
Communicating Stream X-Machines Systems are no more

than X-Machines

Tudor B�al�anescu
Faculty of Sciences, Pite�sti University, Romania

e-mail balanesc@oroles.cs.unibuc.ro

Anthony J. Cowling
Department of Computer Science, She�eld University, UK

e-mail: A.Cowling@dcs.shef.ac.uk

Horia Georgescu
Faculty of Mathematics, Bucharest University, Romania

e-mail: hg@oroles.cs.unibuc.ro

Marian Gheorghe
Faculty of Sciences, Pite�sti University, Romania

e-mail: marian@oroles.cs.unibuc.ro

Mike Holcombe
Department of Computer Science, She�eld University, UK

e-mail:M.Holcombe@dcs.shef.ac.uk

Cristina Vertan
Faculty of Mathematics, Bucharest University, Romania

e-mail: cri@oroles.cs.unibuc.ro

Abstract: A version of the communicating stream X-machine model is proposed,
which gives a precise representation of the operation of transferring data from one
X-machine to another. For this model it is shown that systems of communicating X-
machines have the same computational power as single stream X-machines. This enable
existing methods for deriving test strategies for stream X-machines to be extended to
communicating stream X-machines.

Category: D.2.5, F.1.2, F.3.1

Key Words: Communicating StreamX-machines system, testing, communicating ma-
trix, processing states, communicating states, software speci�cation language.

1 Introduction

Introduced by Eilenberg in 1974 [Eilenberg 74], the X-machine model received
little further study until Holcombe [Holcombe 88] used it as basis for a possi-
ble speci�cation language. Since then, a lot of further research has been done,
proving the power of this model.

An X-machine resembles a �nite state machine, but it adds important new
features. A basic set X is identi�ed together with a set of basic processing
functions �. For each state, a �nite subset of functions from � may emerge
from it; if possible, any of these functions may be applied to change the state.
The set X characterizes an internal memory for the machine, which also has

Journal of Universal Computer Science, vol. 5, no. 9 (1999), 494-507
submitted: 10/6/99, accepted: 15/7/99, appeared: 28/9/99  Springer Pub. Co.

an input tape and an output tape. Moving from one state to another depends
upon the current state, the content of the input tape, the content of the internal
memory and the function chosen to be applied. When such a transition takes
place, a new item may be added to the output tape.

Unfortunately, very little attention has been paid to the way in which many
X-machines may be integrated into a system and how they can communicate.

In [B�al�anescu, Georgescu, Gheorghe 99], stream X-machines are used to con-
trol a family of distributed grammars. Words of a given language are placed on
the input tape. At any time, a single grammar is active; afterwards, it can
be used again or the control may be passed to another grammar. The lan-
guage produced by the system is the language of terminal strings obtained
as output. The relationships are studied between the languages used as input
and the corresponding languages that are produced, and results concerning the
power of these mechanisms are obtained. The above mentioned model simu-
lates the concurrent behaviour of a system of grammars. Another approach,
based on cooperating distributed grammar systems for modeling the behaviour
of concurrent processes under some synchronization assumptions, is presented in
[B�al�anescu, Georgescu, Gheorghe 98a], [B�al�anescu, Georgescu, Gheorghe 98b],
[B�al�anescu, Georgescu, Gheorghe 98c].

In [Barnard, Whitworth, Woodward 96] is speci�ed a model for communi-
cating X-machines as an extension of the X-machine model. A communicating
X-machine is a typed �nite state machine that can communicate with other com-
municating X-machines via channels that connect ports on each of the machines.
A modular system is developed. Another model is proposed in [Vertan 99] where
the communication among processes (X-machines) is done through a matrix of
communication.

In this paper communicating stream X-machines systems are introduced
and it is proved that they can be modeled by an usual stream X-machine
[Ipate, Holcombe 96]. Some testing problems are also stated in order to al-
low the application of some testing strategies already developed in [Chow 78],
[Ipate, Holcombe 99], [Luo, von Bochman, Petrenko 94].

2 Basic de�nitions

For any set A, A� denotes the set A [f�g, where � is the empty sequence. A?

denotes the free monoid generated by A.

De�nition 1. A stream X-machine is a tuple X = (�;�;Q;M;�; F; I; T;m0),
where:

{ � and � are �nite sets called the input and output alphabets respectively;
{ Q is the �nite set of states ;
{ M is a (possibly in�nite) set called memory;
{ � is a �nite set of partial functions of the form: f :M �� ! � �M ;
{ F is the next state partial function F : Q� �! 2Q;
{ I and T are the sets of initial and �nal states;
{ m0 is the initial memory value.

We de�ne a con�guration of the X-machine by (m; q; s; g), where m 2 M; q 2
Q; s 2 �?; g 2 � ?. A machine computation starts from an initial con�guration,

495Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

having the form (m0; q0; s0; �), where q0 2 I is an initial state and s0 2 �? is
the input sequence.

De�nition 2. The output corresponding to an input sequence. A change of con-
�guration, denoted by ` :

(m; q; s; g) ` (m0; q0; s0; g0)

is possible if:

{ s = �s0, � 2 �
{ there is a function f 2 � emerging from q and reaching q0, q0 2 F (q; f), so
that f(m;�) = (
;m0) and g0 = g
,
 2 � .

?

` denotes the re
exive and transitive closure of `.
For any s 2 �?, the output corresponding to this input sequence, computed

by the stream X-machine X is de�ned as:

X(s) = fg 2 � ?j9m 2M; q0 2 I; q 2 T; so that (m0; q0; s; �)
?

` (m; q; �; g)g

De�nition 3. [Ipate, Holcombe 97] A stream X-machine is called deterministic
if:

{ I contains only one element: I = fq0g;
{ F : Q� � �! Q;
{ if f; f 0 are distinct arcs emerging from the same state, then domf\domf 0 = ;
.

De�nition 4. A stream X-machine has the output distinguishability property
[Ipate, Holcombe 97] when 8 f1; f2 2 �; if 9m 2M; � 2 �; such that f1(m;�) =
(g;m0

1); f2(m;�) = (g;m0
2) for some m0

1;m
0
2 2M; g 2 �; then f1 = f2.

De�nition 5. A stream X-machine is called minimal [Holcombe, Ipate 98] if its
associated automaton A = (Q;�; F; I; T), is minimal.

De�nition 6. Let M be an arbitrary set and � 62 M an arbitrary element. For
a natural number n � 1 we denote by CM the set of all matrices of order n� n
with elements from M [f�g: Let us consider a matrix C 2 CM; a value v 2M
and two indices i 6= j; 1 � i; j � n:

{ If Cij = �; then we de�ne an output variant of C; denoted by (Cij (v)
as being the matrix with (Cij (v)ij = v and (Cij (v)km = Ckm for
(k;m) 6= (i; j);

{ If Cij = v; then we de�ne an input variant of C; denoted by (v (Cij)
as being the matrix with (v (Cij)ij = � and (v (Cij)km = Ckm for
(k;m) 6= (i; j);

De�nition 7. Communicating Stream X-machines Systems. A Communicating
Stream X-machines System (CSXMS) with n components is a system:

CSXMSn = ((Pi)i=1;:::;n; CM; C0);where:

496 Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

{ Pi = (Xi; INi; OUTi; in
0
i ; out

0
i) is a component of the system, i = 1; : : : ; n;

{ Xi are stream X-machines, i = 1; : : : ; n, where �i; �i; Mi; Ii; Ti; m
0
i are as

in the de�nition 1 and the set of states is Qi = Q0
i [Q

00
i with Q0

i being the
set of processing states and Q00

i being the set of communicating states and
Q0

i \Q
00
i = ; ;

{ INi and OUTi are two sets called the input port and the output port respec-
tively of component i. The elements belonging to these sets are values from
Mi or the unde�ned value �, that is INi; OUTi �Mi [f�g and � 62Mi;

{ in0i 2 INi and out0i 2 OUTi are the initial input and output port values,
respectively;

{ CM is the set of matrices of order n � n, with elements from M [f�;@g;
whereM =

Sn

i=1Mi and @ 62M: These matrices are used for communication
between the X-machines Xi.

{ C0 is the initial communication matrix and C0
i;j = � for i 6= j and Ci;i = @;

{ for each i = 1; : : : ; n, �i = �0i[�
00
i , where �

0
i is the set of processing functions

and �00i is the set of communicating functions ; �0i \ �
00
i = ;.

� A processing function f 2 �0i:

f :Mi � INi �OUTi ��
�
i �! � �

i �Mi � INi �OUTi

acts as in an ordinary stream X-machine; additionally it is de�ned on
the INi and OUTi sets too.
� A communicating function f 2 �00i :

f :Mi � INi �OUTi ��
�
i � CM �! � �

i �Mi � INi �OUTi � CM

is de�ned either as

f(m; in; out; �; C) = (�;m; in; �; (Cij (out)); for some j; j 6= i (1)

or

f(m; in; out; �; C) = (�;m; in0; out; (in0 (Cji)); for some j; j 6= i (2)

{ For each i = 1; : : : n; Fi : (Q
0
i � �

0
i) [(Q

00
i � �

00
i) �! 2Qi :

Note 8. The components Pi of the system communicate as described below. For
C 2 CM and each pair (i; j) with i; j 2 f1; : : : ; ng, i 6= j, Cij is a\message"
from the component Pi to the component Pj . The messages are values from
Mi. If there is no message, then Ci;j = �. Initially C0

ij = �, i 6= j. There is
no need for a component to pass a message to itself; this will be denoted as
C0
ii = @; 8i 2 f1; : : : ; ng. The symbol @ will be used only for this purpose (i.e.

Cij can not take the value @, for any j 6= i). � and @ are not memory values
for any X-machine of the system. Hence, the actual messages passed from an
X-machine to another can not be � or @. The symbol � is used to describe an
empty bu�er Cij .

Each X-machine Pi can read only from the ith column and write only into the
ith row of the communication matrix. At any time, a location Cij , i 6= j contains
a single piece of information, namely a memory value or the empty value �.

Note 9. The actions (1) and (2) of a communicating function from De�nition 7
enables any two components Pi; Pj to communicate.

497Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

{ Using Cij as a temporary bu�er, Pi can send a message to Pj .The form 1
is used to send the message out from Pi to the bu�er Cij : This is possible
only if out 6= � and Cij = �; i.e. the bu�er is empty. After completion, an
output variant C 0 of C is obtained, where C 0 = (Cij (out) with C 0

kl = Ckl

for (k; l) 6= (i; j) and C 0
ij = out:

{ Using Cji as a temporary bu�er, Pi can receive a message from Pj : The form
2 is used to move the value of the non empty temporary bu�er Cji to the
component Pi. After completion, a new matrix C 0 = (in0 (Cji) is obtained,
with C 0

kl = Ckl for (k; l) 6= (j; i) and C 0
ji = �:

Note 10. For all i = 1; : : : ; n, a state q 2 Qi may be a processing state or a com-
municating state. All functions emerging from a processing state are processing
ones, and all functions emerging from a communicating state are communicating
ones.

Note 11. For an uniform treatment, all the processing functions

f :Mi � INi �OUTi ��
�
i �! � �

i �Mi � INi �OUTi

will be extended to:

f :Mi � INi �OUTi ��
�
i � CM �! � �

i �Mi � INi �OUTi � CM

even though the function does not depend in any way on the current communi-
cation matrix and does not change it.

In the sequel, f in place of f , f 2 �i, will be used. Let us note also that a
communicating function can only observe the local memory Mi, but it does not
change it.

Note 12. The operations concerning the same position (i; j) of the current matrix
C are supposed to be done under mutual exclusion.

Note 13. If, in a processing state, several functions emerging from it may be
applied, then one of them is arbitrarily chosen to act; if no function can be
applied the X-machine blocks, and so does the entire system.

If, in a communicating state, several functions may be applied, then one
of them is arbitrarily chosen; if no function can be applied, the respective X-
machine does not change the state, actively waiting for the moment when at
least one function can be applied.

De�nition 14. A con�guration of a CSXMSn system has the form

z = (z1; : : : ; zn; C)

where:

{ zi = (mi; qi; ini; outi; si; gi), i = 1; : : : ; n
{ mi is the current value of the memory Mi of Pi;
{ qi is the current state of Pi;
{ ini 2 INi, outi 2 OUTi are the current port values of Pi;
{ si 2 �?

i is the current input sequence of Pi;
{ gi 2 � ?

i is the current output sequence of Pi.

498 Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

{ C is the current communication matrix of the system.

The initial con�guration of the system is z0 = (z01 ; : : : ; z
0
n; C

0), where z0i =
(m0

i ; q
0
i ; in

0
i ; out

0
i ; s

0
i ; �) with q

0
i 2 Ii.

Passing from a con�guration z to a new con�guration z0 (z j= z0) supposes
that at least one of the X-machines changes its con�guration, i.e. a function is
applied. A change of con�guration:

z = (z1; : : : ; zn; C) j= z0 = (z01; : : : ; z
0
n; C

0) (3)

with zi = (mi; qi; ini; outi; si; gi), z
0
i = (m0

i; q
0
i; in

0
i; out

0
i; s

0
i; g

0
i), si = �is

0
i, �i 2 �

�
i ,

g0i = gi
i,
i 2 � �
i for any i, may be described as follows. Let C0 = C. For i

taking the values 1; 2; : : : ; n in this order, there are two possibilities:

{ either zi = z0i, or
{ there exists a function f 2 �i emerging from qi and reaching q

0
i, q

0
i 2 Fi(qi; f)

and Ci 2 CM so that f(mi; ini; outi; �i; Ci�1) = (
i;m
0
i; in

0
i; out

0
i; Ci).

Then C 0 = Cn.
It should be noted that the order chosen above is not important, due to the

assumption in note 12.
It is important to mention that such a change in the con�guration of one X-

machine does not necessarily mean that the other X-machines have done nothing,
but rather that they have not entirely completed executing a function. Let us
note that these partial actions do not in
uence the completed ones since the
memoriesMi and the ports INi; OUTi, i = 1; : : : ; n are local to the components
Pi and the access to each location Cij of the current matrix C is done under
mutual exclusion.

We can think about a change of con�guration z j= z0 as follows: let t be the
time when the system reached the con�guration z and t0 the closest following
moment of time at which a component terminates the execution of a function;
then z0 is the con�guration of the system at time t0.

Let
?

j= be the re
exive and transitive closure of j=.
A con�guration is a �nal one if zi = (mi; qi; ini; outi; si; gi) for any i =

1; : : : ; n, with si = � and qi 2 Ti.

De�nition 15. The output of a CSXMS corresponding to an input sequence.
For any s = (s1; : : : ; sn) 2 �?

1 � : : :��
?
n we de�ne:

X(s) = fg = (g1; : : : ; gn) 2 � ?
1 �: : :��

?
n j9z

0 an initial con�guration and z a �nal

one, z0
?

j= z, with z = (z1; : : : ; zn; C), C 2 CM and zi = (mi; qi; ini; outi; �; gi)
for any i = 1; : : : ; ng.

De�nition 16. A CSXMSn = ((Pi)1�i�n; CM; C0) has the output distingui-
shability property when 8i; 8f1; f2 2 �i, if 9m 2Mi; in 2 INi; out 2 OUTi; C 2
CM; � 2 �i such that:
f1(m; in; out; �; C) = (g;m1; in1; out1; C1)
f2(m; in; out; �; C) = (g;m2; in2; out2; C2)
for some m1;m2 2Mi; in1; in2 2 INi; out1; out2 2 OUTi; C1; C2 2 CM; g 2 �
then f1 = f2.

499Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

3 Example

For a given natural number n, a sequence of n letters a and n letters b has to be
produced, so that in each pre�x of the sequence the number of b does not exceed
the number of a.

We will use a CSXMS with three components P1, P2 and P3. The input
sequences for all of them are �.

P1 successively sends the value 0 to P3 (in order to inform it that an a has
to be written on the output tape of P3), but from time to time chooses to send
to P2 the number of a it has sent to P3 since the last transmission to P2. Just
before stopping (when n becomes 0), P1 sends to P2 and to P3 the negative value
-1, in order to inform them that no more values will be sent.

P2 keeps in v the record of the number of b it has to output. At each step,
P2 sends (only if v > 0) the value 0 to P3 (in order to inform it that a b has to
be written on the output tape of P3) or receives from P1 a value that it adds to
v. Just before stopping, P2 sends to P3 the negative value -1.

P3 is the only X-machine that adds elements to its output tape. While P1
and P2 are both active, P3 chooses between receiving a value from P1 or from
P2 and adds respectively an a or a b to its output tape (of course if the received
value is not equal to -1). P3 stops when P1 and P2 have both stopped.

The output tapes of P1 and P2 will remain void. The output tape of P3 will
contain the produced sequence.

The state transition diagrams for the three components are presented in
[Fig.1], [Fig.2] and [Fig.3] respectively. The communicating states are denoted
by double underlined numbers.

The internal memory M1 of P1 is N �N; its current content is referred as
(n; k), where k corresponds to the number of a P1 has sent to P3 since the last
transmission; initially k = 0. We have q01 = 1 and T1 = f5g. The functions
referred to in the state transition diagram (Fig. 1) are de�ned as follows, where
"� " stands for no action.

f1: if n = 0 and k = 0 f2: C12 (= out1
then out1 �1

f3: out1 �1 f4: C13 (= out1

f5: if C13 = � then � f6: out1 k ; k 0

f7: if n > 0 f8: C13 (= out1
then out1 0

f9: n n� 1 ; k k + 1

The internal memory of P2 is N and its content will be referred as v, with the
meaning mentioned above. Initially v = 0, q02 = 1, in02 = out02 = 0 and T2 = f3g.
The functions referred to in the state transition diagram (Fig. 2) are de�ned as
follows.

g1: ifv = 0 and in2 < 0 g2: C23 (= out2
then out2 �1

500 Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

Figure 1: The state transition diagram for P1

g3: if v > 0 or in2 � 0 g4: in2 (= C12

then �

g5: if in2 � 0 then v v + in2 g6: �
else �

g7: if v = 0 g8: if v > 0
then � then v v � 1 ; out2 0

Figure 2: The state transition diagram for P2

The internal memory M3 of P3 is N and is referred as nr. Initially nr = 0, but
it will become 1 after P1 stops and 2 after P2 stops. q

0
3 = 1 and T3 = f2g.

h1: if nr = 2 then � h2: if nr < 2 then �

h3: in3 (= C13 h4: if in3 = 0 then add a to O
else nr nr + 1

h5: in3 (= C23 h6: if in3 = 0 then add b to O
else nr nr + 1

501Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

Figure 3: The state transition diagram for P3

4 CSXMS systems versus stream X-machines

Theorem17. For any CSXMS, there exists a stream X-machine such that for
any given input sequence, the same output will be produced.

Proof. Let us consider a CSXMS with n components P1; : : : Pn: We construct a
stream X-machine

X = (�;�;Q;M;�; F; I; T;m0)

as follows:

{ � = �n
i=1�

�
i : An input symbol (�1; : : : �n) 2 � has the following meaning:

all the machines Pi such that �i 2 �i use at the same moment their corres-
ponding current input symbol �i:

{ � = �n
i=1�

�
i :

{ Q = �n
i=1Qi.

{ The set of initial states is I = f(qi; : : : qn;)jqi 2 Iig:
{ The �nal state set is T = �n

i=1Ti.
{ M = �n

i=1(Mi � INi � OUTi) � CM is the global memory, containing
current memory values, input and output port values of each component
Pi and the current communication matrix. The initial memory value is
m0 = (�n

i=1(m
0
i ; in

0
i ; out

0
i)) � C

0 and retains all the initial memory valu-
es as well as the initial communication matrix.

{ � = �n
i=1�

�
i . A function (f1; : : : fn) : M �� �! � �M from � stands for

all component functions fi 6= � acting in parallel. If fi = �, then Pi does not
change its con�guration.
These functions are de�ned as follows:
(f1; : : : fn)(((m1; in1; out1); : : : ; (mn; inn; outn); C); (�1; : : : �n)) =
((g1; : : : ; gn); ((m

0
1; in

0
1; out

0
1); : : : ; (m

0
n; in

0
n; out

0
n); C

0))
if:
1) For any i either fi = �i = gi = � (no function is applied) or

fi(mi; ini; outi; �i; C) = (gi;m
0
i; in

0
i; out

0
i; C

0) (function fi is de�ned for
its current arguments and was actually applied).

2) For any i 6= j with fi 6= �, fj 6= �, fi and fj are not both communicating
functions referring to the same location Cij of the communication matrix.
This condition assures the mutual exclusion on the same location of C.

In this de�nition C 0 gathers all modi�cation performed on C by the functions
f1; : : : ; fn (see de�nition 14).

502 Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

{ The transition function F : Q� � �! 2Q is de�ned as follows:
(r1; : : : ; rn) 2 F ((q1; : : : ; qn); (f1; : : : ; fn)) if either fi = � and ri = qi, or
ri 2 Fi(qi; fi).

A con�guration of the stream X-machine X is, according to de�nition 1, a tuple:

z = (((mi; ini; outi)i=1;:::;n; C); (qi)i=1;:::;n; (si)i=1;:::;n; (
i)i=1;:::;n) (4)

From the above construction it follows directly that the stream X-machine works
in the same way as the given CSXMS does because:
z j= z0 i� z ` z0

where z; z0 are those from (3), z is given by (4) while z0 is obtained from z by
replacing each occurrence � by �0.

Note 18. Please note that the stream X-machine built in the proof of this theo-
rem is a slightly extended version of that given in the de�nition 1. The empty
input and the empty output are also allowed in this theorem.

5 Testing conditions

Various testing strategies have been applied to the problem of generating tests
for systems which can be modeled by �nite state machines. These have been de-
veloped for the deterministic case [Chow 78] and for nondeterministic machine
models [Luo, von Bochman, Petrenko 94]. Conditions for extending these vario-
us testing strategies to the context of (stream) X-machines have also been de�ned
and investigated, again both for the deterministic case [Ipate, Holcombe 97] and
for non-deterministic machines [Ipate, Holcombe 99].

Here an analysis is developed for the application of some of the same testing
methods to communicating (stream) X-machines. Only the case of deterministic
(stream) X-machines is considered.

Lemma19. For a given CSXMS having all the components Pi; 1 � i � n; deter-
ministic and with the output distinguishability property, it follows that the stream
X�machine X, constructed in the proof of the theorem 17, is also deterministic
and satis�es the output distinguishability property too.

Proof. In order to show that X is deterministic, it is enough to prove the second
requirement of the de�nition 3. Let us consider the contrary possibility, that
there exist

(q1; : : : ; qn); (q
0
1; : : : ; q

0
n); (q

00
1 ; : : : ; q

00
n) 2 Q

and
(f1; : : : ; fn) 2 � such that (q01; : : : ; q

0
n) 6= (q001 ; : : : ; q

00
n)

and
f(q01; : : : ; q

0
n); (q

00
1 ; : : : ; q

00
n)g � F ((q1; : : : ; qn); (f1; : : : ; fn)):

Then it follows that there exists 1 � i � n such that

q0i 6= q00i and fq0i; q
00
i g � Fi(qi; fi):

This contradicts the deterministic property of the Pi component.

503Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

In order to show that X has the output distinguishability property (see de-
�nition 4), let us consider two arbitrary functions

f = (f1; : : : ; fn); = (1; : : : ; n)

and suppose that there exist

m = ((m1; in1; out1); : : : ; (mn; inn; outn); C) 2M;� = (�1; : : : �n) 2 �

such that
f(m;�) = (g;m0); (m;�) = (g;m00)

for some
m0 = ((m0

1; in
0
1; out

0
1); : : : (m

0
n; in

0
n; out

0
n); C

0);
m00 = ((m00

1 ; in
00
1 ; out

00
1); : : : (m

00
n; in

00
n; out

00
n); C

00) 2M and
g = (g1; : : : gn) 2 �: Then fi = i; 1 � i � p (according to the output distingu-
ishability property (see de�nition 16) of each component Pi), and so f = :

It should be noted that, in the above proof, some of the elements occurring
on the same positions in �, g, f and may be �:

Remark. If for a word x, the set of distinct symbols occurring in x is denoted
by Alph(x); then for any sequences

x1; : : : ; xp and y1; : : : ; yq; such that x1 : : : xp 6= y1 : : : yq

it follows that for any sequences

z1; : : : ; zp+1 and w1; : : : ; wq+1; such that

Alph(z1 : : : zp+1w1 : : : wq+1) \ Alph(x1 : : : xpy1 : : : yq) = ;

we have
z1x1 : : : xpzp+1 6= w1y1 : : : yqwq+1

Note 20. Paths in CSXMS. Let CSXMSn = ((Pi)1�i�n; CM; C0) be a CSXMS
with n components, let X = (�;�;Q;M;�; F; I; T;m0) be the X-machine built
in the proof of theorem 17 and let us consider a component Pi; 1 � i � n. For
q; r 2 Qi, [q; r] denotes a path from q to r if there exist sj 2 Qi; 0 � j � p,
fj 2 �i 1 � j � p, sj = Fi(sj�1; fj); 1 � j � p; s0 = q and sp = r.

For q1; r1 2 Q, [q1::r1] denotes a path from q1 to r1 associated to [q; r] if
there exist (s1;j ; : : : ; sn;j) 2 Q; 0 � j � tp; (f1;j ; : : : ; fn;j) 2 �; 1 � j �
tp, (s1;j ; : : : ; sn;j ;) 2 F ((s1;j�1; : : : ; sn;j�1); (f1;j ; : : : ; fn;j)); 1 � j � tp and
si;0 = q; si;tj = sj ; 1 � j � p; 1 � t1 � t2 � : : : � tp; q1 = (s1;0; : : : ; sn;0);
r1 = (s1;tp ; : : : ; sn;tp).

Lemma21. Let us consider a CSXMSn with all the components Pi; 1 � i � n,
minimal and such that for any component Pi; 1 � i � n and any path [q; r],
q 2 Qi, r 2 Ti, there exists in the X-machine X, considerd in the proof of
theorem 17, the associated path [q1::r1], q1; r1 2 Q, and there exists a path from
r1 to a �nal state, then X is minimal too.

504 Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

Proof. Let us consider two distinct states q = (q1; : : : qn) and q0 = (q01; : : : q
0
n):

It follows that there exists 1 � i � n such that qi 6= q0i: Pi being a minimal
X�machine, it results that there exist ri; r

0
i 2 Qi such that the sequences of basic

functions from �i corresponding to [qi; ri] and [q0i; r
0
i]; namely fi;1 : : : fi;t; and

 i;1 : : : i;m, respectively, accepted by the associated automaton Ai (de�nition
5) are distinct. In the X�machine built in the proof of theorem 17 there exist
the associated paths [q1::r1]; [r1::r2] and [q01::r

0
1]; [r

0
1::r

0
2]; r2; r

0
2 2 T (see note 20)

and accordingly the sequences of functions from �

f1 : : : fa and 1 : : : b:

Then, there exist 1 � cj � a; 1 � j � t and 1 � dj � b; 1 � j � m such that
each fcj 2 � has the ith component the basic function fi;j 2 �i; 1 � j � t and

each dj 2 � has the ith component the basic function i;j 2 �i; 1 � j � m:
The other basic functions fj 2 � and h 2 � do not contain as components any
occurrence of fi;g; 1 � g � t and i;g ; 1 � g � m; respectively. According to the
remark following lemma 19, the strings f1 : : : fa and 1 : : : b are distinct.

Theorem22. If a CSXMS has its components deterministic and the X-machine
built in the proof of theorem 17 ful�lls the constraints imposed by lemma 21, then
this X-machine is deterministic and minimal.

Proof. It is an immediate consequence of lemmas 19 and 21.

Remark. { The complexity of the testing algorithm and of test data set is
provided in the case of a CSXMS with n components having the same number
of states, input symbols, and basic functions. Also the estimated number of
additional states for each component implementation is no larger than k. If
m � n is the number of states of the resulted X-machine and s = card(Qi);
p = card(�i); r = card(�i) and the complexity of each basic function is
less than �; then, similar to [Holcombe, Ipate 98], [Ipate, Holcombe 97] the
following values are obtained:
� the upper limit of the number m of states of the X-machine is given by
sn (see the proof of the theorem 17)

� the complexity of the algorithm that generates the test set will be

�((p+ 1)n � 1)((r + 1)n � 1)k+1m2(m+ 2k)

� the maximum number of test sequences required is less than

m2((r + 1)n � 1)k+1

� the total length of the test set is less than

m2(m+ k)((r + 1)n � 1)k+1

For estimating the number of input symbols and basic functions the
following obvious relation has been used

(1n)x+ (2n)x
2 + : : : (nn)x

n = (x+ 1)n � 1

{ Some hints for decreasing the complexity of the testing algorithm are provi-
ded in [Barnard, Whitworth, Woodward 96] in the case of the reachability
tree.

505Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

6 Conclusions

While in [Barnard, Whitworth, Woodward 96] is presented the basic concept of
assembling systems from communicating X-machines, they did not developed
this to the point of deriving the input-output relationships for such systems. By
extending their model, this paper has been able to derive this result, in the form
of de�nition 15.

From this, it has been demonstrated in theorem 17 that the process of assembling
a system in this way does not generate any additional computational power, in
that if the individual components are each modeled as stream X-machines, then
the complete system can also be modeled as a stream X-machine, which can
be constructed as in the proof of that theorem. Furthermore, it has also been
shown (in lemma 19 and theorem 22) that important properties of the individual
component machines, such as determinism, minimality and output distinguisha-
bility, will under suitable conditions all carry over to the system as a whole.

The reason why these results are important is that the process of assembling a
CSXMS from component X-machines in this way is intended to model precisely
the process of constructing software systems from sub-systems which interact by
exchanging data amongst themselves. Of course, the particular model of CSXMS
that is presented here is not the only possible formulation, and other variants of
it still need to be explored [Vertan 99]. One aim of this will be to �nd the best
way of representing the various features of the assembly process that need to be
captured in such a model. It will also be necessary to establish the conditions
under which the results developed here will apply to these others versions of the
model as well.

Given that the model considered here does represent the assembly process in
this way, the signi�cance of the results concerning the equivalence of computa-
tional power is that they give software designer the freedom to choose the level of
detail at which to apply the X-machine model to any particular software system.
Thus, for a system which is assembled from a number of components in this way,
a designer can either choose to build an X-machine model of each component
separately, and the assemble them into a CSXMS, or they can choose to build
a single X-machine model of the whole system. In practice, of course, they are
likely to adopt the �rst approach, as corresponding more closely to the actual
software design process, but theorem 17 assures that models built by either of
these two approaches will be equivalent, provided of course that they have been
built correctly.

Indeed, the problem of ensuring the correctness of such models is a central issue
in software design. Software testing is an important aspect of this issue, and
this paper has been able to extend to the CSXMS model some of the testing
results that have been established in [Holcombe, Ipate 98], [Ipate, Holcombe 97]
for individual deterministic X-machines.

One eventual aim of this extension is to provide a basis for characterising the test
set for a CSXMS in terms of the test sets for the component X-machines, so as
to be able to distinguish the properties that must be tested for the CSXMS as a

506 Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

whole from those which can be established by testing the components separately.
The results presented here provide a fundamental basis for future work aimed at
extending the approach developed in [Holcombe 88] and [Holcombe, Ipate 98],
so as to tackle the problem of de�ning rigorously the activity of integration tes-
ting for systems that are built in this way. This activity lies at the heart of any
attempt to assemble software components into systems that will be reliable and
correct, and the results that are presented here are crucial to it.

References

[B�al�anescu, Georgescu, Gheorghe 98a] T. B�al�anescu, H. Georgescu and M. Gheorghe,
Guarded Aditive Valence Grammars as Models for Synchronization Problems, An-
nals of Bucharest University, Mathematics-Informatics series, 47, 1 (1998), 19-26.

[B�al�anescu, Georgescu, Gheorghe 98b] T. B�al�anescu, H. Georgescu, and M. Gheorghe,
On Counting Derivation in Grammar Systems, Romanian Journal of Information
Science and Technology, Romanian Academy Press, 1, 1 (1998), 23-42.

[B�al�anescu, Georgescu, Gheorghe 98c] T. B�al�anescu, H. Georgescu, and M. Gheorghe,
Grammatical Models for Some Process Synchronizers, Proceedings of the MFCS'98
Satellite Workshop on Grammar Systems, Silesian University, Brno (1998), 117 -
137.

[B�al�anescu, Georgescu, Gheorghe 99] T. B�al�anescu, H. Georgescu, and M. Gheorghe,
Stream X-Machines with Underlying Distributed Grammars, submitted to Infor-
matica (1999).

[Barnard, Whitworth, Woodward 96] J. Barnard, J. Whitworth, M. Woodward, Co-
mmunicating X-machines, Journal of Information and Software Tehnolog., 38, 6
(1996), 401-407.

[Chow 78] T.S. Chow, Testing software design modeled by �nite-state machines, IEEE
Trans on SE, 4, 3 (1978), 178-187.

[Eilenberg 74] S. Eilenberg, Automata, languages and machines, Academic Press
(1974).

[Holcombe 88] M. Holcombe, X-Machines as Basis for Dynamic System Speci�cation,
Software Engineering Journal, 3, 2 (1988), 69-76.

[Holcombe, Ipate 98] M. Holcombe and F. Ipate, Correct Systems: Building a Business
Process Solution, Springer Verlag, Berlin (1998).

[Ipate, Holcombe 96] F. Ipate and M. Holcombe, Another look at computability, In-
formatica, 20 (1996), 359-372.

[Ipate, Holcombe 97] F. Ipate and M. Holcombe, An Integration Testing Method That
is Proved to Find all Faults, Intern. J. Computer Math, 63 (1997), 159-178.

[Ipate, Holcombe 99] F. Ipate and M. Holcombe, Generating test sequences from non-
deterministic X-machines, submitted to FACS (1999).

[Luo, von Bochman, Petrenko 94] G. Luo, G. von Bochman and A. Petrenko, Test
Selection Based on Communicating Nondeterministic Finite-State Machines Using
a Generalized Wp-Method, IEEE Trans on SE, 20, 2 (1994), 149-161.

[Vertan 99] C. Vertan: A New Approach to Communicating X-Machines Systems, su-
bmitted to J. UCS (1999).

507Bualuanescu T., Cowling A.J., Georgescu H., Gheorghe M., Holcombe M., Vertan C.

