
Division of Floating Point Expansions

with an Application to the Computation of a Determinant

Marc Daumas, Claire Finot
Laboratoire de l'Informatique du Parallelisme � Lyon � France

UMR 5668 � CNRS � ENS Lyon � INRIA
fMarc.Daumas,Claire.Finotg@ens-lyon.fr

Abstract: Floating point expansion is a technique for implementing multiple precision
using a processor's oating point unit instead of its integer unit. Research on this
subject has arised recently from the observation that the oating point unit becomes a
more and more eÆcient part of modern computers. Many simple arithmetic operators
and some very useful geometric operators have already been presented on expansions.
Yet previous work included only a very simple division algorithm. We present in this
work a new algorithm that allows us to extend the set of geometric operators with
Bareiss' determinant on a matrix of size between 3 and 10. Running times with di�erent
determinant algorithms on di�erent machines are compared with GMP, a very common
multi-precision package.

Key Words: Exact arithmetic, multiple precision, expansion, division, computational
geometry, oating point, library.

Category: B.2, G.4.

1 Introduction

Thanks to the 754 and 854 IEEE standards [17, 18, 3, 7], both the operations
on oating point numbers and the behavior of the oating point unit in cases
of exceptions are completely speci�ed. Since MFLOPs �gures are highly pub-
licized by processor manufacturers, the standard oating point operators are
also the most developed and the most powerful arithmetic operators on common
processors [9, 8, 16].

Expansions were introduced by Priest in 1991 [13] as a multiple precision tool
on oating point numbers based on earlier work by Dekker [6] and Knuth [10].
He proposed algorithms on expansions including the addition, the multiplication
and the division. Priest's algorithms were capable to adapt to the machine. They
are correct for di�erent working radices and for the di�erent levels of precision
achieved on rounding by some speci�c oating point unit.

In 1996 and 1997 Shewchuk implemented some enhanced algorithms re-
stricted to the case of an IEEE standard oating point rounding [14, 15]. His
library is available on the net1 with an application to computational geometry.
It includes the addition, the subtraction and the scaling of an expansion by a
oating point number. One of us proposed in [4, 5] the multiplication of two
expansions with a survey on former work on expansions in [4].

The section 2 of this article presents de�nitions and properties of oating
point numbers and oating point expansions. We have isolated a new lemma
that is used in this paper. We study in section 3 a new division operator with

1 URL: http://www.cs.cmn.edu/~jrs.

Journal of Universal Computer Science, vol. 5, no. 6 (1999), 323-338
submitted: 26/4/99, accepted: 16/6/99, appeared: 28/6/99  Springer Pub. Co.



a look to Priest's prior division algorithm. Our modi�ed algorithm will enable
us to implement on-line most signi�cant digit �rst adaptive computing. Section
4 proves the exact halting of both algorithms: when the result of the division
exactly �ts in an expansion, both algorithms �nd it. Section 5 outlines an appli-
cation of expansions to compute the exact determinant of a small matrix (size 3
to 10) as it may be used in computational geometry. We present three di�erent
algorithms and signi�cant running times on two di�erent IEEE machines. This
paper ends with concluding remarks and directions for further developments.

2 De�nitions and properties

2.1 Floating point numbers

A oating point number is stored in binary as a �nite length fraction and a
bounded exponent as presented in �gure 1. It reads

x = (�1)sign � (1:fraction) � 2exponent

With this notation, a weight can be associated to each bit of the mantissa.
Later on, we call �(x) the weight of the most signi�cant non-zero bit of x and
!(x) the weight of its least signi�cant non-zero bit. For a normalized number
x, �(x) = 2exponent. We de�ne the ulp function that means \Unit in the Last
Place" as the weight of the last bit of the mantissa of x. For any non zero
oating point number, we also de�ne m(x) = x

�(x) ; m(x) is the mantissa of x

and jm(x)j 2 [1; 2� ulp].

Sign Exponent Fraction (mantissa)

11 bits1 bit 52 bits (+1)

Figure 1: Representation of oating point numbers in IEEE standard double precision

Properties : Let a and b be two oating point numbers. We know that:

�(a) � jaj < 2�(a) (1)

�(a)�(b) � �(ab) � 2�(a)�(b) (2)

jbj � �(a) < 2jaj � �(b) (3)

Proof of property (1) :

Since jaj = �(a)jm(a)j and jm(a)j 2 [1; 2) then �(a) � jaj < 2�(a). 2

324 Daumas M., Finot C.: Division of Floating Point Expansions



Proof of property (2) :

We expand �(ab) = �(�(a)m(a) � �(b)m(b)) = �(a)�(b)�(m(a)m(b)). Since
jm(a)m(b)j 2 [1; 4) we know that �(m(a)m(b)) 2 f1; 2g and we �nd �(a)�(b) �
�(ab) � 2�(a)�(b). 2

Proof of property (3) :

Since both jm(a)j and jm(b)j are in [1; 2), jm(a)j < 2jm(b)j. Following the de�-
nition of jm(a)j and jm(b)j, we have jbj � �(a) < 2jaj � �(b). 2

The IEEE standard describes four rounding modes but the rounding to the
nearest oating point number is the rounding mode used by default in most
computers. The result of any implemented operation, namely the addition, the
multiplication, the division and the square root extraction, is the rounded result
of the exact mathematical operation. For example, if Æ(x) is the rounded to the
nearest value of x for any x, and the machine oating point addition of a and b
is a� b, then a� b = Æ(a+ b).

As proposed by Dekker [6] and Knuth [10], an exact two-sum operator can be
constructed from standard oating point operators. The result of the addition is
a pair (a0; b0) such that a0 = Æ(a+b) and a0+b0 = a+b. An exact multiplication is
also available. It computes a pair (a0; b0) such that a0 = Æ(a�b) and a0+b0 = a�b. It
was proved that b0 always �ts in a common oating point number. The exact sum
needs 4 oating point additions and 2 oating point subtractions. In particular
cases, a fast exact sum only requires 2 oating point additions and one oating
point subtraction. These operators are surveyed in [4, 5] with a new improved
condition to apply the fast exact sum.

De�nition 1 Let A be a set of oating point numbers with its sum A =
P

a2A a.

We say that bA is a fair most signi�cant component of A if either:

{ bA equals to the rounded to the nearest value of A

{ bA equals to the rounded to the nearest value of A1 with jA�A1j � ulp(ulp( bA))
Properties : Let A be a set of oating point numbers with its sum A =

P
a2A a,

and bA a fair most signi�cant component. The following properties are satis�ed:���A� bA��� � ulp

�
1

2
+ ulp

�
�( bA) (4)

��� bA���
2

� jAj � 2
��� bA��� (5)

1

2
�( bA) � �(A) (6)

�(A) � �( bA) (7)

325Daumas M., Finot C.: Division of Floating Point Expansions



Proof of property (4)

Thanks to de�nition 1, we know that bA = Æ(A1) and jA�A1j � ulp(ulp( bA)).���A� bA��� � jA�A1j+
���A1 � bA���

� ulp(ulp( bA)) + 1

2
ulp( bA)

� ulp(�( bA):ulp) + 1

2
�( bA) � ulp

� �( bA) � ulp2 + 1

2
�( bA) � ulp

� ulp

�
1

2
+ ulp

�
�( bA)

2

Property (5) is a strict corollary of property (4) and its proof is omitted here.

Proof of property (6)

Thanks to property 4, we know that,���A� bA��� � ulp

�
1

2
+ ulp

�
�( bA)

� ulp

�
1

2
+ ulp

�
j bAj

(8)

So there exists � 2 [�1; 1] such that:

A� bA = � � ulp

�
1

2
+ ulp

� bA
Then

A =

�
� � ulp

�
1

2
+ ulp

�
+ 1

� bA
�(A) = �

��
� � ulp

�
1

2
+ ulp

�
+ 1

� bA�
�(A) � �

�
� � ulp

�
1

2
+ ulp

�
+ 1

�
�
� bA�

As ����� � ulp�12 + ulp

�
+ 1

���� � 1

2

Then

�(A) �
1

2
�( bA)

2

326 Daumas M., Finot C.: Division of Floating Point Expansions



Proof of property (7)

As we did in the proof of property (6), we can �nd � in [�1; 1] as follows:

jA�A1j � ulp(ulp( bA)) � ulp2 � �( bA) � 2ulp2 � �(A)

A�A1 = 2� � ulp2 � �(A)

A1 = �(A)(m(A) + 2� � ulp2)

It follows that: bA = Æ(�(A)(m(A) + 2� � ulp2))

= �(A) Æ (m(A) + 2� � ulp2)��� bA��� � �(A) Æ (1� 2ulp2)

� �(A)

Since Æ(1� 2ulp2) = 1. It follows that �( bA) � �(A). 2

The six properties presented above and the following lemma are very general
results on standard oating point numbers as well as the lemmas presented
in [4, 5]. They will probably be applied in the future to other situations. We
have started building an adapted corpus of sensible results on oating point
operations.

Lemma 1 Let A be a set of oating point numbers with its sum A =
P

a2A a

such that bA is a fair most signi�cant component. The following property is satis-
�ed for any oating point number b and any set of oating point numbers C such

that C = b:A|with C =
P

c2C c and bC is a fair most signi�cant component of
C.

�( bC) � 2�(b) � �( bA)
Proof :

In the most general case, bC = Æ(C1) with jC � C1j � ulp(ulp( bC))bC = Æ(C1) = Æ(bA+ e)

with

jej � ulp2 � �( bC)
� 2ulp2 � �(C)

� 2ulp2 � �(bA)

� 4ulp2 � �(b)�(A)

Let e = � � ulp2 � �(b)�(A) , with � 2 [�4; 4]. We know that:bC = Æ(�(b)�(A)m(A)m(b) + � � ulp2 � �(b)�(A))

= �(b)�(A) Æ (m(A)m(b) + � � ulp2)

327Daumas M., Finot C.: Division of Floating Point Expansions



As jm(b)j � 2� ulp and jm(A)j � 2,

jm(A)m(b) + � � ulp2j � 2(2� ulp) + 4ulp2 and��Æ(m(A)m(b) + � � ulp2)
�� � 2(2� ulp)

It follows that:

�( bC) � �(�(b)�(A) � 2(2� ulp))

� �(b)�(A) � �(2(2� ulp))

� 2�(b)�(A)

� 2�(b)�( bA)
2

2.2 Expansions

An expansion is the representation of a large oating point quantity, x, by an
n-tuple of machine oating point numbers (xn � � �x2; x1) called the components
(see �gure 2). The length of the expansion is the number of its components.

X=
x8 x7 x6 x5 x4 x3 x2 x1

Figure 2: Representation of an expansion

The components must be sorted by magnitude and two components cannot
have signi�cant bits with the same weight as illustrated �gure 3. We say that the
components are non-overlapping. For any value of i, two non zero components
xi+1 and xi satisfy !(xi+1) > �(xi).

1.101011011101001....0

1.011101001100101....1

1.001010001010000....0

�(B)

�(C)

!(B)

!(A)

B=

C=

A=

Figure 3: Floating point numbers A and B do not overlap whereas B and C do

328 Daumas M., Finot C.: Division of Floating Point Expansions



For any mathematical operation, x is equal to the exact sum of all its com-
ponents. The addition and the multiplication on expansions are implemented
with exact operations. No information is lost. For example, the sum 2200 + 1 is
represented by two components 2200 and 1. We do not store all the zero bits
between the two components.

Priest proposed a non-restoring algorithm for the division of expansions [11,
12]. It initially stores the value of the dividend in the remainder R0. At iteration
i, a new approximate quotient digit qi is guessed from a fair most signi�cant

component bD of the divisor D and a fair most signi�cant component bRi of the

remainder Ri: qi = Æ( bRi= bD). The remainder is replaced by Ri+1 = Ri � qi � D
as presented �gure 4.

} }

Ri+1

qi

Ri D

cRi
bD

�qiD

Figure 4: Iteration i of Priest's algorithm: Ri+1 = Ri � qi �D.

Since Ri is at least divided by a constant factor at each iteration, the al-
gorithm is converging. The quotient may be truncated to a given precision to
obtain an approximate expansion with a bounded number of components.

R0

D
=

n�1X
i=0

qi +
Rn

D

3 Modi�ed algorithm

Our algorithm only estimates the most signi�cant digit bRi of the remainder.
The less signi�cant components of the dividend are stored unchanged with all
the components of the terms �qi �D that have not been reduced so far. A priority
queue extracts the most signi�cant components among this set. These numbers

are accumulated until two non zero non overlapping digits bRi and eRi can be

estimated. This process guarantees that bRi is a faithful approximation of Ri.
Figure 5 outlines the relative position of the di�erent quantities summed by our
algorithm.

329Daumas M., Finot C.: Division of Floating Point Expansions



}} }

qi

D

bDcRi

Ri

�qiD

Ri+1

Partial reduction

Not reduced

Not reduced

Not reduced
(Priority queue)

(Priority queue)

fRi

Figure 5: Iteration i of our modi�ed algorithm: estimate bRi+1 and eRi+1.

3.1 Convergence

The new remainder Ri+1 is the sum of three terms (see equation 9). The quantity

(Ri� bRi) represents all the digits of Ri but the most signi�cant one, the second
term is a single oating point number and the remaining product is represented
as the sum of 2-number expansions sorted by magnitude or as 2 expansions of
length (n� 1) as n is the length of D.

Ri+1 = (Ri � bRi) + ( bRi � qi bD)� qi(D � bD) (9)

Our algorithm is converging since the sequence of jRij is quickly decreasing
as presented below.

jRi+1j �
���Ri �cRi

���+ ��� bRi � qi bD���+
�����cRibD

� bD �D
������ (10)

We present an upper bound of each term of inequation (10):

{ At iteration i, the priority queue contains at most (2i+ 1) expansions since

each qi(D � bD) adds two expansions to the queue that contains only R0 at
initialization: one for the upper parts of the individual products (qi �Dj)H
and one for the the lower parts (qi �Dj)L for j = 2 � � �n.

jRi �cRij � (2i+ 1)ulp(cRi)

� (2i+ 1)�(cRi)ulp

� 2(2i+ 1)jRijulp

330 Daumas M., Finot C.: Division of Floating Point Expansions



{

��� bRi � qi bD��� can be reduced from the de�nition of qi using as above the prop-

erties (1),(6) plus now property (5).

��� bRi � qi bD��� =
����� bD
 cRibD � Æ

 cRibD
!!�����

�
��� bD��� 1

2
� ulp

 
Æ

 cRibD
!!

�
1

2

��� bD��� � 2 �����cRibD
�����ulp

� 2 jRijulp

{ The last term of inequation (10) is bounded by a function of Ri.

�����cRibD ( bD �D)

����� �
�����cRibD

����� � ulp( bD)

�

�����cRibD
������( bD) � ulp

�

�����cRibD
����� ��� bD��� � ulp

� 2 jRij � ulp (11)

Thus, we can write:

jRi+1j � (4i+ 6)ulp � jRij

Consequently, the algorithm is always converging with a bound as large as

i � ulp�1

8 , that leaves plenty of space for an expansion.

3.2 Comparison of complexities

We consider that evaluating the number of oating point operations (additions,
multiplications, divisions and comparisons) is suÆcient to compare our algorithm
with Priest's one. Let n be the length of the divisor, li be the length of the
remainder at iteration i and m be the number of iterations. The length of the
quotient is subsequently directly equal to m.

Both algorithms need n multiplications and 3n additions to split the compo-
nents of the divisor and m multiplications and 3m additions to split the compo-
nents of the quotient digits as they are produced.

In Priest's algorithm, each iteration is broken downto 4 steps as presented
in next table: compute a new digit of the quotient; compute the quantity that
should be withdrawn from the remainder; compute the new remainder and �nally
compress it.

331Daumas M., Finot C.: Division of Floating Point Expansions



Step 1 2 3 4
Addition 4nm

P
i(li + 2n)� 3

P
i(li + 2n)� 9

Comparison
P

i(li + 2n)� 1
Multiplication 5nm
Division m

In our algorithm, we can evaluate directly the number of operations from
the number of quotient digits produced as presented below. Each quotient digit
generates a given number of tasks. Steps 1 and 2 are unchanged except that step
1 also includes a test for exact halting (see section 4). Steps 3 and 4 are replaced
by the elimination of the terms of the queue: manage the priority queue and
consume the topmost digit if time is correct.

Step 1 2 3 4
Addition 2m 4nm m+2m(n�1)�9
Comparison m 2m(n� 1)� logm m+ 2m(n� 1)
Multiplication m 5nm
Division m

To bound the complexity of Priest's algorithm, we have to evaluate li. In
the worst case, we may only know that li � li�1 + 2n leading to li � 2in+ l0.
We can however assume that we have a situation close to the one experienced
with multiple precision arithmetic based on integers (later on called integer-like
algorithm). In this case, we assume that li � m� i+n+� where � is a constant.

Both algorithms require 5nm+m+ n multiplications and m divisions. Our
algorithm requires m additional multiplications to preserve exact halting as pre-
sented in the next section. The total number of oating point additions and
comparisons for each algorithm is given below. Managing the priority queue is
quite expensive. We have a better asymptotic complexity than Priest's algorithm
in general, but Priest's algorithm is faster on simple cases where the enhanced
control given by the priority queue is not necessary.

Algorithm Additions Comparisons
Priest's 12nm2 + 16nm+ 3n+ 3m 2nm+ nm(m� 1)

Integer-like 6m2 + 40nm+m(12�� 3) + 3n 3nm+ �m+ m(m�1)
2

Modi�ed 23mn� 2m+ 3n 2m(n� 1) logm+ 2mn

4 Exact halting

When the quotient may be represented as a oating point expansion, both algo-
rithms �nd it. They halt after a �nite number of steps with the exact quotient.
We show that the rounding errors introduced in the approximate guesses of the
quotient digits are not suÆcient to create a in�nite sequence of approximate
quotient digits that would converge to the quotient but fail to attain it exactly.

Related questions are entirely new in the literature on oating point oper-
ations. Interestingly, we were forced to modify our algorithm to obtain exact

332 Daumas M., Finot C.: Division of Floating Point Expansions



halting. This led us to a di�erent proof for Priest's algorithm and for our algo-
rithm.

4.1 Priest's algorithm

We focus our interest on the step k where the algorithm would �nish if it �nds
the correct oating point quotient digit. The di�erence between the exact result
and the sum of the quotient digits we have computed so far, is a single oating
point number, q = Rk=D. Let qk be the value computed by the algorithm and
q0k the exact (not rounded) quotient of two fair most signi�cant components of

Rk and D: q0k = cRk= bD. Here we assume, as Shewchuk conjectured in [15], that
the compress algorithm always yield a fair most signi�cant component of an
expansion.

jq � q0kj =
1bD
���q bD � q0k

bD���
�

1bD
����q bD � qD

���+ ���Rk � cRk

����
�

1bD
�����q:ulp(12 + ulp)�( bD)

����+ ����ulp(12 + ulp)�(cRk)

����� Using property 4

�
1bD:ulp(

1

2
+ ulp)

�
2�(q) � �( bD) + �(q) � �( bD)

�
Using lemma 1

�
1bD4ulp(

1

2
+ ulp) � �(q) � �( bD)

� �(q) � 4ulp(
1

2
+ ulp)

<
5

2
� ulp � �(q)

As shown on �gure 6|where crosses are representable oating point values
on the real axis|the value of jq�qkj equals to 0, 1 or 2 ulps. We have 2 di�erent
cases:

{ jq � qkj = 0. The algorithm has found the exact result.
{ jq � qkj = 2n. The exact result will be found at the next step.

4.2 Modi�ed division

Since it only estimates the most signi�cant component of the remainder, our
algorithm may produce an in�nite string of approximated quotient digits. We
have inserted a �x in the main loop to avoid this situation.

At each iteration of our algorithm (as well as in Priest's one), the quotient
digit has to be split into two half words to compute the components of �qi �D. In
our algorithm, if the quotient digit is very close to its higher half word, we con-
sider that the lower half word is not relevant. For example, an estimated quotient
digit of 1.01000000000...0001, 1.00111111111...1100 or 1.01000000000...0110, will
be replaced by 1.01000000000...0000.

333Daumas M., Finot C.: Division of Floating Point Expansions



q
0

k qkq
0

kqk

q

q
0

kqk

5
2 :ulp

5
2 :ulp

q
0

k qk

Figure 6: Di�erence between q and qk

If the lower part of the digit were correctly estimated, this operation only
lengthens the algorithm of one iteration, but it solves our problem. As expected,
this event happens rarely in actual applications.

5 Application

As a benchmark, we used expansions to compute the determinant of a small
matrix (size 3 to 10). Evaluating the extended sign of a determinant (zero,
positive or negative) is a crucial issue in computational geometry. The algorithm
has to be fast and error free.

A =

0BB@
a11 a12 � � � a1n
a21 a22 � � � a2n
...

...
. . .

...
an1 an2 � � � ann

1CCA
Let A be the n � n square matrix de�ned above. Let mij be the minor

associated to aij . To compute the determinant, we may �rst apply the column
wise development on A as follows. We recursively apply the development on
the mi1 determinants that need to be computed to �nish the computation. Some
limited dynamic programming was implemented to reduce the total running
time.

det(A) = a11m11 � a21m21 + a31m31 � :::+ (�1)n+1 � an1mn1

=

nX
i=1

((�1)i+1ai1 �mi1)

Gaussian elimination uses operations on the lines of the matrix to com-
pute an upper triangular matrix. The product of the terms on the diagonal is
directly connected to the determinant of A. We used limited partial pivoting
when necessary. Our second algorithm is described below without divisions.

334 Daumas M., Finot C.: Division of Floating Point Expansions



tmp=1;
For k = 1 to n-1 do

For i = k+1 to n do
For j = k+1 to n do

aij = akk � aij � aik � akj
tmp = tmp � (sign(akk))

n�k�1

return tmp � sign(ann)

The magnitude and the number of words necessary to store the intermediate
values in our Gaussian elimination grow up very quickly leading to an exponential
growth. Bareiss' method involves a division at each step to reduce the size
of the intermediate coeÆcients. The division is exact and the quotient is not
approximated. The algorithm becomes:

simp = 1;
For k = 1 to n-1 do

For i = k+1 to n do
For j = k+1 to n do

aij = (akk � aij � aik � akj)=simp
simp = akk

return sign(ann)

We compared the three di�erent algorithms on our package, on GMP and on
regular oating point implementations. The later produced constantly erroneous
results as soon as the size of the matrices reached 4. We however used them as
a reference. The �gures 7 and 8 present a ratio of the running time compared
to Gaussian elimination on oating point numbers. This ratio is the price to be
paid to obtain the correct result. GMP (GNU Multiple Precision package) is a
well-known library that uses assembly code on the integer unit to construct very
eÆcient multiple precision operators.

In our test, we have used two di�erent types of matrices: random matrices
(�g. 7 and 8(a)) and non invertible matrices (�g. 8(b)). The former use 57
bit random integers. The later use ill formed 200 bit integers computed so that
the rank of the matrix is n� 1.

For all the tests, column wise development showed good performances with
small matrices. Gaussian elimination was running correctly for medium size ma-
trices. Bareiss' elimination is the best algorithm as soon as the additional cost
of the division is amortized by the length of the expansion.

The two di�erent machines involved in the test contain a Cyrix 6x86 for the
�rst one and an Intel Pentium Pro for the second one. The double extended 80
bit format was used to store the components of the expansions.

6 Conclusion

We now have a complete library of arithmetic operations on expansions and
we have tested the performances of expansions on the computation of a small
determinant. Results are quite good and with chosen matrices, expansions have
better results than widely used libraries like GMP. For the third diagram, the
matrices were carefully chosen to give a little advantage to the expansions over
GMP. We succeeded since expansions are there constantly the best package.

335Daumas M., Finot C.: Division of Floating Point Expansions



This situation is representative of a user that does not want to learn about the
peculiarities of his code. As it stands, determinants on oating point expansions
are a good solution for a package that should run on any situation. However,
a hand tuned package still represents a faster solution for a user with a good
experience in this �eld.

Results on the 6x86 are not very good for expansions compared to GMP. The
Cyrix 6x86 is known to have a weak oating point unit compared to its integer
unit. The second diagram shows a visible improvement with exactly the same
tests and exactly the same program. The expansion library uses the oating
point unit whereas GMP uses the integer unit. As long as the oating point unit
continues to speed up in comparison to the integer unit, expansions will show
impressive results compared to integer libraries for this kind of applications.

Priest's algorithm needs all the components of the divisor and the dividend
before it begins computation. Our algorithm only requires a few of their most
signi�cant components before it produces the most signi�cant digit of the quo-
tient. We say that our division may work on-line with the most signi�cant digits
of its operands �rst. Yet, the run time system able to take advantage of this
property is still to be created. One of us presents in [1, 2] a prototype of such
system. Odds remains that the user will be provided individual basic tools rather
than a transparent system.

1

10

100

1000

10000

100000

3 4 5 6 7 8 9 10

Running time (Ratio to Gaussian elimination on floating point numbers)

Recursive development  on expansions
Gaussian elimination  on expansions
Gaussian elimination  with GMP        

Bareiss method  on expansions
Bareiss method  with GMP        

Figure 7: Results on a Cyrix 6x86 with a random matrix.

336 Daumas M., Finot C.: Division of Floating Point Expansions



1

10

100

1000

10000

100000

3 4 5 6 7 8 9 10

Running time (Ratio to Gaussian elimination on floating point numbers)

Recursive development  on expansions
Gaussian elimination on expansions
Gaussian elimination with GMP        

Bareiss method  on expansions
Bareiss method  with GMP        

(a) Random matrix.

1

10

100

1000

10000

100000

3 4 5 6 7 8 9 10

Running time (Ratio to Gaussian elimination on floating point numbers)

Recursive development  on expansions
Gaussian elimination  on expansions
Gaussian elimination  with GMP        

Bareiss method  on expansions
Bareiss method  with GMP        

(b) Chosen matrix.

Figure 8: Results on an Intel Pentium Pro.

337Daumas M., Finot C.: Division of Floating Point Expansions



The addition and the multiplication operators implemented in [13, 14, 15, 5]
operate least signi�cant digits �rst. We will in near future transform all these
operators to operate on-line. This is the natural step to obtain an adaptive
library.

References

[1] D. Berthelot and M. Daumas. A library for real numbers using Cauchy's embedded
interval sequences. In International Conference on Interval Methods and Computer
Aided Proofs in Science and Engineering, pages 23{24, W�urzburg, Germany, 1996.

[2] D. Berthelot and M. Daumas. Computing on sequences of embedded intervals.
Reliable Computing, 3(3):219{227, 1997.

[3] W. J. Cody, R. Karpinski, et al. A proposed radix and word-length independent
standard for oating point arithmetic. IEEE Micro, 4(4):86{100, 1984.

[4] M. Daumas. Multiplications of oating point expansions. Research report 98-39,
Laboratoire de l'Informatique du Parall�elisme, Lyon, France, 1998.

[5] M. Daumas. Multiplications of oating point expansions. In Proceedings of the
14th Symposium on Computer Arithmetic, Adelaide, Australia, 1999.

[6] T. J. Dekker. A oating point technique for extending the available precision.
Numerische Mathematik, 18(3):224{242, 1971.

[7] D. Goldberg. What every computer scientist should know about oating point
arithmetic. ACM Computing Surveys, 23(1):5{47, 1991.

[8] D. Goldberg. Computer Architecture: A Quantitative Approach, chapter Computer
Arithmetic, pages A1{A77. Morgan Kaufmann, 1996.

[9] J. L. Hennessy and D. A. Patterson. Computer architecture: A quantitative ap-
proach. Morgan Kaufmann, 1996.

[10] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms.
Addison-Wesley, 1981.

[11] I. Koren. Computer Arithmetic Algorithms. Prentice Hall, 1993.
[12] J.-M. Muller. Arithm�etique des Ordinateurs. Masson, 1989.
[13] D. M. Priest. Algorithms for arbitrary precision oating point arithmetic. In

P. Kornerup and D. Matula, editors, Proceedings of the 10th Symposium on Com-
puter Arithmetic, pages 132{144, Grenoble, France, 1991. IEEE Computer Society
Press.

[14] J. R. Shewchuk. Robust adaptative oating point geometric predicates. In Pro-
ceedings of the 12th Annual ACM Symposium on Computational Geometry, pages
141{150, Philadelphia, Pensylvania, 1996.

[15] J. R. Shewchuk. Adaptive precision oating-point arithmetic and fast robust ge-
ometric predicates. In Discrete and Computational Geometry, volume 18, pages
305{363, 1997.

[16] B. Shriver and B. Smith. The Anatomy of a High Performance Microprocessor,
A Systems Perspective. IEEE Computer Society, 1998.

[17] D. Stevenson et al. A proposed standard for binary oating point arithmetic.
IEEE Computer, 14(3):51{62, 1981.

[18] D. Stevenson et al. An american national standard: IEEE standard for binary
oating point arithmetic. ACM SIGPLAN Notices, 22(2):9{25, 1987.

338 Daumas M., Finot C.: Division of Floating Point Expansions


