParC and need not be
true in general. Especially in an object-oriented concurrent programming lan-
guage, it may be more appropriate that object operations rather than statements
should be the basic elements of synchronization speci�ed by SEs. However, the
implementation principle described below would still be applicable as long as a
symbol in an SE represents an entire execution of a process.

We provide in the following a simple example to show how a ParC program
with synchronization expressions is translated into a Sequent C program with
system calls [Osterhaug 89]. We �rst give the ParC program with a detailed
explanation. Then we give the generated code in Sequent C with system calls.

main(){
shared int w;
int r;
int f();
tag a, b;
restrict (a->b)*;

pexec{
{/* */
b:: r = w;
/* */
}
{/* */
a:: w = f();
/* */
}

}
}

We �rst look at the pexec statement, i.e., the parallel execution statement. This
language construct denotes that all statements that are directly under the scope
can be executed in parallel. In the above program, there are two compound
statements directly under the pexec statement, which can be considered as two
parallel processes. In the �rst process, the statement \r = w;" is tagged with b,
and in the second process, \w = f();" is tagged with a. We assume that each
of the two statements is in a loop. The restrict statement above the pexec
statement speci�es a synchronization expression (a->b)*, meaning that the a
and b statements can be executed only in the following sequence: a, b, a, b,
: : :, i.e., the ith instance of b cannot start its execution before the ith instance
of a �nishes and the (i + 1)th instance of a cannot start its execution before
the ith instance of b �nishes, i � 1. Also in the declarations, w is declared as a
shared integer variable, which means that the two appearances of w in the two
parallel processes, respectively, are the same variable. The integer variable i is
not shared. So, it has di�erent copies in di�erent parallel processes in the scope.
And the statement tag a, b; declares that both a and b are statement tags.

A deterministic �nite automaton (DFA) is built corresponding to the SE

617Salomaa K., Yu S.: Synchronization Expressions and Languages

(a->b)*, which accepts the pre�x language of the SL de�ned by the SE. The
DFA is shown in Figure 1.

bt

a a binit s st1 2 43

Figure 1: DFA for the SE (a->b)*

To ensure that the the state update can only be performed exclusively by
one process, we build a macro called

wait and set(int state; int i1; j1; : : :; int in; jn).

for n > 0. The macro waits until the condition \state == it", for some t,
1 � t � n, becomes true and then sets \state = jt". Instead of using a
variable-length list int i1; j1; : : :; int in; jn, the actual implementation of
wait and setmay use a pointer to a table (an array) for the transitions. Here we
use a list just to keep the notation simple. The macro is an indivisible (exclusive)
operation and can be implemented using primitive synchronization mechanisms
of the system.

Then the state transitions of the DFA correspond to the following Sequent
C statements or macros:

{ Initialization state = 1;
{ The as transition wait and set(state; 1, 2);
{ The at transition wait and set(state; 2, 3);
{ The bs transition wait and set(state; 3, 4);
{ The bt transition wait and set(state; 4, 1);

The following is the code generated from the ParC program:

#include<parallel/microtask.h>
#include<parallel/parallel.h>
#include<sys/wait.h>
#include<sys/types.h>
#include<stdio.h>

main() {
shared int w;
int k, r;
shared int _state=1;
int f();

618 Salomaa K., Yu S.: Synchronization Expressions and Languages

{
int _pw, _pid;

if ((_pid=fork()) == 0){
/* */
wait_and_set(_state; 3, 4);

r = w;
wait_and_set(_state; 4, 1);
/* */
exit(0);

}
else if (_pid < 0){

printf("fork error\n");
exit(1);

}
/* */
wait_and_set(_state; 1, 2);
w = f(k);
wait_and_set(_state; 2, 3);
/* */

}
}

For a slightly more complicated SE \(a || b)->c", a corresponding DFA is
shown in Figure 2.

bs

as

bt

at

as

as

at

at

bs

bs

bt

bt

1
init

4

2

3

c c

5

6

7

8

9 10 11s t

Figure 2: DFA for the SE (a || b)->c

In this case the code generated for the a statement would be

wait_and_set(_state; 1, 2; 3, 4; 6, 8);
............ /* the a statement itself */
wait_and_set(_state; 2, 5; 4, 7; 8, 9);

Similarly, the code generated for b statement would be

619Salomaa K., Yu S.: Synchronization Expressions and Languages

wait_and_set(_state; 1, 3; 2, 4; 5, 7);
............ /* the b statement itself */
wait_and_set(_state; 3, 6; 4, 8; 7, 9);

And the following is the code for c:

wait_and_set(_state; 9, 10);
............ /* the c statement itself */
wait_and_set(_state; 10, 11);

The above two simple examples illustrate the basic idea of implementing
SEs using synchronization languages. There are many other issues concerning
implementation. Below we brie
y discuss a couple of them.

The �rst is the size-explosion problem of DFA. For many practical synchro-
nization problems, the sizes of the DFA can be too large to implement e�ciently.
We suggest the use of alternating �nite automata (AFA) instead of DFA in the
implementation of SEs. The use of AFA can signi�cantly increase the space
e�ciency of implementation [Salomaa et al. 98, Huerter et al. 99].

The checking of states may become the bottleneck of synchronization since it
is done sequentially. However, this does not necessarily need to be the case. Note
that SEs within di�erent concurrent blocks, respectively, can be implemented by
automata that actually run concurrently.

Con
icting synchronization constraints and deadlock conditions caused by
the de�nitions of SEs in the same scope can be examined by checking the inter-
section of the synchronization languages de�ned by the SEs and the execution
sequences de�ned by the program
ow. The precise semantic de�nition of SEs
makes the checking process conceptually clear and feasible to implement in prac-
tice.

Acknowledgement

This work has been supported by the Natural Sciences and Engineering Research
Council of Canada Grants OGP0147224 and OGP0041630.

References

[Aalbersberg and Rozenberg 88] Aalbersberg, I.J., Rozenberg, G.: \Theory of traces";
Theoret. Comput. Sci. 60 (1988) 1{82.

[Book and Otto 95] Book, R.V., Otto, F.: String-Rewriting Systems; Texts and Mono-
graphs in Computer Science, Springer-Verlag, 1993.

[Ciobanu et al. 00] Ciobanu, G., Salomaa, K., Yu, S.: \Synchronization languages and
ST semantics"; manuscript in preparation.

[Clerbout et al. 95] Clerbout, M., Latteux, M., Roos, Y.: \Semi-commutations"; in:
The Book of Traces. (V. Diekert, G. Rozenberg, eds.) Chapter 12,
pp. 487{552, World Scienti�c, Singapore, 1995.

[Clerbout et al. 98] Clerbout, M., Roos, Y., Ryl, I.: \Langages de synchronization et
syst�emes de r�e�ecriture"; Tech. Rep. IT-98-311, Universit�e des Sci-
ences et Technologies de Lille, 1998.

[Clerbout et al. 99] Clerbout, M., Roos, Y., Ryl, I.: \Synchronization languages"; The-
oret. Comput. Sci. 215 (1999) 99{121.

620 Salomaa K., Yu S.: Synchronization Expressions and Languages

[Diekert and M�etivier 97] Diekert, V., M�etivier, Y.: \Partial commutation and traces";
in: Handbook of Formal Languages, Vol. III. (G. Rozenberg, A.
Salomaa, eds.) pp. 457{533, Springer-Verlag, 1997.

[Govindarajan et al. 91] Govindarajan, R., Guo, L., Yu, S., Wang, P.: \ParC Project:
Practical constructs for parallel programming languages"; Proc. of
the 15th Annual IEEE International Computer Software & Appli-
cations Conference, 1991, pp. 183{189.

[Guo et al. 94] Guo, L., Salomaa, K., Yu, S.: \Synchronization expressions and
languages"; Proc. of the 6th IEEE Symposium on Parallel and
Distributed Processing, (Dallas, Texas). IEEE Computer Society
Press, 1994, pp. 257{264.

[Guo et al. 96] Guo, L., Salomaa, K., Yu, S.: \On synchronization languages";
Fundamenta Inform. 25 (1996) 423{436.

[Hennessy 89] Hennessy, M.:Algebraic Theory of Processes;The MIT Press, Cam-
bridge, Mass., 1989.

[Huerter et al. 99] Huerter, S., Salomaa, K., Wu, X., Yu, S.: \Implementing Reversed
Alternating Finite Automaton (r-AFA) Operations"; Proceedings
of the Third International Workshop on Implementing Automata
(WIA'98), Lect. Notes Comput. Sci. 1660, Springer-Verlag, 1999,
pp. 69{81.

[Osterhaug 89] Osterhaug, A. (ed.):Guide to Parallel Programming | On Sequent
Computer Systems; Prentice Hall, Englewood Cli�s, New Jersey,
1989.

[Ryl et al. 97] Ryl, I., Roos, Y., Clerbout, M.: \Partial characterization of syn-
chronization languages"; Proc. of 22nd International Symposium
on Mathematical Foundations of Computer Science (MFCS'97),
Lect. Notes Comput. Sci. 1295 (1997) 209{218.

[Ryl et al. 98] Ryl, I., Roos, Y., Clerbout, M.: \About synchronization lan-
guages"; Proc. of 23rd International Symposium on Mathematical
Foundations of Computer Science (MFCS'98), Lect. Notes Com-
put. Sci. 1450, Springer-Verlag, 1998, pp. 533{542.

[Ryl et al. 99] Ryl, I., Roos, Y., Clerbout, M.: \Generalized synchronization lan-
guages"; Proc. of 12th International Symposium on Fundamentals
of Computation Theory (FCT'99), Lect. Notes Comput. Sci. 1684,
Springer-Verlag, 1999, pp. 451{462.

[Salomaa 73] Salomaa, A.: Formal Languages; Academic Press, 1973.
[Salomaa et al. 98] Salomaa, K., Wu, X., Yu, S.: \An E�cient Implementation of Reg-

ular Languages Using r-AFA"; Proceedings of the Second Inter-
national Workshop on Implementing Automata (WIA'97), Lect.
Notes Comput. Sci. 1436, Springer-Verlag, 1998, pp. 176{184.

[Salomaa and Yu 98] Salomaa, K., Yu, S.: \Synchronization expressions with extended
join operation"; Theoret. Comput. Sci. 207 (1998) 73{88.

[Sassone et al. 96] Sassone, V., Nielsen, M., Winskel, G.: \Models of concurrency:
Towards a classi�cation"; Theoret. Comput. Sci. 170 (1996) 297{
348.

[Yu 97] Yu, S.: \Regular languages"; in: Handbook of Formal Languages,
Vol. I. (G. Rozenberg, A. Salomaa, eds.) pp. 41{110, Springer-
Verlag, 1997.

621Salomaa K., Yu S.: Synchronization Expressions and Languages

