
Automatic Data Restructuring

Seymour Ginsburg
(Computer Science Department, University of Southern California,

Los Angeles, California, 90089
e-mail: ginsburg@pollux.usc.edu)

Nan C. Shu
(IBM Los Angeles Scienti�c Center,

Los Angeles,California)

Dan A. Simovici
(University of Massachusetts at Boston,

Department of Mathematics and Computer Science,
Boston, Massachusetts 02125
e-mail: dsim@cs.umb.edu)

Abstract: Data restructuring is often an integral but non-trivial part of informa-
tion processing, especially when the data structures are fairly complicated. This paper
describes the underpinnings of a program, called the Restructurer, that relieves the
user of the \thinking and coding" process normally associated with writing procedural
programs for data restructuring. The process is accomplished by the Restructurer in
two stages. In the �rst, the di�erences in the input and output data structures are
recognized and the applicability of various transformation rules analyzed. The result
is a plan for mapping the speci�ed input to the desired output. In the second stage,
the plan is executed using embedded knowledge about both the target language and
run-time e�ciency considerations.
The emphasis of this paper is on the planning stage. The restructuring operations
and the mapping strategies are informally described and explained with mathematical
formalism. The notion of solution of a set of instantiated forms with respect to an
output form is then introduced. Finally, it is shown that such a solution exists if and
only if the Restructurer produces one.

Key Words: non-�rst normal form databases, data restructuring, instantiated forms,
hierarchical structures, solution of a set of instantiated forms.

Category: H.2, E.1

1 Introduction

The rapid decline of computing costs and the desire for productivity improve-
ment has created increased demands for computerized information processing by
end users [22]. The challenge for computer professionals is to bring computing
capabilities - usefully and simply - to people without special computer training.
The emergence of visual programming [36, 8, 24, 38, 6] and the resurgence of
automatic programming [5] represent two signi�cant approaches to meet this
challenge. FORMAL [34], a visual-directed and forms-oriented application de-
velopment system, is a prototype that embodies the spirits of both. The visual
programming aspects of FORMAL have been described elsewhere [34, 36, 37].
The purpose of this paper is to present the automatic aspects of data restruc-

Journal of Universal Computer Science, vol. 5, no. 4 (1999), 243-286
submitted: 12/4/99, accepted: 23/4/99, appeared: 28/4/99 Springer Pub. Co.

turing in FORMAL and a theoretical foundation for it.1 However, the abstract
considerations presented here are not dependent on the particular implementa-
tion solutions adopted in FORMAL.

Data restructuring is often done in an ad hoc manner. What sets our method
apart from other data restructuring e�orts is the automatic mechanism's ability
to take over the \thinking and coding" process normally associated with writ-
ing algorithms for data restructuring. For convenience this mechanism is called
\the Automatic Restructurer" (or simply the Restructurer). The most important
pieces of information given to the Automatic Restructurer are an unambiguous
description of each input and an unambiguous structural description of the de-
sired output. If there are two or more inputs, then the match �elds used to tie the
inputs together must also be given. Based on these descriptions, an executable
program (using the restructuring operations originally proposed in CONVERT
[31]) is generated by a two-stage process. In the �rst stage, the di�erences be-
tween the input and output data structures are recognized and the applicability
of various transformational rules analyzed. The result is a plan for mapping the
speci�ed input(s) to the desired output. In the second stage, runtime e�cien-
cies are taken into consideration, and an executable program is implemented to
carry out the plan. The result is a reasonably e�cient program for the restruc-
turing task at hand. A major contribution of this paper is a detailed explanation
(expressed both formally and informally) of the underpinnings of the automatic
restructuring mechanism. Since the e�ciency considerations and implementation
details are not the primary interests of this paper, the concerns of the second
(i.e., construction or coding) stage are included only to complete the exposition.
The emphasis is on the mechanism underlying the �rst (i.e., planning) stage,
namely, on the derivation of a sequence of restructuring operations aimed at
producing a user-speci�ed output from the given input.

The paper itself is organized into eight sections, the �rst being this introduc-
tion. Section 2 explains the notion of \data restructuring." Section 3 presents the
underlying data model. Section 4 discusses the restructuring problem. Section 5
de�nes four types of basic operations designed speci�cally for data restructuring.
Section 6 considers the strategies for mapping speci�ed inputs to desired out-
puts, using sequences of these basic operations. Section 7 discusses the e�ciency
considerations. Section 8 presents a summary of the results obtained.

2 Data Restructuring

As mentioned in the Introduction, the purpose of this paper is to present a
method for automatically performing data restructuring tasks and provide a
theoretical basis for it. This section explains and elaborates on the meaning of
\data restructuring," why it is an important part of information processing, and
what is the signi�cance of an automatic programming approach.

Historically, database reorganization is de�ned as \changing some aspect of
the way in which a database is arranged logically and/or physically" [39] - a

1 The facilities provided by FORMAL are a superset of those described in this paper.
Here, we choose to discuss only those directly relevant to the restructuring of the
data structures. Capabilities such as changing component names, specifying criteria
for selections, case-by-case assignments, arithmetic and string operations, handling
of exceptions, etc., are not germane to structural transformations, and are therefore
not included in the discussion.

244 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

generic term that covers both data restructuring (changing logical structures)
and reformating (changing physical structures) of database systems. With that
perspective, data restructuring fell primarily in the domain of data-processing
operations personnel and database researchers. Our view of data restructur-
ing has a much broader scope. Here, the term data restructuring is to mean
a sequence of operations aimed at producing an output with structure di�erent
from that of the corresponding input. Data restructuring may be performed for a
variety of reasons, for example, as a desirable database function (to improve per-
formance or storage utilization), or as a useful application (to support decision
making or data processing).

(PERSON)

ENO DNO NAME PHONE JC (KIDS) (SCHOOL) SEX LOC

KNAME AGE SNAME (ENROLL)

YEARIN YEAROUT

05 D1 SMITH 5555 05 JOHN 02 PRINCETON 1966 1970 F SF

MARY 04 1972 1976

07 D1 JONES 5555 05 DICK 07 SJS 1960 1965 F SF

JANE 04

BERKEPRY 1965 1969

11 D1 ENGEL 2568 05 RITA 04 UCLA 1970 1974 F LA

12 D1 DURAN 7610 05 MARY 08 M SF

BOB 10

19 D1 HOPE 3150 07 MARYLOU 10 M SJ

MARYANN 07

02 D2 GREEN 1111 01 DAVID 04 M SF

20 D2 CHU 3348 10 CHARLIE 06 HONGKONG 1962 1966 F LA

CHRIS 09

BONNIE 04 STANFORD 1967 1969

1972 1975

21 D2 DWAN 3535 12 USC 1970 1974 F SJ

43 D2 JACOB 4643 09 PAULA 07 BERKEPRY 1962 1966 M SJ

Figure 1: (PERSON) �le

Data restructuring plays an important role in information processing applica-
tions. When data is extracted from sources or new �elds are created and placed
in the output, the structure of the resulting output seldom resembles that of
the input. To illustrate, consider the personnel information of a given company
shown in the (PERSON) �le described in Figure 1. Suppose a Christmas party
is being planned. All employees' children will receive gifts at the party. Di�erent
gifts are planned for each age group. The organizer of the party wishes to list,
for each location (LOC), by age of the children (AGE), the name of each kid
(KNAME) and his/her parent name (NAME). For this seemingly simple exam-
ple, all information required to produce the desired (XMASLIST) �le (Figure
2) is contained in the (PERSON) �le. Yet, the actual process of producing the
desired (XMASLIST) involves data restructuring of a non-trivial nature (see
Figure 3).

Besides showing that data restructuring is an integral part of many informa-
tion processing applications, the above example also shows that query facilities
(designed for simple retrieval) are not adequate to handle many of the real world
situations: programming is required. Traditionally, programming is considered to

245Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(XMASLIST)
LOC (RECIPIENT)

AGE (KID)
KNAME NAME

LA 04 BONNIE CHU
RITA ENGEL

06 CHARLIE CHU
09 CHRIS CHU

SF 02 JOHN SMITH
04 MARY SMITH

JANE JONES
DAVID GREEN

07 DICK JONES
08 MARY DURAN
10 BOB DURAN

SJ 07 PAULA JACOB
MARYANN HOPE

10 MARYLOU HOPE

Figure 2: Desired (XMASLIST)

be in the professional programmers' province. But the reliance on a professional
programmer often means placing a formal request to the data processing person-
nel and waiting on a priority list for programmers to take action. The alternative
is for the end users to learn to program.

Learning to program is generally a time-consuming and often frustrating
endeavor. Moreover, even after the skill is learned, writing and testing a pro-
gram is still tedious and labor intensive. Writing programs to perform data
transformation is no exception. To ease the task, special languages with high
level operations for data restructuring have been reported in the literature. (See
[1, 11, 17, 20, 21, 25, 30, 31, 32, 40, 42] for example.) These languages are high
level, but they are still \procedural" and programming training is necessary. In
other words, users of these languages must write out the algorithms of restruc-
turing in a step by step manner. (See Appendix A for an example.)

In the rapidly growing end-user computing environment, many non-DP pro-
fessionals simply do not have the time, interest, or skill to program. Indeed, as
noted in a survey of end-user computing ([27]), two thirds of the end-user ap-
plications were developed by support personnel, programmers, and consultants.
It is our contention that unless an essential part of tedious, low level program-
ming can be made automatic, a large community of potential end users will
not develop their applications. In the remainder of this paper, we present an
automatic restructuring mechanism which is aimed at decreasing the tedium
normally associated with writing procedural programs. For example, because of
the Automatic Restructurer implemented in FORMAL, (XMASLIST) can be
created from (PERSON) with the speci�cation shown in Figure 4. In essence,
the user describes the structure of the desired output (XMASLIST) and tells
the system to �nd the required information in the source form (PERSON). The
system does the rest.

246 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(PERSON)

ENO DNO NAME JC (KIDS) (SCHOOL) SEX LOC

KNAME AGE SNAME (ENROLL)

YEARIN YEAROUT

LOC (RECIPIENT)

AGE (KID)

KNAME NAME

?

Restructuring

(XMASLIST)

Figure 3: Restructuring of (PERSON) to (XMASLIST)

3 The Underlying Data Model

As mentioned in the Introduction, the most important information given to
the Restructurer is an unambiguous description of the input and output data
structures. In this section, we discuss the data structures supported by the Re-
structurer, and indicate several ways to describe them.

Briey, the Automatic Restructurer handles all data structures as hierar-

chies. Relational tables are treated as degenerate hierarchies (i.e., hierarchies
of one level), and networks are assumed to have been decomposed into fami-
lies of hierarchies before the Automatic Restructurer is invoked. No conceptual
limitations are placed on the depth or width of the hierarchies.

There are many di�erent ways to describe hierarchical data structures. In the
database community, hierarchy graphs are commonly used when data structures
are discussed. As an example, Figure 3 shows the hierarchy graphs of (PERSON)
and (XMASLIST). But hierarchy graphs become cumbersome when the display

247Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(XMASLIST)

(RECIPIENT)

LOC

AGE (KID)

KNAME NAME

SOURCE (PERSON)

Figure 4: A speci�cation for creating (XMASLIST) from (PERSON)

of instances is desired. The di�culty is that one \instance graph" is required to
represent each occurrence, and consequently many \instance graphs" are needed
to show multiple occurrences.

Data Processing personnel may or may not care about instance graphs, but
for users who do not have very much data-processing training, visualization
of occurrences often enhances the understanding of a problem. A \form" data
model was therefore suggested in [31] as a two-dimensional representation of
hierarchical data where multiple occurrences can be displayed conveniently. It
was intended at that time as a visual aid to assist the users in understanding the
high level operations performed on their data. The \form operation by example"
[23], the nested table (NT) model [20], and more recently, the \nested normal
forms", and \non �rst normal form relational databases" (see [1, 9, 11, 12, 18,
19, 28, 29, 30, 41], for example) use similar representations as visual aids. In
these representations, hierarchical structures are implied by exhibiting sample
instances.

Visual aids enhance human understanding. But, unless the representations
are precise, they cannot be processed by a computer program (data restructurer
included). In order to provide unambiguous descriptions (without depending
on the display of sample instances) to the Restructurer, the hierarchical struc-
tures must be made explicit. A straightforward approach is to re�ne the \form
headings" used in the form model so that the one-many relationships are dis-
tinguished from the one-one relationships [33, 10]. Before presenting the re�ned
form heading as an unambiguous description of a hierarchical structure, a few
de�nitions are in order.

A �eld is the smallest unit of data that can be referenced in a user's appli-
cation. A group is a sequence of one or more �elds and a number of subordinate
groups. For example, ENO (Employee number), DNO (Department number),
NAME (Employee Name), PHONE, JC (Job Code), . . . , are �elds of the (PER-
SON) �le (Figure 1), while (KIDS), (SCHOOL), and (ENROLL) are groups.

Groups are either repeating or non-repeating. A non-repeating group is a
convenient way to refer to a sequence of �elds as a unit (e.g., DATE is a non-

248 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

repeating group over MONTH, DAY and YEAR). A repeating group, on the
other hand, represents the one-many relationship and thus exhibits the hierar-
chical relationship. Take (PERSON) (Figure 1) for example. An employee may
have many children, and may have attended a number of schools. Thus, for an
employee, (KIDS) and (SCHOOL) are repeating groups. Repeating groups can
be nested (representing several levels of a hierarchy, e.g., (ENROLL) is a subor-
dinate repeating group, nested within (SCHOOL)), or in parallel (representing
several branches of a hierarchy, e.g., (KIDS) and (SCHOOL) represent two di�er-
ent branches). To simplify the discussion, we do not deal with the non-repeating
groups in the rest of this paper.

In data processing applications, a �le is a named collection of homogeneously
structured data. The structure of a �le is generally de�ned in terms of its com-
ponents (where a component is either a �eld or a group). Component names are
assumed to be unique for each �le, i.e., there are no duplicate names among the
components.

In FORMAL, a form heading assumes a role that is commonly known as the
data structure de�nition in conventional programming languages. Its purpose is
to unambiguously de�ne the name of the associated �le, its components, and
structural relationships among the components. Parentheses are used to denote
the existence of multiple (i.e. zero or more) occurrences in the associated �le or
group. Thus, names of the �le and its repeating groups (also called subforms)
are enclosed in parentheses. More precisely, in a form heading, the �le name is
placed on the top line. The names of the root or top level components are shown
in columns under the �le name. The names of components contained in a group,
in turn, are placed in columns under the name of the containing group. A double
line signals the end of a form heading. (See the lines above the double line in
Figure 1).

In a form heading, the nesting and/or parallel parenthesized names serve to
de�ne explicitly a hierarchical structure. The level of each component is indicated
by its row-position under the �le name. To illustrate, the level numbers are
explicitly shown in Figure 5 on the outside of the (PERSON) form heading. For
example, ENO, (KIDS), and (SCHOOL) are at level 1, SNAME is at level 2 and
YEARIN level 3.

The Restructurer classi�es data structures (or \forms") into three distinct
shapes : \at", \branch", and \tree." The algorithm for determining the shape
is quite simple. It is implemented by traversing a given two-dimensional form
heading (or its equivalent \component description table", discussed later). Dur-
ing the traversal, each component in the form heading is assigned a level number
according to its row position. At the end of the traversal, the shape of the data
structure is determined. If the number of parenthesized names equals one, then
none of the components is a repeating group (or subform). The structure is at
shaped. If the number of parenthesized names (say p) is greater than one, then
that number (p) is compared with the largest level number (say n). Obviously,
if p is larger than n, then at least one level must have more than one subform,
and the shape of the form is a tree. (See Figure 5 for an example.) Otherwise,
the structure is a branch. (See (XMASLIST) in Figure 4 for an example.)

The shapes of at, branch, and tree structures are ranked 1, 2 and 3, re-
spectively. The relative shape rankings of the input and output structures have
a bearing on how the Restructurer maps the strategy for transformation (dis-
cussed in Section 6). In the rest of the paper, when the shape of the data structure

249Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(PERSON) level

ENO DNO NAME PHONE JC (KIDS) (SCHOOL) SEX LOC 1

KNAME AGE SNAME (ENROLL) 2

YEARIN YEAROUT 3

Index IDENTIFIER NEXTI CHILDI PARENTI PRVEL GROUP

0 PERSON 0 1 0 0 1

1 ENO 2 0 0 1 0

2 DNO 3 0 0 1 0

3 NAME 4 0 0 1 0

4 PHONE 5 0 0 1 0

5 JC 6 0 0 1 0

6 KIDS 7 10 0 1 1

7 SCHOOL 8 12 0 1 1

8 SEX 9 0 0 1 0

9 LOC 0 0 0 1 0

10 KNAME 11 0 6 2 0

11 AGE 0 0 6 2 0

12 SNAME 13 0 7 2 0

13 ENROLL 0 14 7 2 1

14 YEARIN 15 0 13 3 0

15 YEAROUT 0 0 13 3 0

Note: NEXTI, CHILDI and PARENTI are indexes to entries in the component description

table for next component, child component,and parent component, respectively.

Figure 5: Component description table of (PERSON) form

is not the center of attention, the generic term \tree" is used interchangeably
with the term \hierarchy" (discussed in the introduction to the present section).

To view the data, occurrences are displayed under the form heading. The
compactness of the form heading enables the visualization of many occurrences
at one time (see Figure 1).

Since the form heading represents a concrete means to unambiguously de-
�ne a hierarchical structure of arbitrary depth and width, it is used as an in-
put/output description by FORMAL. An input is de�ned once (regardless of the
number of di�erent applications utilizing it) by a user or a systems person, and
the description is immediately available in the system catalog. There is no need
for another user to de�ne the same �le again. Description of the desired output,
on the other hand, is provided by the user as part of his application speci�-
cation. For example, in Figure 4, the description of (XMASLIST) is provided
in the form heading of the FORMAL program that produces (XMASLIST). As
discussed later in Section 6, intermediate �les may be needed during the restruc-
turing process. Structures of all intermediate �les are de�ned by the Restructurer
and are of no concern to the end users.

As mentioned earlier, it is necessary that the unambiguous descriptions of
input and output data structures are available to the automatic restructuring
mechanism, but it is immaterial how the required information is captured. In the
FORMAL implementation, a parser translates the two-dimensional form head-
ings into component description tables which are used as input to the Automatic
Restructurer. As an example, Figure 5 shows the component description table
corresponding to the (PERSON) form heading. The component description ta-
bles are easily translatable from the form headings, and vice versa. They are
really two representations of the same information, one being more convenient
for the user, the other more suitable for machine manipulation.

250 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

In the formal treatment which follows, we use the term form to denote, in
an abstracted form, the unambiguous description of a data structure. In the
examples, we use form heading as the concrete representation of the abstracted
notion.

In order to discuss the data restructuring process in a more abstract manner,
a formal description of the hierarchical data structures is now presented.

LetBA1 be an in�nite set of abstract elements called basic attributes. (Basic
attributes correspond to the �elds mentioned earlier.) For each basic attribute
A, let

{ Dom(A) (called the domain of A) be a nonempty set of at least two abstract
elements, exactly one of which is denoted ?A (the null symbol);

{ the basic attributes of A, denoted BA(A), be the set fAg; and
{ the attributes of A, denoted Attrib(A), be the set fAg.

Continuing recursively, let B1; : : : ; Br be r � 1 attributes such thatBA(Bi)\
BA(Bj) = ; for all i 6= j, and at least one of them a basic attribute. Let
B = hB1; : : : ; Bri, where \h" and \i" are two special symbols. Then

{ Dom(B) is the family of �nite subsets of the (ordered) Cartesian product
Dom(B1)� : : :�Dom(Br);

{ B is called a form (attribute) and a parent of each Bi, and each Bi is an
o�spring or an immediate descendent of B;

{ BA(B) =
S
iBA(Bi), and is called the set of basic attributes of B; and

{ Attrib(B) = fBg [
S
iAttrib(Bi), and is called the set of attributes of B.

Each attribute in Attrib(B)�fBg is called a proper attribute of B. Each Bi

which is a form is called a subform of B. Recursively, each subform of a subform
Bi is also called a subform of B. If each Bi is a basic attribute, then B is said
to be a at form. If B has at least one subform and B and each subform of B is
of the shape B0 = hB0

1
; : : : ; B0

si, where at most one B
0

i is a form, then B is said
to be a branch.

To illustrate, in Figure 1, ENO, DNO, NAME, PHONE, JC, KNAME, AGE,
SNAME, YEARIN, YEAROUT, SEX and LOC are basic attributes.

(ENROLL) = hYEARIN;YEAROUTi;

(SCHOOL) = hSNAME;ENROLLi;

(KIDS) = hKNAME;AGEi; and

(PERSON) = hENO; : : : ; JC; (KIDS); (SCHOOL); SEX;LOCi

are forms.
(PERSON) is the parent of ENO, DNO, ..., and LOC. Each attribute except

(PERSON) is a proper attribute of (PERSON).
Note that each proper attribute C of B has exactly one parent, denoted

ParB(C), or Par(C) when B is understood. Also, if D is a proper attribute of
C and C is an attribute of B, then ParC(D) = ParB(D).

C is an ancestor of C 0 if either C = Par(C 0), or C = Par(D) and D is
an ancestor of C 0 (alternatively, C = Par(C 0), or C is an ancestor of D and
D = Par(C 0)). C 0 is said to be a descendent of C if C is an ancestor of C 0. C
and C 0 are said to be siblings if Par(C) = Par(C 0).

If C is an ancestor of B, then C is a form.

251Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

Let C be an attribute in Attrib(F). If D1; : : : ; Dn are the immediate de-
scendents of C in F , then FreeF (C) = fDij1 � i � n and Di in BA(F)g. If
C in BA(F), then FreeF (C) = fCg. The subscript F is omitted when F is clear
from the context. Note that FreeF (C) 6= ; for each C in Attrib(F). Thus

Free((PERSON)) = fENO;DNO;NAME;PHONE; JC; SEX;LOCg;

Free((SCHOOL)) = fSNAMEg and

Free((ENROLL)) = fYEARIN;YEAROUTg:

Let B;B0 be two attributes. B equals B0 (denoted by B = B0) if

{ B and B0 are the same basic attribute, or
{ B = hB1; : : : ; Bri, B

0 = hB0

1
; : : : ; B0

ri and Bi = B0

i for 1 � i � r.

This means that two forms that have the same direct descendents are considered
identical.

Referring to the level number discussed earlier, let F = hF1; : : : ; Fri be a
form. The level of each attribute Fi with respect to F is de�ned to be 1. Con-
tinuing by induction, suppose F 0 is an attribute in F of level l with respect to
F . For F 0 = hF 0

1
; : : : ; F 0

si the level of each F 0

j with respect to F is de�ned to be
l+1. Each attribute of level 1 is said to be at root level. The level of an attribute
A in Attrib(F) is denoted by levelF (A), or by level(A) when F is understood.

We now turn to the instance of a form. Using recursion, an instance of a form
F = hF1; : : : ; Fri is a �nite set I of functions

f : Free(F) [fFj jFj a form g �!S
fDom(A)jA in Free(F)g [fIns(Fj)jFj a formg;

such that f(A) is in Dom(A) for each A in Free(F) and f(Fj) is in Ins(Fj) for
each form Fj . Let Ins(F) be the set of all instances of F .

Figure 1 illustrates an instance I of the (PERSON) form. The set I consists
of nine functions f1; : : : ; f9, representing the information in the compartments 1
through 9 under the double line. f1 is the function over

fENO, DNO, NAME, PHONE, JC, (KIDS), (SCHOOL), SEX, LOCg

de�ned by

f1(ENO) = 05; f1(DNO) = D1; f1(NAME) = SMITH;
f1(PHONE) = 5555; f1(JC) = 05; f1(SEX) = F;

f1(LOC) = SF; f1((KIDS)) = I11 f1((SCHOOL)) = I12:

Here, I11 is an instance of (KIDS) that consists of the functions f111; f112 de�ned
by

f111(KNAME) = JOHN; f111(AGE) = 02;
f112(KNAME) =MARY; f112(AGE) = 04:

I12 is the instance of (SCHOOL) consisting of the function f121, where

f121(SNAME) = PRINCETON; f121((ENROLL)) = I1211:

252 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

I1211 is the instance of the form (ENROLL) consisting of the functions f12111
and f12112 over fYEARIN,YEAROUTg, where

f12111(YEARIN) = 1966; f12111(YEAROUT) = 1970;
f12112(YEARIN) = 1972; f12112(YEAROUT) = 1976:

The remaining functions f2; : : : ; f9 are de�ned similarly.
For each form F , let Ins1(F) =

S
fIjI in Ins(F)g, that is, Ins1(F) is the

set of all functions which are in at least one instance of F . An instantiated form
is a pair (I; F), where F is a form and I is an instance of F .

A set of instantiated forms B = f(I; F)jF in Fg will be referred to as an
instantation of F .

4 The Restructuring Problem

We now turn to a precise statement of the basic problem 2. The actual formal-
ization is rather complicated and requires a number of concepts. A central role
will be played by the notions of \direct solution" and of \solution" introduced
in Section 7.

We start by recalling some notions from relational database theory. Let X be
a �nite nonempty set of basic attributes. A tuple (over X) is a function f from
X into

S
A in X Dom(A) such that f(A) is in Dom(A) for all A in X . A relation

is a pair (I;X), or I when X is understood, where X is a nonempty set of basic
attributes and I is a �nite set of tuples over X . If (I; hB1; : : : ; Bni) is a at
instantiated form, then B1; : : : ; Bn are basic attributes and (I; fB1; : : : ; Bng) is
a relation.

For each nonempty subset Y of X , the projection over Y is the function �Y

from the set of tuples over X to the set of tuples over Y de�ned by �Y (f) = g,
where f is a tuple over X and g is the tuple over Y for which g(A) = f(A) for
all A in Y .

Our interest in tuples over a set of basic attributes stems from the following
concept. By recursion, for each form F = hF1 : : : ; Fri and each f 2 Ins1(F), let
K(f), called the kernel of f , be the set of all tuples g over BA(F) such that

(i) g(A) = f(A) for each A in Free(F) and
(ii) g over BA(Fj), Fj a form, is a tuple in K(f(Fj)).

For each I in Ins(F), the set
S
fK(f)jf in Ig denoted by K(I; F), is the kernel

of (I; F).
Obviously, each kernel is a �nite set of tuples. If F is a at form, then

K(I; F) = I. When F is clear from the context we shall write K(I) instead of
K(I; F).

Given a form F and a �nite set R of tuples over BA(F) there may be more
than one instantiated form (I; F) such that K(I; F) = R. For example, consider
the form F = hA;F1; F2i, where F1 = hBi and F2 = hCi, and the set R of tuples
over BA(F) is

2 The authors are indebted to Dr. Marc Gyssens for helping to clarify the original
incorrect formulation of the basic problem.

253Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

A B C

a b1 c
a b2 c
a b1 c1
a b c2

Both instantiated forms (I1; F) and (I2; F) given below have their kernels equal
to R.

(I1; F) =

F
A F1 F2
B C

a b1 c
b2

a b1 c1
a b c2

(I2; F) =

F
A F1 F2
B C

a b1 c
c1

a b2 c
a b c2

The set of paths of F , denoted by Paths(F), is de�ned inductively on the
number k of subforms of F . Speci�cally, if k = 0, then F is a at form and
Paths(F) = fFg. Continuing by induction, let F be the form F = hF1; : : : ; Fri.
If Fi1 ; : : : ; Fim are the subforms of F at the root level, then each of them has
fewer than k subforms. This allows us to de�ne Paths(F) as

Paths(F) = ffHjg0�j�`jH0 = F and

fHjg1�j�` in Paths(Fip); Fip a form in F for 1 � p � mg:

Each path � in Paths(F) generates a (unique) branch F� obtained by removing
from F all form attributes, together with their descendants, that do not occur
in �. We shall use the notation BA(�) for BA(F�).

5 Basic Types of Restructuring Operators

As mentioned in Section 3, the data structures of interest to us are basically hi-
erarchical structures of arbitrary depth or width. Relational tables are treated as
hierarchies of one level, and networks are assumed to have been decomposed into
families of trees. In this section, restructuring operations speci�cally designed to
work on hierarchical structures are discussed.

In transforming a hierarchical structure to a di�erent one, the Automatic Re-
structurer makes use of four basic types of tree operations: trimming, attening,
stretching, and grafting. When applied to a particular situation, each of these
four types of operations causes a restructuring to take place - an operation that
produces one output �le from either one (in the case of trimming, attening and
stretching) or two (in the case of grafting) input �les.

These four types of operations were called SELECT, SLICE, CONSOL-
IDATE and GRAFT in the CONVERT system [32]. (The names have been
changed here for mnemonic purposes.) Experience has shown that the data ex-
traction, manipulation and restructuring needs of the real world can be handled
by a combination of these four types of operations. Similar operations were later
proposed in [20, 42, 13]. Query languages designed for \nested tables" or \non

254 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

�rst normal form relational databases" generally have capabilities to perform
functions similar to the basic operations discussed here. (See [2, 3, 10, 14, 26, 28]
for example.)

The following examines the functions of the four basic types of operations.

5.1 Trimming

A trimming operation removes unwanted components from a form or a subform.
Data is extracted from the input and placed in the output without any change in
the hierarchical relationships. An example of trimming is presented in Figures 6
and 7. Figure 6 shows the structural transformation, and 7 the instances involved.

We now consider \trimming" in a formal manner.
A form G = hG1 : : : Gsi is a trimming of the form F = hF1; : : : ; Fri if G 6= F

and there is a one-to-one partial function h, called a trimming operation, from
Attrib(F) onto Attrib(G) with the following properties:

(Tr 1) h�1(B) = B for each basic attribute B in Attrib(G).
(Tr 2) h�1(Par(B)) = Par(h�1(B)) for each proper attribute B of G.
(Tr 3) h�1(G) = F .

Symbolically, we write h(F) = G.
Notice that each permutation of siblings at the root level of a form F , or at

the root level of some subform of F , is a trimming of F . Also, the composition
of two trimmings is a trimming; that is, if G is a trimming of F (by h1) and H
is a trimming of G (by h2), then H is a trimming of F (by h2h1, where h2h1 is
the function obtained by �rst applying h1 and then h2).

We note the following result, whose proof is given in Appendix B.

Proposition1. (Trimming Proposition) Let G = hG1 : : : Gsi be a trimming
of F = hF1; : : : ; Fri by h. Let j be such that h(Fj) exists. Then

(a) There exists k(j) such that h(Fj) = Gk(j).
(b) Gk(j) is a basic attribute if and only if Fj is a basic attribute, in which

case Gk(j) = Fj .
(c) h(Attrib(Fj)) = Attrib(Gk(j)).
(d) Gk(j) is a trimming of Fj by h.

Now let G = hG1; : : : ; Gsi be a trimming of F = hF1; : : : ; Fri by h. Using

(a), (b) and (d) of the Trimming Proposition, let hIns(F) be the mapping from

Ins1(F) to Ins1(G) where, for each f in Ins1(F), hIns(F)(f) = g, g de�ned as
follows:

(1) g(A) = f(A) for all A in Free(G) = fGkjGk a basic attributeg.
(2) For each subform Fj such that h(Fj) exists, h(Fj) = Gk(j) is a subform of

G and Gk(j) is a trimming of Fj by h. Recursively, h
Ins(Fj) maps Ins1(Fj) into

Ins1(Gk(j)). Let g(Gk(j)) = hIns(Fj)(f(Fj)). Clearly, g(Gk(j)) is in Ins(Gk(j)).
The following result is also shown in Appendix B.

Theorem2. (Trimming Theorem) Let G be a trimming of F by h. Then

K(hIns(F)(I)) = �BA(G)(K(I)) for each I in Ins(F).

255Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(PERSON)

ENO DNO NAME PHONE JC (KIDS) (SCHOOL) SEX LOC

KNAME AGE SNAME (ENROLL)

YEARIN YEAROUT

?

TRIMMING

DNO ENO NAME LOC (SCHOOL5)

(PERSON5)

SNAME (ENROLL5)

YEAROUT

Figure 6: Structural transformation by TRIMMING

5.2 Flattening

A attening operation produces a at form from a branch of an input by ex-
tracting all information at the level of the values of the basic attributes of the
branch. The relative positioning of these attributes in the output need not be
the same as that in the input. An example of attening is shown in Figures 8
and 9.

From a theoretical standpoint, it is simpler to restrict the shape of the input
to be a branch. In case the input has the shape of a tree, it is not di�cult to

256 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(PERSON)
ENO DNO NAME PHONE JC (KIDS) SCHOOL) SEX LOC

KNAME AGE SNAME (ENROLL)
YEARIN YEAROUT

05 D1 SMITH 5555 05 JOHN 02 PRINCETON 1966 1970 F SF
MARY 04 1972 1976

07 D1 JONES 5555 05 DICK 07 SJS 1960 1965 F SF
JANE 04

BERKELEY 1965 1969
11 D1 ENGEL 2568 05 RITA 04 UCLA 1970 1974 F LA

.

.

.

?

TRIMMING

(PERSON5)
DNO ENO NAME LOC (SCHOOL5)

SNAME (ENROLL5)
YEAROUT

D1 05 SMITH SF PRINCETON 1970
1976

D1 07 JONES SF SJS 1965
BERKELEY 1969

D1 11 ENGEL LA UCLA 1974

.

.

.

Figure 7: TRIMMING with instance displayed

envisage a two-step process: First apply a trimming operation to obtain an in-
termediate form containing only the relevant branch with the desired attributes.
Then apply a attening operation on the intermediate form to produce the de-
sired at output3. Thus, in the formal treatment that follows, we assume that
the input form has the shape of a branch, and a trimming operation has already
been applied if necessary.

A form G = hG1; : : : ; Gsi is a attening of the form F if G 6= F , F is a
branch and there is a one-to-one partial function h (called a attening operation
) from Attrib(F) onto Attrib(G) with the following properties:

(Fl 1) Each Gi is a basic attribute, i.e., G is a at form.
(Fl 2) BA(G) = BA(F).
(Fl 3) h�1(Gi) = Gi for each Gi.
(Fl 4) h�1(G) = F .
By (Fl 3) and (Fl 4), h(C) is de�ned only for C in fFg [BA(G).

Theorem3. (Flattening Theorem) If G is a attening of F by h and I is

an instance of F , then K(hIns(F)(I); G) = K(I; F).

3 From the software point of view, however, this two-step process is not as e�cient
as directly applying a attening operation to a branch of a tree (i.e., without �rst
trimming the tree). Therefore, the implementation enables the direct application of a
attening operation to a branch regardless of whether the input form is tree-shaped
or branch-shaped.

257Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(P1)

ENO DNO NAME PHONE JC (SCHOOL) SEX LOC

DNO ENO NAME PHONE JC SNAME YEARIN YEAROUT SEX LOC

SNAME (ENROLL)

(P2)

YEARIN YEAROUT

?

FLATTENING

Figure 8: Structural transformation by attening

(P1)
ENO DNO NAME PHONE JC (SCHOOL) SEX LOC

SNAME (ENROLL)
YEARIN YEAROUT

05 D1 SMITH 5555 05 PRINCETON 1966 1970 F SF
1972 1976

07 D1 JONES 5555 05 SJS 1960 1965 F SF
BERKELEY 1965 1969

11 D1 ENGEL 2568 05 UCLA 1970 1974 F LA

.

.

.

?

FLATTENING

(P2)
DNO ENO NAME PHONE JC SNAME YEARIN YEAROUT SEX LOC

D1 05 SMITH 5555 05 PRINCETON 1966 1970 F SF
D1 05 SMITH 5555 05 PRINCETON 1972 1976 F SF
D1 07 JONES 5555 05 SJS 1960 1965 F SF
D1 07 JONES 5555 05 BERKELEY 1965 1969 F SF
D1 11 ENGEL 5555 05 UCLA 1970 1974 F LA

.

.

.

Figure 9: Flattening with instance displayed

258 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

Proof. Let G be a attening of F by h. For each f in Ins1(F), let h
Ins(F)(f) =

�BA(G)(K(f)). For each I in Ins(F), let hIns(F)(I) =
S
fhIns(F)(f)jf is in Ig.

Thus, we obtain hIns(F)(I) = �BA(G)(K(I)). Clearly, hIns(F)(I) is in Ins(G).
Since G is a at form, K(J) = J for each J in Ins(G). Hence,

K(hIns(F)(I)) = hIns(F)(I) = �BA(G)(K(I)):

5.3 Stretching

A stretching operation produces an output with more hierarchical levels than
the input. The e�ect is to factor out the common values in the occurrences. In
terms of (hierarchical) trees, this operation forms a taller tree. The additional
hierarchical levels must be formed from attributes existing at the root level of the
input. The names of the new subforms are speci�ed by the user (in the description
of the output structure, i.e., the output form heading) or by the Restructurer
(when an intermediate form is required). An example of stretching is shown in
Figure 10 where the output (PERSON7) has two more levels than the input
(PERSON). The new levels are formed by factoring out the common values of
DNO and, within each unique DNO, the common values of LOC. (BRANCHES)
and (EMPLOYEE) are new subforms.

In more detail, a form G = hG1; : : : ; Gsi is said to be a stretching of the
form F = hF1; : : : ; Fri if there exists a subform G0 = hG0

1; : : : ; G
0

qi of G with the
following properties:

(St 1) The forms in the set fF1; : : : ; Frg coincide with the forms in the set
fG0

1; : : : ; G
0

qg.
(St 2) The siblings of G0, and the siblings of each ancestor of G0, together with

the basic attributes in the set fG0

1; : : : ; G
0

qg, coincide with the basic attributes
in the set fF1; : : : ; Frg, i.e., coincide with Free(F).

From (St 1) and (St 2), it follows that BA(F) = BA(G).
The transformation of F into G is said to be a stretching operation. Expressed

otherwise, G is said to be a stretching of F by a stretching operation.
To simplify the discussion of instances, we present a slightly di�erent formu-

lation of stretching.

Proposition4. (Stretching Proposition) A form G is a stretching of the
form F = hF1; : : : ; Fri if and only if there exists a sequence Gl = hGl

1; : : : ; G
l
s(l)i,

0 � l � t, where t > 0 and G0 = G, with the following properties:
(a) The forms in fGt

1; : : : ; G
t
s(t)g coincide with the forms in fF1; : : : ; Frg.

(b) For each l, 0 � l < t, exactly one Gl
i is a form, say Gl

i(l), and Gl
i(l) =

Gl+1.
(c) The basic attributes in fF1; : : : ; Frg coincide with the basic attributes in

fGi
j j for all i; jg.

Proof. Indeed, suppose hG1; : : : ; Gsi = G = G0 = hG0
1; : : : ; G

0
s(0)i is a stretching

of F . Then there exists a subform G0 = hG0

1; : : : ; G
0

qi satisfying (St 1) and (St

2). Let G1 = hG1
1; : : : ; G

1
s(1)i be the form in fG0

1; : : : ; G
0
s(0)g such that either

G1 = G0 or G1 is an ancestor of G0 . By (St 2), all the siblings of G1 are

259Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(PERSON)

ENO DNO NAME PHONE JC (KIDS) (SCHOOL) SEX LOC

KNAME AGE SNAME (ENROLL)

YEARIN YEAROUT

(PERSON7)

DNO (BRANCHES)

LOC (EMPLOYEE)

SNAME (ENROLL) KNAME AGE

ENO NAME JC (SCHOOL) (KIDS) PHONE SEX

YEARIN YEAROUT

@
@
@
@

?

STRETCHING

Figure 10: Structural transformation by stretching

basic attributes in fF1; : : : ; Frg. Now repeat the procedure for l � 1, obtaining
Gl = hGl

1; : : : ; G
l
s(l)i from Gl�1, until Gl = G0. Let t be the value of l for which

Gl = G0. Clearly, t > 0 and the sequence Gl = hGl
1; : : : ; G

l
s(l)i (where 0 � l � t)

satis�es (a) - (c).
Now suppose Gl = hGl

1; : : : ; G
l
s(l)i (where 0 � l � t, t > 0 and G0 =

G) satis�es (a) - (c). Let G0 = hG0

1; : : : ; G
0

qi = Gt = hGt
1; : : : ; G

t
s(t)i. Clearly,

conditions (St 1) and (St 2) hold. Hence, G is a stretching of F .

260 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

Let G be a stretching of F = hF1; : : : ; Fri by a stretching operation h and
Gl = hGl

1
; : : : ; Gl

s(l)i (where 0 � l � t) a sequence of forms satisfying (a) - (c) of

the Stretching Proposition. For each function f in Ins1(F), let hIns1(F)(f) =
g0, where g0 is the function on Free(G0) [fG0

i(0)g de�ned by g0(A) = f(A) for

each A in Free(G0) � Free(F) and g0(G0
i(0)) = fg1g. By induction, for each l,

1 � l < t, let gl be the function on Free(Gl) [fGl
i(l)g de�ned by gl(A) = f(A)

for each A in Free(Gl) � Free(F) and gl(Gl
i(l)) = fgl+1g. Let gt be the function

on

Free(Gt) [fGt
j jG

t
j a form g

= Free(Gt) [fFj jFj a form g;

by (a) of the Stretching Proposition

� Free(F) [fFj jFj a formg

de�ned by gt(A) = f(A) for each A in Free(Gt) � Free(F) and gt(Fj) = f(Fj)
for each Fj in fFijFi a form g. It is readily seen that :

(i) g0 is in Ins1(G) and
(ii) K(g0) is the set of all functions �g over BA(G) = BA(F) such that

�g(A) = f(A) for each A in
St

l=0 Free(G
l) and �g(Fj) is a tuple in K(f(Fj)) for

each form Fj .
By de�nition, K(f) is the set of all functions �f over BA(F) such that �f(A) =
f(A) for each A in Free(F), and �f(Fj) is a tuple in K(f(Fj)) for each form Fj .

By (c) of the Stretching Proposition, K(f) = K(g0) = K(hIns1(F)(f)). From
this, we immediately get:

Theorem5. (Stretching Theorem) If G is a stretching of F by h and I is

an instance of F , then K(hIns(F)(I); G) = K(I; F).

5.4 Grafting

A grafting operation combines two hierarchies horizontally to form a wider hi-
erarchy by matching the values of the common �elds at the root (top) level of
the two inputs.4 These common basic attributes are used as linkages between
two inputs, and are called the match attributes for convenience of discussion. In
terms of trees, one can view the operation as \grafting" one (hierarchical) tree
to another in order to form a new one. An example is shown in Figure 11.

A formal description of grafting is now given. A form G = hG1; : : : ; Gsi is
said to be a grafting of the forms E = hE1; : : : ; Eqi and F = hF1; : : : ; Fri if

(Gr 1) There exists some Ei and Fj such that BA(Ei) \BA(Fj) 6= ;.
(Gr 2) For each Ei and Fj such that BA(Ei) \BA(Fj) 6= ;, Ei = Fj and is

a basic attribute.
(Gr 3)

hG1; : : : ; Gsi = hE1; : : : ; Eq ; Fu(1); : : : ; Fu(s�q)i;

4 If some of the common basic attributes are not at the root level, then additional
operations must be performed before grafting can take place.

261Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(DEPT) (PERSON7A)

DNO DNAME (PROJECT) DNO (EMPLOYEE)

PJNO BUDGET ENO NAME LOC (SCHOOL)

SNAME (ENROLL)

YEARIN YEAROUT

(DEPTMENT)

DNO DNAME (PROJECT) (EMPLOYEE)

PJNO BUDGET ENO NAME LOC (SCHOOL)

SNAME (ENROLL)

YEARIN YEAROUT

? ?

?

?

? ?

?

?

?

GRAFTING (match on DNO)

Figure 11: Structural transformation by grafting

where Fu(1); : : : ; Fu(s�q) is the subsequence of F1; : : : ; Fr consisting of all Fi not

in the set fE1; : : : ; Eqg.
The transformation of E and F into G is said to be a grafting operation. Ex-

pressed otherwise, G is said to be a grafting of E and F by a grafting operation.
We denote G by E 1gr F .

Let G = hG1; : : : ; Gsi be a grafting of

E = hE1; : : : ; Eqi and F = hF1; : : : ; Fri

262 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

by a grafting operation h. For each e in Ins1(E) and f in Ins1(F) such that

e(A) = f(A) for all A in Free(E) \Free(F), let hIns(E;F)(e; f) = g, where g is
the function in Ins1(G) de�ned as follows:

{ g(A) = e(A) for each A in Free(E).
{ g(A) = f(A) for each A in Free(F).
{ g(Gi) = e(Gi) if Gi is a form in fE1; : : : ; Eqg.
{ g(Gi) = f(Gi) if Gi is a form in fF1; : : : ; Frg.

For each e in Ins1(E) and f in Ins1(F) such that e(A) 6= f(A) for some A in

Free(E) \ Free(F), let hIns(E;F)(e; f) be unde�ned.
Consider the instance

hIns(E;F)(I1; I2) = fhIns(E;F)(e; f)je is in I1; f is in I2g;

denoted by I1
1gr I2. The following results are established in Appendix C.

Theorem6. (Grafting Theorem) Let G be a grafting of E and F , and I1

and I2 be instances of E and F , respectively. Then K(I1
1gr I2; E 1gr F) =

K(I1; E) 1 K(I2; F)

6 Mapping Strategy

In Section 5, we discussed four types of restructuring operations: trimming,
attening, stretching, and grafting. Compared to traditional programming lan-
guages, they are indeed \very high level".5 Nevertheless, while some business
applications need only one of these operations, many require sequences of them.
In the following, we discuss how the restructuring programs are developed and
generated by the Automatic Restructurer. In essence, the Restructurer takes
over the \thinking and coding" process by (a) establishing a plan for mapping
the speci�ed input(s) to the desired output, and (b) implementing the plan for
reasonably e�cient execution. The (a) part is discussed in the remainder of this
section, and the (b) part is addressed in Section 7.

It is important to keep in mind that the Restructurer is an automatic data
restructuring facility for data processing applications, and not a database man-
agement system. Some concepts of theoretical interest to database management
(e.g., key attributes, potential information loss or recoverability, access rights,
etc.) are not necessarily important for end users' applications. For example, the
ability to distinguish each entity in an entity set (i.e. the key concept) is im-
portant for database research, but not for statistical applications. As another
example, the recoverability of information is an important issue to database re-
searchers and maintainers, but not to end users. The �les created by the end
users' applications are generally used to produce reports, to accommodate di�er-
ent points of view, and to aid in the decision-making process. They are created
for private use and are not part of the centralized database. These and simi-
lar considerations motivated the underlying philosophy of the Restructurer: The

5 Expansion ratios ranging from 1:18 to 1:175 have been reported [32] for a CONVERT
(see the introduction to Section 5) statement to PL/I statements.

263Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

user knows what he/she wants. As long as the descriptions of the data struc-
tures given to the Restructurer are unambiguous, the Restructurer honors the
request. If it is possible to produce an output as the user-speci�ed, the Restruc-
turer proceeds to produce it. If no way is found, the Restructurer sends the user
a message.

We are now ready to present the mapping strategy. The material is organized
into three subsections, dealing respectively with the speci�cs of the mapping
strategy for one, two, or more inputs.

6.1 Transformation Strategy When There Is Only One Input

To determine the strategy for transforming one input to one output, the Re-
structurer �rst examines the possibility of applying the following operation(s),
in the order shown.6 For convenience, we shall refer to these six cases as the �rst
order operations.

1. trimming
2. attening
3. at-trim (i.e., attening followed by trimming)
4. stretching
5. at-stretch (i.e., attening followed by stretching)
6. at-trim-stretch (i.e., attening followed by trimming, then stretching)

In other words, if the desired output can be produced by applying trimming,
then trimming is chosen to be the operation. Otherwise, the Restructurer exam-
ines the next possibility, i.e. attening. If attening also fails the applicability
test, then the third possibility is tried, and so forth. If a transformation can-
not be accomplished by any of the �rst order operations, then \hybridization"
(discussed later) is applied.

The above operations are now discussed in more detail.
Consider (1). To be \trimmable", the hierarchical relationships between the

components must not be disturbed during restructuring. In other words, there
must be no change of \heritage", even though positioning of components within
a subform may be altered, and some of the leaves or branches of a hierarchy may
be omitted. To determine whether an output is trimmable from a given source,
the tests shown in Figure 12 are applied.

Now consider (2) and (3). If the output cannot be produced by trimming
the given source, then the applicability of attening is examined. When the
desired output does not have a at shape, it obviously cannot be produced by
applying attening to the input. Otherwise, the attening operation is a natural
candidate. However, the following two additional conditions must be satis�ed in
order for attening to be applicable:

(a) The source components required for the creation of the output must
belong to a single branch. This source branch can be either a branch-shaped
input, or a branch-shaped subform within a tree-shaped input.

(b) At least one attribute must be extracted from each level along the branch.

6 There may be more than one way to map the given input to the desired output.
The ordering of the examination discussed here makes sure that the e�ciency of the
generated program is taken into consideration. (See Section 7.)

264 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

Shape ranking of

output > that of

input ?

-

yes �
�

�
�

Not trimmable

?no

For all output components:

Hierarchical level of

each output component

= that of corresponding

input component?

-

no �
�

�
�

Not trimmable

yes?

For all output components:

Parent of output component

= Parent of corresponding

input component ?

-

no �
�

�
�

Not trimmable

yes?

�
�

�
�

Trimmable

Note: We say that components X

and Y correspond (with respect

to a mapping h) if h(X) = Y .

Figure 12: Determining the applicability of trimming

More speci�cally, the rules in Figure 13 are followed to determine whether
case (2) or case (3) is applicable. Figure 14 gives an example for case (3), i.e.
FLAT-TRIM.

Consider (4). When the output is neither a at form nor trimmable from the
source, the Restructurer explores the possibility of using stretching. To apply
this operation, two rules must be observed:

(a) The expansion of new hierarchical levels occurs only from basic attributes
at the root level of the source form.

265Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

Output at?

�
�

�
� $-

-

no

-

no

?yes

?yes

?yes

-

no

'
&

$
%

Cannot apply

FLATTENING

or FLAT-TRIM

All components in

output belong to one

branch of input?

�
�

�
�Send message (see Note)

Any skipping of

hierarchical levels

among the required

components of input?

�
�

�
�Apply FLATTENING

Apply FLAT-TRIM:

Apply FLATTENING to produce a temporary �le which

includes, in addition to the user-speci�ed output

attributes, one \holding" attribute from each missing

level along the hierarchical path in the input,

followed by

TRIMMING o� the holding attribute(s) from the

temporary �le to produce the desired output.

Note: The data contained in each branch of a tree is

independent of the data contained in other branches of that tree

Therefore, simultaneous attening of two or more branches of a

tree into a at form is not allowed.

Figure 13: The applicability of attening and of at-trim

266 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(IN)
A B C X (GD) (GF)

D E F (GG)
G H

(TEMP)
A C F G H

(OUT)
A C G H

(IN) is the input

(OUT) is the user-speci�ed output

?

?

TRIMMING out B and (GD)
followed by FLATTENING

TRIMMING

Figure 14: Example of at-trim

(b) Except for those components participating in (a), corresponding pairs of
the output and input components must maintain the same hierarchical relation-
ships (i.e. if A is the parent of B in the input, then A must be the parent of B in
the output). Furthermore, if a subform is carried from the input to the output,
it must be carried in its entirety.

The method to determine whether an output is \stretchable" from the input
is shown in Figure 15.

Finally, consider (5) and (6). When all four cases discussed above fail, the
shapes of the data structures again come into consideration. Suppose the output
is a branch and the source is either a branch form or all the components necessary
for the creation of the output are in a single branch of the source tree. Then re-
structuring can be accomplished by attening followed by stretching (see Figure
16 for an example), or at-trim followed by stretching. Otherwise, hybridization
is necessary.

The strategy discussed so far is summarized in Figure 17.
In general, if the shape of the output structure is ranked lower than that of

the input, one of the �rst order operations can be applied. Hybridization may
be required when both the output and the input are tree-shaped. An example
requiring hybridization is given in Figure 18.

Hybridization is carried out in two stages, decomposition and synthesis.
At the decomposition stage, the output data structure is decomposed into its

267Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

Is output a branch and (either the

input is at or all components

required for producing output are

at root level of input)?

Does expansion of hierarchical levels

in output occur from and only from the

root level attributes of the input?

For all components in the output

that are not at the input root level:

(1) Is the hierarchical relationship

among output components the same

as those of corresponding input

components?

(2) Components within any subform in

output the same as those in the

corresponding subform in input?

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Stretchable

Stretchable

Not Stretchable

Not Stretchable

Not Stretchable

yes

yes

yes

yes

no

no

no

no

-

-

-

-

?

?

?

?

Figure 15: Determining the applicability of stretching

subtrees (i.e., subforms). Each of the subtrees concatenated with the attributes
along the hierarchical path is then treated as an intermediate �le and compared
with its counterpart in the input. These subtrees are components of the desired
output, and thus have simpler structures (than that of the output). The data
structures of these intermediate �les may also be simpler than the input, in which
case the �rst order operations can be applied. If hybridization is again required
for the production of any of the intermediate �les, then decomposition is applied
recursively. Eventually, the Restructurer succeeds in marking all intermediate

268 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(BRANCH1)
A B C (GD)

D E

(TEMP1)
A B C D E

(BRANCH2)
A D (GB)

B C E

Source Form

?

FLATTENING

?

STRETCHING

Output Form

Figure 16: Restructuring of one branch form to another by FLAT-STRETCH

�les with �rst order operations (unless there is no solution, in which case the
user is given a message and the process terminates).

The synthesis stage of hybridization begins when the decompositional anal-
ysis is complete. Essentially, the marked operations are applied to produce the
intermediate �les from the input, in a top-to-bottom, left-to-right order. The
intermediate �les are then grafted pairwise, in a bottom-up, right-to-left order,
until the desired output is produced. Grafting two intermediate �les is the same
as grafting two source (input) �les. Details of the grafting operation are discussed
in the following subsection.

269Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

OUTPUT FORM INPUT FORM
Flat Branch Tree

Flat TRIMMING TRIMMING if all required input components
are at the root level;

otherwise FLATTENING or FLAT-TRIM(see Figure 13)
Branch STRETCHING TRIMMING if trimmable by Figure 12;

otherwise STRETCHING if stretchable by Figure 15

otherwise FLATTENING or FLAT-TRIM (see
Figure 13) followed by STRETCHING

(i.e. FLAT-STRETCH or FLAT-TRIM-STRETCH)
Tree HYBRIDIZATION TRIMMING if trimmable by Figure 12;

otherwise STRETCHING
if stretchable by Figure 15;

otherwise HYBRIDIZATION

Figure 17: Summary of mapping strategy for one input

6.2 Transformation Strategy When There Are Exactly Two Inputs

Whenever there are two inputs, a grafting is required. A grafting operation
ties two hierarchies side by side by matching the values of the corresponding
match attributes of the inputs. Except for the match attributes of the second
input, the structure of each input is carried in its entirety into the output. No
restructuring of any part is allowed during the grafting operation. Thus, in case
the components from two source forms are intertwined in the desired output, it is
necessary to use an intermediate form as the output of the grafting. A trimming
is then applied to the intermediate form to rearrange the juxtaposition of the
components according to the user's speci�cation.

Aside from the fact that grafting may require the creation of an intermediate
form as discussed above, there are two rules that the grafting operation must
observe:

(1) The match attributes must be at the root level of both inputs.
(2) The match attributes must appear at the root level of the output.
Consider (1). If a match attribute is not at the root level of an input, then a

attening operation must be performed before the grafting.
Now, consider (2). Two cases arise:
(2a) All matching attributes appear at the root level of the output.
(2b) Some matching attributes are not at the root level of the output.
In the case of (2a), the Restructurer proceeds according to Figure 19. Briey,

the output data structure is decomposed into two subparts (each correspond-
ing to one of the input forms), with match attributes included in both of the
subparts. Each of the subparts is then compared with its corresponding source
�le. If the structures are the same, then the source �le is used directly as in-
put (called the Graft-source in Figure 19) to the grafting operation. Otherwise,
the subpart is treated as the appropriate input to the grafting operation, and a
transformation from the given source into this subpart is necessary. The prob-
lem is reduced to creating an intermediate �le from only one input, and the
method discussed earlier (in Section 6.1) is followed. A grafting is performed
when the two Graft-sources are ready. An example is shown in Figure 20 with
DIRECTRY and DEP as the given input and RESDIR as the desired output.

270 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(TEMP4)
A1 A2 A3 A4

(IN)
A1 A2 A3 A4 (F1) (F2)

B1 B2 C1 (F3)
C2 C3

(TEMP2)
A1 A2 (F4)

A3 A4

(TEMP3)
A1 A2 (F1) (F2)

B1 B2 C1 (F3)
C2 C3

(TEMP1)
A1 A2 (F4) (F1) (F2)

A3 A4 B1 B2 C1 (F3)
C2 C3

(OUT)
A1 (F5)

A2 (F4) (F1) (F2)
A3 A4 B1 B2 C1 (F3)

C2 C3

�

TRIMMING

?

STRETCHING

?

TRIMMING

?

STRETCHING

-GRAFTING

(match on A1; A2)

Figure 18: Restructuring of (IN) to (OUT) by hybridization

In the case of (2b), when some match attributes are not at the root level
of the output, it is necessary to construct an intermediate �le with all match
attributes appearing at the root level so that a grafting operation can be applied.
Take Figure 21 for example. In order to produce NEWDIR (the desired output)
from DEP and DIRECTRY �les, an intermediate �le (TEMP2) is constructed as
the output of grafting. Notice that the match �eld ENO in the intermediate �le
(TEMP2) is at the root level. The problem is now reduced to grafting where all
match attributes appear at the root level of the output. The method described
earlier (Figure 19) is followed. A stretching is then applied to transform the
output of the grafting (i.e., the intermediate �le) into the �nal desired form.

271Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(1) Decompose output structure

(according to the sources) into two

subparts, with match attribute(s)

included in both subparts.

(2) For i = 1 to 2:

Is Subpart.i identical with

its corresponding Source.i ?

yes

Follow Section 5.1 to

transform Source.i to Subpart.i

Graft-source.i = Subpart.i

(3) Does positioning of

components in targeted

output agree with positioning

in corresponding sources ?

-

De�ne a temporary �le, TEMP,

by concatenating structures of

Graft-source.1 and Graft-source.2

Graft-source.1 Graft-source.2

Graft-source.1 Graft-source.2

apply

GRAFTING

TEMP - Desired output
apply TRIMMING

to alter positioning

?

?

?apply GRAFTING

?

?

?

?

?

?

?

no

no

yes

Figure 19: Grafting where all matching attributes appear at root level

272 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(DIRECTRY)
ENO NAME PHONE

(DEP)
DNO MGR DIV (EMP)

ENO JC

(TEMP1)
DNO ENO

(TEMP2)
ENO NAME PHONE DNO

(RESDIR)
ENO NAME DNO PHONE

?

FLAT-TRIM

? TRIMMING

?

GRAFTING (match on ENO)

Note that the match attribute ENO is not

at the root level of the input (DEP), but

does appear at the root level of (RESDIR),

the desired output.

Figure 20: Producing (RESDIR) from (DIRECTRY) and (DEP)

6.3 Transformation Strategy When There Are More Than Two
Inputs

The preceding subsection (6.2) discussed the transformation strategy when there
are exactly two source �les. In case there are more than two, a gradual pairwise
build-up can be employed. For example, TFORM can be created from S1, S2,
S3, S4 and S5 as shown in Figure 22.

Since the basic concepts underlying this approach have already been covered,
no further discussion is necessary.

273Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

(DEP)
DNO MGR DIV (EMP)

ENO JC

(DIRECTRY)
ENO NAME PHONE

(TEMP1)
DNO MGR DIV ENO JC

(TEMP2)
DNO MGR DIV ENO JC NAME PHONE

(NEWDIR)
DNO MGR DIV (EMP)

ENO JC NAME PHONE

Note that the match attribute ENO is not at the

root level of (NEWDIR), the desired output.

?

FLATTENING

?

STRETCHING

?

GRAFTING (match on ENO)

Figure 21: Producing (NEWDIR) from (DIRECTRY) and (DEP)

7 Implementing The Plan

As soon as the strategy for transforming the designated input into the desired
output is completed, the second stage of automatic restructuring begins. The
main function of the second stage is to produce an executable program to carry
out the sequence of basic operations determined in the �rst stage. In other words,
the main function of the �rst stage is planning and of the second stage con-
structing.

The program constructed by the Restructurer consists of (1) a declarative
part which de�nes in target language the data structures of all the �les involved
in the operation, and (2) an imperative part which spells out the code sequence

274 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

r r r r r

r r

r

r

S1 S2 S3 S4 S5

S12 S34

S1234

TFORM

�
�
�
�
��

@
@
@

@
@@
�
�

@
@

�
�
�
�
�
�
�

HH
HH

Figure 22: The computation of TFORM

necessary to perform the particular operations at hand. The declarative part of
the procedure is produced from information contained in the component descrip-
tion tables. (The component description tables describing inputs are fetched from
a catalog of prede�ned forms and those describing intermediate and output forms
are prepared and placed in the catalog at the end of the code generation phase,
i.e., the constructing stage). The imperative part is patterned after program
models designed for the basic operation types trimming, attening, stretching,
and grafting.

The goal of the Automatic Restructurer is to produce an e�cient program
tailored for the particular situation at hand. Some e�ciency considerations are
taken by the Restructure at the planning stage. For example, among the �rst
order operations discussed in Section 6.1, the possibility of applying a trimming
operation is considered before all others. Having a trimming operation as the
�rst of a sequence of operations serves two purposes: (1) unwanted instances
are �ltered out as early as possible (thus reducing the number of instances to be
processed by subsequent operations) and (2) unwanted components are trimmed
o� as early as possible (thus reducing the width of the forms to be processed by
subsequent operations).

The main concern at the constructing stage is to make sure that, regardless
of the operation type, the generated code (i.e., the procedure) for each operation
passes over data once and only once.7 The goal is to perform necessary functions
with minimum scanning and movement of data. The criterion of passing over
data only once for each operation causes no problem for trimming and atten-
ing. For these operations, one can always fetch a record, process it, and go back
to fetch another one. For the other two types of operations, one pass over the
data is possible only when a certain sort order (or simply order) requirement is
enforced.8. In the case of stretching, input must be sorted according to the �elds
which form the extended hierarchical level in the output. In the case of grafting,
both inputs must be sorted on the match attributes (in the same ordering se-
quence and the same ascending/descending directions). Thus, before producing

7 This concern was discussed in [32]
8 Referring to the �rst order operations discussed in Section 6.1, since attening does
not require a sorted order while stretching does, the applicability of attening is
examined before the applicability of stretching

275Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

a procedure for a stretching or grafting operation, the order requirement for the
operation is examined and compared with the sequencing order of the input (if
known). If they are not compatible, or the order information on the input is not
available, then a sort operation is inserted to enforce the order requirement.

As mentioned above, the unavailability of the order information could mean
an unnecessary insertion of a SORT operation (e.g., an intermediate �le may
already be in the required sort order for the next operation). Therefore, the
order information for all intermediate forms is recorded whenever possible. It
is easy to see that the trimming and attening operations are order preserving
if (1) the input to the operation is sorted and (2) all the order �elds in the
input are extracted and placed in the output directly (without the side e�ects
of arithmetic or string functions). The Restructurer detects these situations and
propagates the order information accordingly. In the case of the stretching and
grafting operations, the resulting order of the output is determinable once the
order requirement on the input is enforced. Thus, the Restructurer is able to
record the order information for the output of these operations.

When the desired ordering of the user-speci�ed output is known, the Restruc-
turer makes the enforced ordering compatible with the desired ordering whenever
possible. If that is not feasible, then a �nal SORT (and/or a sort within par-
ent) is included in the generated program. In this manner, the transformation
strategy determined in the �rst stage is implemented in the second stage as an
executable program (consisting of a set of properly sequenced procedures and
SORT commands) to carry out the plan.

Let B be a �nite set of instantiated forms. The notion of B-computation
introduced next is intended as a formalization of the automatic restructuring
process.

A sequence of instantiated forms (I1; F1); : : : ; (In; Fn) is said to be a B-
computation of length n if for every i, 1 � i � n, one of the following cases
occurs:

1. (Ii; Fi) is in B;
2. there exists an integer j, 1 � j < i such that (Ii; Fi) is obtained from (Ij ; Fj)

by stretching, attening, or trimming; or
3. there exist integers j1; j2, 1 � j1 6= j2 < i, such that (Ii; Fi) is obtained from

(Ij1 ; Fj1) and (Ij2 ; Fj2) by grafting.

If (I1; F1); : : : ; (In; Fn) is a B-computation and (I; F) = (In; Fn), then the in-
stantiated form (I; F) is said to be B-computable.

Let F be a �nite set of forms. A form G is said to be F-compatible if for
every � in Paths(G), there is a subset fF1; : : : ; Fng of F and a set of paths
f�1; : : : ; �ng such that �i in Paths(Fi) for 1 � i � n and

BA(�) �
[
fBA(�i)j1 � i � ng:

If G = F1 1gr F2, then G is fF1; F2g-compatible by the de�nition of grafting.
Similarly, direct applications of the de�nitions of the remaining basic restructur-
ing operations show that if G is obtained from F1 by either stretching, attening,
or trimming, then G is fF1g-compatible.

To introduce the notion of solution we need the following concept. A �nite
set of forms F is directly solvable if BA(F)\BA(F 0) = Free(F)\Free(F 0) 6= ;
for all distinct forms F and F 0, F 6= F 0 in F .

276 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

Note that every set F with exactly one form is directly solvable. Furthermore,
F is directly solvable if F = fF1; F2g and F1 1gr F2 is de�ned.

Proposition7. Let F = fF1; : : : ; Fng, n � 2, be a directly solvable set of forms.
Then G = ((F1 1gr F2) 1gr � � �) 1gr Fn is de�ned, BA(G) =

S
fBA(Fi)j1 �

i � ng, and Free(G) =
S
fFree(Fi)j1 � i � ng.

Proof. The argument is by induction on n. The case n = 2 is obvious. Now
suppose that the statement holds for directly solvable sets of forms with fewer
than n elements. Let F = fF1; : : : ; Fng be a directly solvable set of forms.
Clearly, F 0 = F � fFng is a directly solvable set of forms, G0 = ((F1 1gr

F2) 1gr � � �) 1gr Fn�1 is de�ned, BA(G0) =
S
fBA(Fi)j1 � i � n � 1g, and

Free(G0) =
S
fFree(Fi)j1 � i � n� 1g. Then

BA(Fn) \BA(G0) = BA(Fn) \
[
fBA(Fi)j1 � i � n� 1g

=
[
fBA(Fn) \BA(Fi)j1 � i � n� 1g

=
[
fFree(Fn) \ Free(Fi)j1 � i � n� 1g

= Free(Fn) \
[
fFree(Fi)j1 � i � n� 1g

= Free(Fn) \Free(G
0):

Thus, the grafting betweenG0 and Fn is de�ned and the desired formG = Fn 1gr

G0 can be constructed. Since BA(G) = BA(Fn) [BA(G0) and Free(G) =
Free(Fn)[Free(G

0), the inductive hypothesis implies the desired conclusion.

Theorem8. Let F = fFij1 � i � ng be a �nite, directly solvable set of forms
and F be an F-compatible form. Then for every instantiation B = f(Ii; Fi)j1 �
i � ng of F there exists a B-computable instance (I; F) of F such that

K(I; F) = �BA(F)(1 fK(Ii; Fi)j1 � i � ng):

Proof. Suppose that F is a branch. Let F be the form obtained from F by
attening. Since BA(F) = BA(F), the F-compatibility of F implies the F-

compatibility of F .
Let G = ((F1 1gr F2) 1gr � � �) 1gr Fn be the form whose existence was

established in Proposition 7. Let B = f(I1; F1); : : : ; (In; Fn)g be an instantiation
of F . The corresponding instance (J ; G) is given by

(J ; G) = ((I1; F1) 1gr (I2; F2) 1gr � � �) 1gr (In; Fn):

Therefore
K(J ; G) = K(I1; F1) 1 � � � 1 K(In; Fn)

by a repeated application of the Grafting Theorem. The F-compatibility of F
implies BA(F) � BA(G), so there is an instance (I ; F) of F such that

I = K(I; F) = �BA(F)(K(I1; F1) 1 � � � 1 K(In; Fn)):

277Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

The branch (I; F) can be obtained from (I ; F) by stretching. The Stretching
Theorem implies

K(I; F) = �BA(F)(K(I1; F1) 1 � � � 1 K(In; Fn));

as needed. The argument also shows that (I; F) is B-computable by a sequence
of restructuring operations involving attening, grafting and stretching.

Now suppose that F is a tree. The branches G1; : : : ; G` of F can be extracted
by trimming. The F-compatibility of F implies the F-compatibility of each of
its branches. By the previous argument, for every instantiation B of F and for
every integer k, 1 � k � `, there is an instance (Jk ; Gk) of Gk such that

K(Jk; Gk) = �BA(Gk)
(1 fK(Ii; Fi)j1 � i � ng):

The grafting of the instances (Jk ; Gk) yields an instance of (I; F). By the Graft-
ing Theorem we then have

K(I; F) = K(J1; G1) 1 � � � 1 K(J`; G`)

= �BA(G1)
(1 fK(Ii; Fi)j1 � i � ng) 1 � � �

1 �BA(G`)
(1 fK(Ii; Fi)j1 � i � ng)

= �BA(F)(1 fK(Ii; Fi)j1 � i � ng);

which gives the desired equality for trees.
The existence of the B-computation for (I; F) is implicit in this argument.

Speci�cally, this computation extends the computations of the instances of the
branches of F and grafts these instances to obtain an instance of F .

The instantiated form (I; F) in Theorem 8 will be referred to as an F -direct
solution of B, or simply as a direct solution of B when F is clear from the context.
The previous theorem shows that if F is a directly solvable set of forms and F
is an F-compatible form, then for every instantiation B of F , the Restructures
can produce a direct solution.

We now extend the notion of direct solution. Let B be a �nite set of in-
stantiated forms and F a form. An F -solution of B is de�ned inductively as
follows:

1. Every instantiated form (I; F) in B is a solution of B.
2. Every direct solution of B is a solution of B.
3. If (I1; F1); : : : ; (In; Fn) are solutions of B, fF1; : : : ; Fng is a directly solvable

set of forms and F is fF1; : : : ; Fng-compatible, then every F -direct solution
(I; F) of fF1; : : : ; Fng is a solution of B.

We shall refer to an F -solution of B as a solution of B when F is understood
from the context.

The next theorem shows that the Restructurer produces a solution if and
only if a solution exists.

Theorem9. Let B be a �nite set of instantiated forms.
If (I; F) is a B-computable form, then (I; F) is a solution of B.
Conversely, if B is a �nite set of forms and F is a form such that there is an

F -solution of B, then there exists a B-computation that generates an instantiated
form (I; F).

278 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

Proof. Suppose that B is a �nite set of instantiated forms and (I; F) is a B-
computable form. Then there exists a B-computation (I1; F1); : : : ; (In; Fn) such
that (I; F) = (In; Fn). We prove by induction that (I; F) is a solution of B.

If n = 1 then (I; F) belongs to B by de�nition. Suppose that the theorem
holds for sequences of length less than n. Several subcases of the inductive case
need to be considered, depending on the basic restructuring operation applied
in constructing (In; Fn).

Suppose that (In; Fn) = (Ij1 ; Fj1) 1gr (Ij2 ; Fj2), where j1; j2 < n. By the
inductive hypothesis, (Ij1 ; Fj1) and (Ij2 ; Fj2) are solutions of B. The de�nition
of the grafting operation implies that fFj1 ; Fj2g is directly solvable, and that
(In; Fn) is an Fn-direct solution of f(Ij1 ; Fj1); (Ij2 ; Fj2)g. We leave to the reader
the argument of the remaining subcases when (In; Fn) is obtained from (Ij ; Fj),
j < n, by stretching, attening, or trimming.

Conversely, suppose that (I; F) is a solution of B. If (I; F) belongs to B,
then (I; F) is clearly B-computable. Also, if (I; F) is a direct solution of B, then
Theorem 8 implies that (I; F) is B-computable. Finally, suppose that (I; F)
is a direct solution of the set B0 = f(I1; F1); : : : ; (In; Fn)g, where (Ii; Fi) is a
solution of B for 1 � i � n, fF1; : : : ; Fng is a directly solvable set of forms,
and F is fF1; : : : ; Fng-compatible. Suppose that each instantiated form (Ii; Fi)
is B-computable. Theorem 8 implies that (I; F) is B0-computable. Therefore,
by concatenating the n B-computations of (I1; F1); : : : ; (In; Fn) with the B0-
computation of (I; F) one obtains a B-computation of (I; F), so (I; F) is B-
computable.

8 Summary

Most information-processing applications involve data restructuring of various
degrees. The e�ort of writing application programs can be substantially reduced
when the e�ort of producing data restructuring code is carried out automatically.
This paper discusses the Automatic Restructurer, a mechanism that relieves the
user from the tedium of writing a substantial amount of code.

The Restructurer was implemented at the IBM Los Angeles Scienti�c Center
as part of an application development system called FORMAL [34] The capabil-
ity of generating an executable program for the desired transformation depends
mainly on the unambiguous descriptions of input and output data structures.
The process of generating code is accomplished in two stages. In the �rst, the
goal of an application is recognized, the di�erences between the input and output
data structures examined, and the applicabilities of the rules and methods for
transformation analyzed. The result is a plan for converting the input into the
output. In the second stage, construction begins. Embedded knowledge of the
target system is utilized to implement the plan e�ciently. The result is a tailored
executable program capable of transforming the input to the desired output.

Given this automatic data restructuring capability, complicated information-
processing applications can be speci�ed in a simple and truly non-procedural
fashion [34, 36] and the non-trivial task of data restructuring can be accom-
plished in a systematic manner.

We introduce the notion of a solution of a set of instantiated forms with
respect to an output form. This allows us to characterize those instantiated
forms that can be obtained as a result of recasting the information contained in

279Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

a set of instantiated forms. Furthermore, we prove that if such a solution exists,
then the Restructurer will always produce a solution. (If the Restructurer states
that it is unable to restructure data contained by the set of forms, then no
solution exists for that set of forms with respect to the desired output form.)

9 Acknowledgements

S. Ginsburg's contribution was supported in part as a consultant to the IBM
Los Angeles Scienti�c Center and in part by the National Science Foundation
under grant CCR-8618907.

John Kepler and Jim Jordan's management support is very much appreci-
ated. The authors are indebted to Dr. Marc Gyssens for helping to clarify the
original incorrect formulation of the basic problem.

References

[1]. Abiteboul, S. and Bidoit, N.: Non First Normal Form Relations to Represent Hi-
erarchically Organized Data, Proc. ACM SIGACT-SIGMOD Symposium on Prin-
ciples of Database Systems, April 1984, pp. 191-200.

[2]. Abiteboul, S. and Bidoit, N.: Non First Normal Form Relations: An Algebra Al-
lowing Data Restructuring, Journal of Computer and System Sciences, 1986, vol.
33, pp. 361-393.

[3]. Abiteboul, S. and Hull, R.: Restructuring Hierarchical Database Objects, INRIA
Rapports de Recherche No. 615, 1987, To appear in Theoretical Computer Science.

[4]. Atkinson, M.P., and Buneman, O.P.: Types and Persistence in Database Program-
ming Languages, ACM Computing Surveys, 1987 vol. 19 (2), pp. 105-190.

[5]. Barr, A. and Feigenbaum, E.A.: The Handbook of Arti�cial Intelligence vol.2, 1982.
William Kaufmann, Inc.

[6]. Burnett M. B., Ambler, A. L.: Interactive Visual Data Abstraction in a Declarative
Programming Language, Journal of Visual Languages and Computing, 1994, vol.
5, pp. 29{60.

[7]. Carter, D.A., Collins, J.W. and Khandewal, V.K.: Data Conversion and Restruc-
turing at Australian Iron and Steel PTY LTD using XPRS, Australasian Share
Guide Meeting, July 1982.

[8]. Chang, S. K.: A Visual Language Compiler for Information Retrieval by Visual
Reasoning, IEEE Transactions on Software Engineering, 1990, v. 16, pp. 1136-
1149.

[9]. Colby,L.S.:A Recursive Algebra and Query Optimization for Nested Relations, Pro-
ceedings of 1989 ACM SIGMOD Conference on Management of Data, 1989, pp.
273-283.

[10]. Dadam, P., Kuespert, F., Andersen, H., Blanken, H., Erbe, R., Guenauer, J.,
Lum., V., Pistor, P. and Walch, G.: A DBMS Prototype to Support Extended NF 2

Relations: An Integrated View on Flat Tables and Hierarchies, Proceedings of the
1986 ACM-SIGMOD Conference on Management of Data, pp. 356-357.

[11]. Deshpande, A., and Van Gucht, D.:An implementation for Nested Relational
Databases, Proceedings of the 14th VLDB Conference, 1988, pp. 76-87.

[12]. Fisher, P., Thomas, S.: Operators for Non-First-Normal-Form Relations, Pro-
ceedings of COMPSAC, 1983, pp. 464-475.

[13]. Guting, R.H., Zicari, R., and Chopy, D.M.: An Algebra for Structured O�ce
Documents, IBM Research Report RJ5559, 1987.

[14]. Hull, R. A Survey of Theoretical Research on Typed Complex Database Objects in
Databases (edited by J. Paredaens), Academic Press, 1987, London, pp. 193-256.

280 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

[15]. Hull, R. and Su, J.: On the Expressive Power of Database Queries with Inter-
mediate Types, Proceedings of the ACM Symposium on Principles of Database
Systems, 1988, pp. 39-51.

[16]. Data Extraction, Processing and Restructuring System: De�ne and CONVERT
Reference Manual, SH20-2178, Program Number 5796-PLH, 1979, IBM Corpora-
tion.

[17]. Jaeschke, G. and Schek, H.J.: Remarks on the Algebra of Non First Normal Form
Relations, Proc. ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, 1982, pp. 124-138.

[18]. Jaeschke, G.: Nonrecursive Algebra for Relations with Relation-Valued Attributes,
IBM Heidelberg Scienti�c Center Technical Report TR 85.03.001, March 1985.

[19]. Jaeschke, G.: Recursive Algebra for Relations with Relation-Valued Attributes,
IBM Heidelberg Scienti�c Center Technical Report, TR 85.03.002, March 1985.

[20]. Kitagawa, H., Kunii, T. and Ishii, Y., Design and Implementation of a Form
Management System APAD Using ADABAS INQ DBMS, Proc. COMPSAC 81,
Nov.1981, pp. 324-334.

[21]. Kitagawa, H., Gotoh, M., Misaki, S. and Azuma, M.: Form Document Man-
agement System SPECDOQ - Its Architecture and Implementation, Proc. of the
Second ACM Conf. on O�ce Information Systems, June 1984, pp. 132-142.

[22]. Leitheiser, R.L., and Wetherbe, J.C.: Approaches to End-User Computing: Service
May Spell Success, Journal of Information Systems Management, Winter 1986,
pp.9-14.

[23]. Luo, D., and Yao, S.B.: Form Operation by Example - A Language for O�ce
Information Processing, Proceedings of SIGMOD Conference, 1981, pp. 213-223.

[24]. Mohan L., Kashyap, R. L.: A Visual Language for Graphical Interaction with
Schema-Intensive Databases, IEEE Transactions on Knowledge and Data Engi-
neering, 1993, 5, pp. 843-858.

[25]. Navathe, S.B. and Fry, J.P.: Restructuring for Large Databases: Three Levels of
Abstraction, ACM Trans. Database Systems, 1976, vol. 1 (2), pp. 138-158.

[26]. Pistor, P., and Andersen, F.: Designing a Generalized NF 2 Model with an SQL-
Type Language Interface, Proceedings of 12th Conf. on VLDB, 1986, pp. 278-288.

[27]. Rockart, J.F., and Flannery, L.S.: The Management of End User Computing,
Communications of the ACM, Oct 1983, vol.26 (10), pp. 776-784.

[28]. Roth, M.A., Korth, H.F., and Batory, D.S.: SQL/NF: A Query Language for
:1NF Relational Databases, Information Systems, 1987, vol. 12 (1), pp. 99-114.

[29]. Roth, M.A. and Korth, H.F., The Design of :1NF Relational Databases into
Nested Normal Form, Dept. of Computer Sciences, Univ. of Texas at Austin, Tech-
nical Report TR-86-27, Dec 1986.

[30]. Roth, M.A., Korth, H.F., and Silberschatz, A.: Extended Algebra and Calculus
for Nested Relational Databases, ACM Transactions on Database Systems, Dec.
1988, vol. 13 (4), pp. 389-417.

[31]. Shu, N.C., Housel, B.C. and Lum, V.Y.: CONVERT: A High Level Translation
De�nition Language for Data Conversion, Communications of ACM, Oct 1975,
vol. 18 (10), pp 557-567.

[32]. Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., and Lum, V.Y.: EXPRESS:
A Data Extraction, Processing, and Restructuring System, ACM Trans. Database
Systems, June 1977, vol. 2 (2), pp. 134-174.

[33]. Shu, N.C., Lum, V.Y., Tung, F.C., and Chang, C.L.: Speci�cation of Forms Pro-
cessing and Business Procedures for O�ce Automation, IEEE Trans. on Software
Engineering, Sept. 1982, vol. SE-8 (5), pp. 499-512.

[34]. Shu, N.C.: FORMAL: A Forms-Oriented, Visual-Directed Application Develop-
ment System, IEEE COMPUTER, Aug. 1985, vol. 18 (8), pp. 38-49.

[35]. Shu, N.C.: Automatic Data Transformation and Restructuring, Proceedings of
IEEE Third Data Engineering Conference, Feb., 1987, pp. 173-180.

281Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

[36]. Shu, N.C.: Visual Programming, Van Nostrand Reinhold Company, Inc. 1988,
NewYork.

[37]. Shu, N.C.: A Visual Programming Language Designed for Automatic Program-
ming, Proc. of 21st Annual Hawaii International Conf. on Systems Sciences, Jan.
1988, pp. 662-671.

[38]. Siau, K. L., Chan, H.C., Tan, K. P.: Visual Knowledge Query Language, IEICE
Transactions on Information and Systems, 1992, E75-D, pp. 697{703.

[39]. Sockut, G.H. and Goldberg, R.P.: Database Reorganization - Principles and Prac-
tice, ACM Computing Surveys, Dec 1979, vol.11 (4), pp. 371-395.

[40]. Swartwout, D.E., Deppe, M.E. and Fry, J.P.: Operational Software for Restruc-
turing Network Databases, Proc. National Computer Conference, June 1977, pp.
499-508.

[41]. Tansel, A.U. and Garnett, L.:Nested Historical Relations Proc. 1989 ACM SIG-
MOD Conference, 1989, pp. 284-293.

[42]. Thomas, S.J. and Fischer, P.C.: Operators for Non First Normal Form Relations,
Proc. COMPSAC, 1983, pp. 464-475.

[43]. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Vol.I, Com-
puter Science Press, 1988, Maryland.

[44]. Valduriez, P.:Complex Objects in Relational Database Systems, Technology and
Science of Informatics, 1987, vol. 6(8), pp. 597-608.

A A Program to Produce (XMASLIST) from (PERSON)

The following is a CONVERT program [32] which produces (XMASLIST) shown
in Figure 2 from (PERSON) shown in Figure 1. The Automatic Restructurer is
able to generate this program from the FORMAL speci�cation shown in Figure
4. (Recall that the SLICE and CONSOLIDATE operations used in CONVERT
are equivalent to the attening and stretching operations discussed in Section
4.)

/** PROCESS NAME = XMASLIST **/

FORM PERSON (

ENO CH(3),

DNO CH(2),

NAME CH(8),

PHONE CH(4),

JC CH(2),

KIDS(

KNAME CH(8),

AGE CH(2)

) RG,

SCHOOL(

SNAME CH(9),

ENROLL(

YEARIN CH(4),

YEAROUT CH(2)

) RG

(ORDERED ON (ENROLL.YEARIN ASC))

) RG,

SEX CH(1),

282 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

LOC CH(2)

)

:ORDERED ON (DNO ASC,ENO ASC);

$P1F2 = SLICE (

NAME

,LOC

,KNAME

,AGE

FROM PERSON);

FORM $P1F2 (

NAME CH(8),

LOC CH(2),

KIDS(

KNAME CH(8),

AGE CH(2)

) NRG

);

/* IT IS NECESSARY TO SORT $P1F2 ON CONCATENATED KEYS

OF OUTPUT FOR CONSOLIDATE OPERATION. */

FORM $P1F3 (

NAME CH(8),

LOC CH(2),

KIDS(

KNAME CH(8),

AGE CH(2)

) NRG

)

:ORDERED ON (LOC ASC,KIDS.AGE ASC);

$P1F3 = SORT ($P1F2 BY

LOC ASC

,AGE ASC

);

XMASLIST = CONSOLIDATE ($P1F3);

FORM XMASLIST (

LOC CH(2),

RECEIVER(

AGE CH(2),

283Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

KID(

KNAME CH(8),

NAME CH(8)

) RG

) RG

(KEY IS (RECEIVER.AGE),

ORDERED ON (RECEIVER.AGE ASC))

)

:KEY IS (LOC),

ORDERED ON (LOC ASC),

DISPOSITION IS (INTERNAL);

END;

B Proofs of the Trim Proposition and Theorem

In order to establish the Trim Proposition, we �rst prove:

Proposition10. Let G be a trimming of F by h.
(a) Suppose B and C are in Attrib(F), B = Par(C), and h(B) and h(C)

exist. Then h(B) = Par(h(C)), i.e., h(C) is an o�spring of h(B).
(b) Suppose h(C) exists. Then h(B) exists for every ancestor B of C, and is

an ancestor of h(C).
(c) Suppose h(B) and h(C) exist, and C is a descendent of B. Then h(C) is

a descendent of h(B).
(d) Suppose h(C) is a descendent of h(B). Then C is a descendent of B.

(Alternatively, if h(B) is an ancestor of h(C), then B is an ancestor of C).

Proof. Let G = hG1; : : : ; Gsi and F = hF1; : : : ; Fri.
(a) Suppose h(C) = G. Then C = h�1(h(C)) = h�1(G) = F (by (Tr 3)), so

B = Par(C) = Par(F). This is a contradiction, since F has no parent. Thus,
h(C) 6= G. Therefore, Par(h(C)) exists. Hence,

h�1(Par(h(C))) = Par(h�1(h(C)))(by (Tr 2))

= Par(C) = B = h�1(h(B)):

Since h is one-to-one, thus h�1 is one-to-one, Par(h(C)) = h(B).

(b) Using induction and (a), it su�ces to show that h(B) exists for B =
Par(C). Suppose Par(h(C)) does not exist. Then h(C) = G, since G is a form.
Hence, C = h�1(h(C)) = h�1(G) = F . This contradicts the fact that C has a
parent. Thus, h(B) = h(Par(C)) = Par(h(C)) exists.

(c) By (b), h(B) is an ancestor of h(C), i.e., h(C) is a descendent of h(B).

(d) This statement follows by induction from the fact that h�1(Par(D)) =
Par(h�1(D)) for each proper attribute D of G.

284 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

Trimming Proposition. Let

G = hG1; : : : ; Gsi

be a trimming of F = hF1; : : : ; Fri by h. Let j be such that h(Fj) exists. Then
(a) there exists k(j) such that h(Fj) = Gk(j).
(b) Gk(j) is a basic attribute if and only if Fj is a basic attribute, in which

case Gk(j) = Fj .
(c) h(Attrib(Fj)) = Attrib(Gk(j)).
(d) Gk(j) is a trimming of Fj by h (restricted to Attrib(Fj)).

Proof. (a). Since F = Par(Fj), h(F) = G = Par(h(Fj)) by (a) of Proposition
10. By de�nition, each o�spring of G is one of the Gi. Hence, Fj = Gk(j) for
some k(j).

(b). By (Tr 1), Gk(j) = h�1(Gk(j)) = Fj if Gk(j) is a basic attribute. Suppose
Gk(j) is a form. Then there is a descendent C of Gk(j) which is a basic attribute.

By (d) of Proposition 10, C = h�1(C) is a descendent of h�1(Gk(j)) = Fj . Since
every ancestor of a basic attribute is a form, Fj is a form.

(c) This follows immediately from (c) and (d) of Proposition 10.
(d) This follows from (c) and (Tr 1) - (Tr 3).
We now show:

Trimming Theorem Let G be a trimming of F by h. Then K(hIns(F)(I)) =
�BA(G)(K(I)) for each I in Ins(F).

Proof. Suppose F is a at form. Then for each f in I, f is a tuple overFree(F) =

BA(F) and hIns(F)(f) = �BA(G)(f). Hence,

K(hIns(F)(I)) = K(fhIns(F)(f)jf is in Ig)

= K(f�BA(G)(f)jf is in Ig)

= �BA(G)(
[

fK(f)jf is in Ig); since f is a tuple over BA(F)

= �BA(G)(K(I)):

Continuing by induction suppose that K(hIns(F)(I 0)) = �BA(G0)(K(I 0)) for
each subform F 0 of F and each instance I 0 of F 0, where G0 is the trimming of
F 0 by h as guaranteed by (d) of the Trim Proposition. To extend the induction,

it su�ces to show that K(hIns(F)(f)) = �BA(G)(K(f)) for each f in Ins1(F).
Let G = hG1; : : : ; Gsi and F = hF1; : : : ; Fri. Two cases arise.

(�) Suppose e is in K(hIns(F)(f)). Now hIns(F)(f) = g, where g is the func-
tion in Ins1(G) de�ned by g(A) = f(A) for each A in Free(G) and g(Gk(j)) =

hIns(hFji)(f(Fj)) for each form Fj such that h(Fj) exists. By de�nition, e(A) =

285Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

g(A) = f(A) for each A in Free(G) and e over BA(Gk(j)), where Gk(j) is a
form, is a tuple in

K(g(Gk(j))) = �BA(Gk(j))(K(f(Fj)))

= K(hIns(Fj)(f(Fj))); by induction:

Thus, e is in �BA(G)(K(f)).
(�) Suppose e is in �BA(G)(K(f)). Then there exists d in K(f) such that

e = �BA(G)(d). By de�nition, d(A) = f(A) for each A in Free(F) and d over
BA(Fj), where Fj a form, is a tuple in K(f(Fj)). Then e(A) = d(A) = f(A) for
each A in Free(G) and, by induction, e over BA(Gk(j)) is in

�BA(Gk(j))K(f(Fj)) = K(hIns(F)(f(Fj)))

for each k(j) such that Gk(j) is a form. Hence e is in K(hIns(F)(f)).

C Proof of Grafting Theorem

Grafting Theorem. LetG be a grafting of E and F , and I1 and I2 be instances
of E and F , respectively. Then K(I1

1gr I
2; E 1gr F) = K(I1; E) 1 K(I2; F)

Proof. Let E = hE1; : : : ; Eqi, F = hF1; : : : ; Fri, and let G = hG1; : : : ; Gsi be the
grafting of the forms E and F . If ` inK(I1

1gr I
2; E 1gr F), there is g in I1

1gr

I2 such that ` belongs to K(g). By the de�nition of the grafting operation, there
is e in I1 and f in I2 such that g(A) = e(A) = f(A) for all A in Free(E) =
Free(F), g(E0) = e(E0) for every direct descendent E0 of E that is a form and
g(F 0) = f(F 0) for every direct descendent F 0 of F that is a form. We claim that
�BA(E)(K(g)) = �BA(E)(K(e)) and that �BA(F)(K(g)) = �BA(F)(K(f)).
Indeed, K(g) is the set of all functions k over BA(G) such that k(A) = g(A) for
all A in Free(G) and k over BA(Gj) (where Gj is a form) is a tuple inK(g(Gj)).
If Gj is a form that is a direct descendent of E, say Ei(j), then k overBA(Gj) is a
tuple in K(g(Ei(j))). Thus, �BA(E)(K(g)) is the set of all functions overBA(E)
such that k(A) = e(A) for all A in Free(E) � Free(G) and k over BA(Gj)
(where Gj is a direct descendent of E) is a tuple in K(g(Ei(j))). Therefore,
�BA(E)(K(g)) = K(e). Note that K(g) = �BA(E)(K(g)) 1 �BA(F)(K(g)) =

�BA(E)(K(e)) 1 �BA(F)(K(f)), which implies ` in K(I1; E) 1 K(I2; F).

Conversely, let ` in K(I1; E) 1 K(I2; F). There are e; f in I1; I2, respec-
tively such that `(A) = e1(A) for all A in BA(E) and `(B) = f1(B) for all B
in BA(F) for some e1 in K(e) and f1 in K(f). Let g be de�ned by g(A) =
e(A) = f(A) for every A in Free(G) = Free(E) = Free(F), g(E0) = e(E0)
for all direct descendents of E and g(F 0) = f(F 0) for all direct descendents
F 0 of F . Clearly, g belongs to I1

1 I2 and K(g) = K(e) 1 K(f). Since ` in
K(e) 1 K(f) = K(g) � K(I1) 1 K(I2), we obtain ` in K(I1

1gr I
2; E 1gr F).

286 Ginsburg S., Shu N.C., Simovici D.A.: Automatic Data Restructuring

