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Abstract: Automated reasoning systems often su�er from redundancy: similar parts
of derivations are repeated again and again. This leads us to the problem of loop-
detection, which clearly is undecidable in general. Nevertheless, we tackle this problem
by extending the hyper-tableau calculus as proposed in [Baumgartner, 1998] by gen-
eralized terms with exponents, that can be computed by means of computer algebra
systems. Although the proposed loop-detection rule is incomplete, the overall calcu-
lus remains complete, because loop-detection is only used as an additional, optional
mechanism. In summary, this work combines approaches from tableau-based theorem
proving, model generation, and integrates computer algebra systems in the theorem
proving process.
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1 Introduction

Hyper-tableau [Baumgartner et al., 1996] is a sound and complete calculus for
�rst-order clausal logic wrt. computing answers. It is conuent and o�ers a
method for the generation of models that can be stated by �rst-order terms
produced by tableaux clauses [Baumgartner, 1998]. However, the restriction to
�rst-order terms is a disadvantage, because only few loops can be expressed with
them. Therefore, we introduce an inference rule for loop-detection in hyper-
tableaux, making use of generalized terms with exponents and mathematical
techniques from the theory of generating functions. Although the new rule is
incomplete, the overall calculus remains (refutationally) complete, because loop-
detection is only used as an additional, optional mechanism.

This research aims at generalizing known techniques for model generation
(e.g. [Peltier, 1997a]). It combines approaches from theorem proving, model gen-
eration, and integrates computer algebra systems in the theorem proving process.
While usually theorem provers work as assistants of computer algebra systems
(e.g. [Buchberger, 1997]), here it is the other way round: computer algebra sys-
tems are employed as assistants of theorem provers, in order to make automated
deduction more e�ective. In summary, the new calculus comprises several ad-
vantages:

1. It provides powerful loop-detection, subsuming other known techniques (e.g.
some cases of regularity).

2. The use of a computer algebra system allows us to cope with terms with
generalized integer exponents where, in general, the exponents need not be
linear expressions.
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3. The new calculus is conuent, this means backtracking is not necessary. This
property is especially important here, because it avoids repeating computa-
tions of computer algebra systems that are expensive steps.

In the following, we �rst review the hyper-tableau calculus of
[Baumgartner, 1998] in Sect. 2. After that, we state the new inference rule for
loop-detection and its merits for automated theorem proving and model gener-
ation on some examples in Sect. 3. Then, in Sect. 4, we treat the calculus and
its properties more formally. Sect. 5 discusses related approaches from di�erent
�elds that are relevant for the problems of loop-detection and model generation
in (tableau-based) automated reasoning. These works were unconnected so far.
On the one hand, for loop-detection, regularity tests in tableaux and resolution
of cyclic clauses were proposed. On the other hand, the generation of �nite and
in�nite models for resolution-like calculi was investigated many times in the lit-
erature by means of terms with exponents and formal grammars. We conclude
with an outlook on future work in Sect. 6.

2 Hyper-Tableaux Revisited

Hyper-tableau is a sound and complete calculus for clausal �rst-order logic. It
has been established in [Baumgartner et al., 1996] as an improvement over other
model generating and case-splitting calculi such as e.g. SATCHMO
[Manthey and Bry, 1988]. It has model building capabilities; but only such mod-
els are representable that can be described by simple �rst-order terms and their
(non-)
instances [Baumgartner, 1998]. In this paper, the focus is on improving this
situation. But beforehand, we briey review the hyper-tableau calculus.

2.1 Reviewing the Calculus

In the following, we assume the reader to be familiar with the usual notions of
�rst-order logic (see e.g. [Chang and Lee, 1973]). Our primary interest however
is in clausal tableaux, similar to those in [Letz et al., 1994]. A clause is a multi-
set (not an ordinary set) of literals, written as a disjunction A1_� � �_Am_:B1_
� � � _ :Bn, where m;n � 0 and the As and Bs are atoms, or as A1; : : : ; Am  
B1; : : : ; Bn in implication-style, or A  B where A = fA1; : : : ; Amg and B =
fB1; : : : ; Bng. The literals in A are called head literals and the literals in B are
called body literals.

A (Herbrand) interpretation I (for a given language) is represented as a
(possibly in�nite) set of ground atoms (i.e. atoms without any occurrences of
variables), such that an atom A is true in I i� A 2 I. As usual, I j= X means X
is true in I whereX is a sentence or a set of sentences (interpreted conjunctively).
We write X j= X 0 for sentences X and X 0 (or sets thereof) i� I j= X implies
I j= X 0 for all suitable interpretations I.

We consider literal trees (i.e. �nite, ordered trees, where all nodes|except
the root|are labeled with a literal). They are also called tableaux. A tableau
is closed i� each of its branches is closed; otherwise it is called open. A literal
tree is represented as the set of its branches; branch sets are denoted by the
letters P , P 0 etc. We write P ;P 0 and mean P [ P 0. The extension of p with a
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clause C = L1 _ � � � _ Ln, written as p Æ C, is the branch set p:[L1]; : : : ; p:[Ln]
where the dot denotes concatenation of branches. Equivalently, in tree view this
operation extends the branch p by n new nodes N1; : : : ; Nn that are labeled with
the respective literals from C.

The calculus stated in [Baumgartner, 1998] removes one of the major weak-
nesses of hyper-tableau (introduced in [Baumgartner et al., 1996]), namely guess-
ing ground-instances of clauses sometimes. This is replaced by a uni�cation-
driven technique. The calculus is analytical in the sense that only input clauses
and instances thereof are used in the tableaux. It is similar to hyper-resolution,
because all body literals of a clause have to be solved simultaneously. In addi-
tion, the calculus is conuent. This means, proof procedures never have to undo
inferences. There are three inference rules in the calculus:

1. extension steps for building tableaux and closing branches,
2. link steps for creating new instances of clauses, and
3. redundancy criteria for �nishing derivations that are useful for model gen-

eration.

2.2 Extension and Link Steps

Let us now review the hyper-tableau calculus as stated in [Baumgartner, 1998]. A
hyper-tableau refutation for a (possibly non-ground) clause set is the construc-
tion of a closed clausal tableau (i.e. a tableau where every branch is labeled as
closed), starting with the tableau which consists of the root node only. Tableaux
are equipped with a branch selection function: for every open tableau exactly
one open branch is selected (arbitrarily), and inferences may be applied to this
selected branch only. Selection is indicated by underlining all literals in the re-
spective branch. The tableau construction must be fair wrt. the application of
the two inference rules extension and link modulo some redundancy criteria. As
usual, fairness means that every possible application of an inference rule must
be carried out eventually unless shown to be redundant.

We �rst consider the extension rule; its application can be described as fol-
lows: let p be the selected branch; take a clause A  B from the current clause
set C (which is initialized with the given input clause set), and apply to p the
usual �-rule for tableaux (see e.g. [Fitting, 1996]) with A  B (i.e. we split
the clause below the leaf of p). But this is done only if there is a most general
substitution � such that every element B� 2 B� is equal to a variant of a literal
L from p. Then, all new branches with leaf :B� where B� 2 B� are labeled
as closed; the new branches (if any) with leafs from A� are labeled as open. If
there is an open branch in the resulting tableau, we select one. Let us consider
an example now:

Example 1 (indirect successor loop).

P (g(z)) (1)

Q(f(x))  P (x) (2)

P (f(y))  Q(y) (3)

 P (f(f(g(0)))) (4)
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For this example, a hyper-tableau derivation is shown in Fig. 1. Underlining
is used to indicate the selected branch and the selected literals in the tableau
clauses. Please note that the same variable names are used in several di�erent
tableau clauses for convenience; actually each clause is quanti�ed individually.
We start the derivation by extending the initial empty tableau with P (g(z)).

(4) :P (f(f(g(0))))

(3) P (f(y)) _ :Q(y)

(2) Q(f(x)) _ :P (x)

(1) P (g(z))

(3') P (f(f(g(0)))) _ :Q(f(g(0)))

(2') Q(f(g(0))) _ :P (g(0))

(1') P (g(0))
LINK

P (g(z))

Q(f(g(z))) :P (g(z))

:Q(f(g(z)))P (f(f(g(z))))

P (g(0))

Q(f(g(0))) :P (g(0))

:Q(f(g(0)))P (f(f(g(0))))

EXTENSION

:P (f(f(g(0))))

Figure 1: Hyper-tableau derivation for Ex. 1.

After three extension steps with instances from the clauses (1), (2) and (3),
the extension rule need no longer be applied (although it could). At this point,
we take new instances of already used clauses, in order to arrive at a closed
tableau. They are generated by link steps, resulting in the (proper) instances
(1'), (2') and (3') of the clauses (1), (2) and (3), respectively, shown in the
extended clause set. For example, we obtain (3') by linking clause (3) with (4);
we get the substitution [y = f(g(0))]. Linking (3') with (2) gives (2'), and linking
(2') with (1) gives (1'). These instances are added to the current clause set. Now,
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after extension with (1'), the extension rule becomes applicable again. Finally, an
extension step with (4) closes all branches. For details of the calculus, including
the redundancy criteria, the reader is referred to [Baumgartner, 1998].

3 Loop-Detection by Examples

3.1 Detecting Simple Loops

Since, at the end, all branches are closed in Fig. 1, we obtain a refutation (i.e. the
given clause set is unsatis�able). However, if we do it without clause (4), then we
run into a loop. We can repeat the block of extension (and link) steps between
the dashed lines in Fig. 1 again and again, getting more and more complex
terms. Unfortunately, the redundancy criteria in [Baumgartner, 1998] do not
help us here. Therefore, in order to overcome this problem, we try identifying
the loop involving clauses (2) and (3), similarly to related approaches. Resolving
these clauses yields the cycle clause P (x) ! P (f(f(x))) and hence the (non-
idempotent) substitution � = [x = f(f(x))]. In addition, the literal (:)P (x) in
(2) is uni�ed with P (g(z)) from (1) by the substitution � = [x = g(z)]. This is
shown in Fig. 2. There, the symbol # marks the only open branch, which has
become �nite now, in contrast to the situation in Fig. 1. We will introduce the
formal details on how to compute � and � in Sect. 4.4.

P (g(z))

Q(f(g(z))) :P (g(z))

:Q(f(g(z)))P (f(f(g(z))))

LOOP-DETECTION

Q(f2n+1(g(z))) :P (f2n(g(z)))

P (f2n(g(z)))

# :Q(f2n+1(g(z)))

� = [x = f2(x)] � = [x = g(z)]

Figure 2: Loop-detection for Ex. 1.

Now we introduce the loop-detection rule informally. If we �nd a cyclic uni�er
� of the form [x1 = e1; : : : ; xk = ek] where only the variable xi occurs in each
ei|no other variables|, then we can comprise the in�nite derivation sequence
by means of substitutions with terms with exponents. We have to express the
substitution � = ���; it is the composition of the cyclic uni�er � (applied zero,
one or more times) with the ordinary uni�er �. In Ex. 1, it is �� = [x = f2n(x)],
� = [x = g(z)], and thus � = [x = f2n(g(z))], where only the substitution of
the variable x from (2) is shown. In this context, we make use of the well-known
notation for terms with exponents (see e.g. [Comon, 1995, Salzer, 1992]), which
will be introduced formally in Def. 1.

After applying the substitutions on the part of the tableau which is involved
in the loop, we arrive at a situation where any further extension is redundant,
neglecting clause (4) here, since only instances of literals that are already on the
branch can be created by further extension steps. From the only open branch
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(on the right side of Fig. 2), we read o� the model for Ex. 1 without clause (4),
namely:

I = fP (f2n(g(z))); Q(f2n+1(g(z)) j n � 0g

3.2 Making Use of Computer Algebra Systems

Let us consider another, more complicated example now:

Example 2 (sum of naturals).

Add(t; 0; t) 

Add(x; f(y); f(z))  Add(x; y; z)

Sum(0; 0) 

Sum(f(x); f(z))  Sum(x; y); Add(x; y; z)

The Add predicate realizes the addition in successor algebra, and the meaning
of the Sum predicate is computing the sum of the �rst n natural numbers.
Looking at Fig. 3, we notice that in fact the intended model

I = fAdd(x; fm(0); fm(x)); Sum(fn(0); fn(n+1)=2(0)) j m;n � 0g

can be computed. Please note that we omitted some (obsolete) side branches
in Fig. 3 after loop-detection steps. In this example, the semantics of the Add
predicate is computed quite similarly to the previous example during the �rst
application of the loop-detection rule in this case. The loop-detection rule is
applied twice here.

Again, parts of the problem can be solved by known (cyclic) uni�cation pro-
cedures (see also Sect. 3.3). In this example, the cyclic uni�cation of x with
f(x) and 0 yields [x = fn(0)], where n is a new variable introduced at this
stage. However, we need some additional technique from computer algebra, since
we have to face a uni�cation problem of the form s'(t) = s (t) here, namely
fm+1+n(0) = fm(0). We realize immediately, that the ms at both sides of this
uni�cation problem must be di�erent. They denote successive instances, depen-
dent on the new parameter n. This leads us to a recursive equation:

mn+1 = mn + 1 + n where m0 = 0 (5)

For computing the solution of (5), we can use a computer algebra system,
which (in this context) serves as a tool for solving theorem proving problems.
We immediately realize:

mn =
nX
k=0

k =
n(n+ 1)

2

This sum can be resolved by a computer algebra system. However, recursive
equations may be more complicated. In such cases, we can apply techniques
from generating functions (see e.g. [Wilf, 1990, Graham et al., 1994]). In Ex. 2,
we then have to proceed as follows: the in�nite series mn is associated with the
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LOOP-DETECTION

Add(t; 0; t)

Add(x; f(0); f(x)) :Add(x; 0; x)

Sum(0; 0)

Add(x; fm(0); fm(x))

:Add(0;0; 0):Sum(0; 0)
ALGEBRASYSTEM

[x = fn(0); fmn+1+n(0) = fmn+1 (0)]

; [x = fn(0);mn =
P n

k=0 k = n(n+ 1)=2]

; [x = fn(0);mn+1 = mn + 1 + n]

� = [x = z; y = 0]� = [y = f(y); z = f(z)]

Sum(f(0); f(0))

Add(x; fm(0); fm(x))

Sum(fn(0); fn(n+1)=2(0))

#

� = [x = 0; y = 0]
� = [x = f(x); fm(0) = fm+1(x)]

Figure 3: Loop-detection for Ex. 2.

generating function G(z) =
P

1

n=0mnz
n, and the recursive equation (5) (from

above) is transformed into:

G(z)=z = G(z) +

1X
n=0

(1 + n)zn = G(z) +
1

(1� z)2

This is equivalent with G(z) = z=(1 � z)3. The Taylor series expansion of
G(z) then yields mn = n(n + 1)=2 as expected. The stated equations may be
solved by computer algebra systems like Mathematica [Wolfram, 1996]. There,
the procedure with generating functions just sketched is already available in the
standard add-on package DiscreteMath`RSolve` [Martin, 1996]. Fig. 4 shows a
Mathematica session, in which the closed form for mn is computed.

Since we consider polynomial expressions as exponents here, we expect that
the overall problem of unifying such generalized terms with exponents is unde-
cidable, because we are able to express Hilbert's 10th problem. But since the
loop-detection rule is only optional and we can mimic every step of the plain
hyper-tableau calculus within our new calculus|please note that always not
only the terms with exponents but also the simple terms in their denotations
are available for extension and link steps of the extended calculus|, the overall
procedure remains complete. We just have to guarantee that loop-detection is
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In[1]:= <<DiscreteMath`RSolve`

In[2]:= RSolve[ { m[n+1] == m[n]+1+n, m[0] == 0 }, m[n], n ]

(1 + n) (2 + n)
Out[2]= {{m[n] -> -1 - n + ---------------}}

2

In[3]:= Simplify[%]

n (1 + n)
Out[3]= {{m[n] -> ---------}}

2

Figure 4: Mathematica session for Ex. 2.

not applied in an unfair manner (i.e. the application of other rules is not de-
ferred in�nitely long). In summary, the use of terms with generalized integer
exponents makes powerful loop-detection and model generation possible; we will
discuss model generation in greater detail in Ex. 3.

3.3 Background

The techniques for computing cyclic substitutions are not new
(see e.g. [Comon, 1995, Salzer, 1992, Socher-Ambrosius, 1993, Klingenbeck, 1997,
Peltier, 1997a]). However, their application to hyper-tableau (and to tableaux in
general) is new. Nevertheless, [Klingenbeck, 1997] makes use of terms with expo-
nents in a tableau calculus. But there it is not possible to handle loops involving
more than one clause, only (binary) cyclic (self-resolvent) clauses are considered
as in [Bibel et al., 1992, Ohlbach, 1998]. In contrast to this, Ex. 1 includes an
indirect loop, involving the two clauses (2) and (3), which can be handled by
our loop-detection rule. The loop-detection rule may even handle in some cases
what is called regularity in tableau calculi [Letz et al., 1994]. Then we have the
case that the literals causing the loop are identical, thus it holds � = � (i.e. the
empty substitution).

Note that in this context, in addition, we exploit computer algebra systems
for (Herbrand) model generation. This is a rather new idea. So far, the con-
nection of theorem proving with computer algebra systems usually is the other
way round: theorem provers work as assistants of computer algebra systems. For
example, the Theorema project (undertaken in Linz, Austria, headed by Buch-
berger) aims at integrating proving support into computer algebra systems. The
emphasis is on proof generation for routine parts of proofs of theorems from
analytical mathematics [Buchberger, 1997]. But in this paper, computer algebra
systems work as assistants of theorem proving systems, such that searching for
refutational proofs becomes more eÆcient and model generation is possible. Of
course, a combination of both perspectives is thinkable and may also be useful.
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4 Inference Rules for the Enhanced Calculus

Now is the time to give a more formal treatment of the hyper-tableau calculus
enhanced by terms with exponents and hence more powerful loop-detection. We
will do this by adapting the notions and notations from [Baumgartner, 1998].
Therefore, we will have modi�ed versions of the extension and link rules in our
calculus (see Defs. 3 and 4). First of all, we have to extend the de�nition of a
clause. The major di�erence is that, instead of simple terms (without exponents),
we may also have terms with general integer exponents occurring in some clause
literals.

De�nition 1 (terms with general exponents). The set T of terms with gen-
eral exponents is the smallest set satisfying the following properties:

1. All Herbrand variables x; y; z; : : : are in T.
2. If the terms s1; : : : ; sn are in T, then also f(s1; : : : ; sn), where f is an n-ary

function symbol. For n = 0, the symbol f denotes a constant.
3. The hole symbol � is also in T. However, the hole is only allowed to appear

in a context term (whose de�nition follows next).
4. If s and t are in T where s|called context or context term here|contains

at least one occurrence of � but is not identical with it, and ' is a general
integer expression (see its de�nition below), then s'(t)|called term with
exponent|is in T.

A general integer expression ' is an arithmetic expression denoting a total func-
tion mapping several natural number parameters l;m; n; : : : to a natural number
(including zero).

Let us consider the term with exponents t = h(f(�)n(a); g(�)2n+1(b)) as an
example. It contains two contexts, namely f(�) and g(�) with the corresponding
exponents n and 2n+1. There is only one integer parameter (namely n) occurring
in both exponents. For terms with exponents of the form f(�)'(s) (i.e. with unary
function symbols f), we write also f'(s) for short. Thus, the term t from above
can also be stated as h(fn(a); g2n+1(b)). We already made use of this notation
earlier.

What is the meaning of terms with exponents? Generally speaking, each term
denotes a set of terms without exponents. Let us state this more formally now.
For natural numbers k, we de�ne:

sk(t) =

�
t if k = 0;
s[� = sk�1(t)] otherwise

As expected, the denotation of a term with exponents s'(t) is the set of all
sk(t) where k is the value of ' for some parameter instantiation. The generaliza-
tion to terms in general, literals or even clauses is straightforward. For example,
the denotation of the term t from above|written ktk|consists of the terms
h(a; g(b)); h(f(a); g(g(g(b)))); h(f2(a); g5(b)); : : : for n = 0; 1; 2; : : : Note that n
is inserted simultaneously in both exponents. We also extend the notion interpre-
tation on terms with exponents as expected: a sentence X (possibly containing
terms with exponents) is true in an interpretation I i� I j= � for all � 2 kXk.
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4.1 Initialization

In the following, we consider literal trees equipped with a branch selection func-
tion which assigns to every open literal tree one of its open branches. We write
p;P to indicate that p is selected in the branch set p [ P . Furthermore, every
open branch p is labeled with a �nite set of clauses, which is denoted by C�(p).
Intentionally, C�(p) provides the current clause set so to speak, whose members
can be used for extension steps. Alternatively, we will also write p : C� and mean
the branch p with C�(p) = C�.

There is another set C+(p) of tableau clauses of p, namely those clauses
which were used in extension steps to construct p. Since p can be understood as
a branch through C+(p), it is natural that p determines a respective selection of
head literals of the clauses in C+(p). A clause with selection is a program clause
(i.e. with at least one head literal) where one of its head literals L is labeled (in
some distinguished way). L is called the selected literal, it is also denoted by C.

De�nition 2 (initialization rule).

[ ] : C

for given �nite clause set C without selection. Here, [ ] denotes the empty branch.

4.2 The Extension and the Link Rule

We are now ready to state the extension and link rules for the enhanced calcu-
lus. They are very similar to the ones in [Baumgartner, 1998]. But there are in
fact di�erences, that are, however, somewhat hidden. First of all, simple term
uni�cation is replaced by uni�cation of terms with general exponents, called ex-
ponential uni�cation. As a consequence of this, the current clause set kC�(p)k for
some branch p may contain in�nitely many simple terms, after a loop-detection
step has been performed. Nevertheless, each branch has only �nite length, but
it may contain terms with generalized exponents.

In the following, we need the notion of a variant. Since we consider terms
with exponents here, the usual de�nition for simple terms without exponents
has to be extended. s and t are called variants|written s � t|i� the ground
instantiations of ksk and ktk are identical. However in practice, we may restrict
to a simpler notion: s � t i� there is a variable renaming �, that is a bijection
substituting term variables by term variables and integer variables by integer
variables, such that s� and t� become syntactically identical. Obviously, both
versions of the de�nition reduce to the usual de�nition of variant, if we restrict
our attention to simple terms only. So, let us now adapt the inference rules from
[Baumgartner, 1998].

De�nition 3 (extension rule).

p : C�; P A  B

p Æ (A  B)�; P

where
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1. p;P is a branch set with selected branch p, and
2. (A  B) is fresh copy of a clause in C�(p) or in its denotation with new

variables, and
3. there are new variants C1; : : : ; Ck from clauses in C+(p) or in its denotation

with no variables in common, and
4. � is a most general multi-set uni�er of B and fC1; : : : ; Ckg, and
5. Ci � Ci�, for every i, 1 � i � k, and
6. every new branch p:[:B�] 2 p Æ (A  B)� where B 2 B, is closed, and
7. every new branch p:[A�] 2 (A  B)� where A2A is open, and C�(p:[A�]) =
C�(p).

If the extension rule is applied to a tableau as just stated, then we say that
there is a link from the literals B 2 B to L 2 fC1; : : : ; Ckg i� � uni�es the
literals B and L (disregarding their polarity). In this context, � is also called
linking substitution. These notions should not be mixed with the following link
rule.

De�nition 4 (link rule).

p : C�; P A  B

p : C� [ fC1�; : : : ; Cn�g; P

where

1. p;P is a branch set with selected branch p, and
2. (A  B) is a clause in C�(p) or in its denotation, and
3. there are new variants C1; : : : ; Ck from clauses in C+(p) or in its denotation

with no variables in common, and
4. � is a most general multi-set uni�er of B and fC1; : : : ; Ckg, and
5. Ci� 6� Ci, for some i, 1 � i � k.

4.3 Loop-Detection and Computer Algebra

Now we come to the topic of loop-detection by means of computer algebra tech-
niques. First, we will state the loop-detection rule which is able to detect even
indirect loops, involving possibly more than one clause which need not necessar-
ily be binary. In this procedure we need a generalized uni�cation procedure, that
does not deal only with terms with linear arithmetic expressions in the exponent,
but with more general expressions that can be computed by computer algebra
systems such as Mathematica [Wolfram, 1996].

De�nition 5 (loop-detection rule).

p : C�;P

~p : ~C�; ~P

where

1. p = p1:[L1]:p2:[L2] is the only open branch in the tableau with pre�x p1
(because otherwise the tableau would become in�nitely wide), and
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2. ~p = p1:r where r = ([L01]:p
0

2)� and � is the exponential uni�er of L1 and L2,
and L01, and p

0

2 are the literal and the branch in the tableau P 0 (introduced
below) corresponding to the respective components of p, and

3. All links between clauses in C+(r) lead to di�erent nodes, and for each such
pair of literals L1 and L2 it holds L1 � L2 (disregarding their polarity).

4. ~C� = C� [ fC� j C 2 C�([L01]:p
0

2:[L
0

2])g (i.e. both the terms with exponents
and parts of their denotations are kept in C�), and

5. ~P is the part of the tableau P 0 (introduced below), that corresponds to the
parts at the same positions in P .

It remains to explicate the term exponential uni�er � and the new tableau
P 0. We do this in several stages. At �rst, there must be a link between some
literal L0, which must be a (negative) leaf literal of a closed branch with pre�x
p1:[L1], and the literal L1, which stems from a clause C 2 C�(p1). In general,
there may be one or more such literals L0 to choose from. Clearly, L0 is an
instance of a literal L 2 B of a clause (A  B) 2 C�(q) for some pre�x q of p.
The latter clause must have been added by an extension step with the linking
substitution �. This � is called � in this context.

Next, we undo the e�ect of the substitution � in the whole tableau, such
that there is no link between L0 and L1 any more. This means, we consider a
tableau P 0 which is identical with the given one, except that, in part 4 of the
above-mentioned extension step, � only is a multi-set uni�er of B n fLg and
fC1; : : : ; Ckg n fL1g. Let now L00, L

0

1 and L02 be the literals in the newly con-
structed tableau P 0 which stand at the positions corresponding to the positions
of the literals L0, L1 and L2 in the original tableau. In addition, let L01 be the
atom of L00 (i.e. the negation sign is dropped). Now, all term and integer vari-
ables in L00 are equipped with the index n+ 1, all variables in L01 are equipped
with the index 0, and all variables in L02 are equipped with the index n, where
n is a new integer variable. We denote the resulting terms by (L00)[n+1], (L

0

1)[0]
and (L02)[n], respectively.

Before we continue with more formal details, let us give an example for illus-
tration: Fig. 5 (a) shows the tableau P for Ex. 2 before the second loop-detection
step with computer algebra. Links are denoted by thick lines. They constitute
the substitution �. In Fig. 5 (b), the same tableau is shown, but without link be-
tween L0 and L1; this is the tableau P

0. By equating L00 and L
0

2 after annotating
the indices n+1 or n, respectively, we get � (as shown in the �gure).

4.4 Cyclic Uni�cation

How can the exponential uni�er be computed exactly? We will not state the
complete uni�cation procedure here, because this has been done elsewhere and
would require too much space (see e.g. [Comon, 1995, Socher-Ambrosius, 1993,
Peltier, 1997a, Klingenbeck, 1997]). But for the sake of completeness and in or-
der to make the paper more self-contained, the simpli�cation rules according to
[Socher-Ambrosius, 1993] are shown in Fig. 6, presented as a rule- or constraint-
based approach to uni�cation similar to [Jouannaud and Kirchner, 1991], who
view uni�cation as solving equations in abstract algebras in a completely declar-
ative manner. The rules of this system have to be applied non-deterministically
(i.e. all alternative rule applications have to be explored in order to �nd all so-
lutions �). Equations are considered as not oriented pairs here. In the case of
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Sum(0; 0)

Add(x; fm(0); fm(x))(a)

L1

Sum(f(0); f(0)) :Add(0; 0; 0):Sum(0; 0)

L2 L0

� = [xn+1 = f(xn); f
mn+1 (0) = fmn (xn)]

� = [x = 0; y = 0; z = 0]

Sum(x; fm(0))

Add(x; fm(0); fm(x))

L01

(b)

:Add(x; fm(0); fm(x)):Sum(x; fm(0))Sum(f(x); fm(x))

L02 L00

Figure 5: Determining � and � for Ex. 2.

multiple solutions, the r in condition 2. of Def. 5 has to be appended several
times for each computed � in the branch ~p.

The simpli�cation system is correct, but incomplete and may sometimes not
terminate. So, actually, a more complicated procedure is necessary, which is
also stated in [Socher-Ambrosius, 1993]. But, in principle, any one of the cyclic
uni�cation procedures in the literature can be used for our purpose. Most of
them transform a given system of uni�cation equations into a normal form where
the exponential uni�er can be easily read o�. The terms may have exponents,
but only linear Diophantine equations are admissible in the cited literature. In
this paper, we drop this restriction and extend the cyclic uni�cation algorithm,
bringing computer algebra into play.

Now, in order to continue the computation of the exponential uni�er, we
apply the simpli�cation rules of Fig. 6 as long as possible on the equation system

(L01)[0] = L1 ^ (L00)[n+1] = (L02)[n] (6)

(disregarding the negative polarity of L00). The �rst equation is called the �-
part, whereas the second one is called the �-part of the equation system; both
together constitute the overall solution �. The �-part of this system is needed,
in order to provide the base for the recursion. We will arrive at an equation
system (or a disjunction thereof) of the form x1 = e1 ^ � � � ^ xk = ek ^E where
E is an system of equations between terms that cannot be further simpli�ed
by the simpli�cation rules of Fig. 6, because they equate terms with non-linear
integer exponents, e.g. fmn+1(0) = fmn(xn). Since any loop-detection must be
incomplete for theoretical reasons anyway, we only consider the case where
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Trivial:
t = t ^E

E
, where t may be an arbitrary term (possibly with exponents), in-

cluding variables and simple terms.

Clash:
s = t ^ E

?
, if head(s) 6= head(t).

Here, head(t) means the leading function symbol of a non-variable term t, de�ned
by head(f(t1; : : : ; tn) = f and head(s' (t)) = head(s).

Occur-Check:
x = t ^E

?
, if x 2 var(t) where t must not be a variable.

With var(X), we denote the set of all variables occurring in the expression X.

Merge:
x = t ^E

x = t ^ E[x = t]
, if x =2 var(t) and x 2 var(E), and t is a variable implies

t 2 var(E).

Decompose:
s = t ^E

s#1= t#1 ^ � � � ^ s#n= t#n ^E
, if head(s) = head(t).

Let t be a non-variable term with head(t) = f , and f has the arity n. Then,
for 1 � i � n, it is t #i= ti, if t is a simple term f(t1; : : : ; tn). For terms with
exponents, due to the lack of space, we will only consider an example: Let t =
f(g(h(�; a)); g(h(�; a)))2n(f(g(b); g(b))). At �rst, t is rewritten into (f(�; �) � g(�) �

h(�; a))2n+2=3(b), where � denotes concatenation of contexts, and a fraction (2=3)

occurs in the exponent. Then, t#1= t#2= (g(�) � h(�; a) � f(�; �))2n+1=3(b). Further
details can be found in [Socher-Ambrosius, 1993, Klingenbeck, 1997].

Eliminate:
s' (t) = u ^E

(t = u ^E)�
, where � is a solution of the integer equation ' = 0.

Figure 6: Simpli�cation rules for uni�cation of terms with exponents.

1. every context occurring anywhere in the equation system does not contain
any variables,

2. no xi (on the left-hand side of equations) for 1 � i � k has the index n,
3. if an xi has the index n+1, then ei contains no variables except the variable
xi with index n.

Equations according to condition 3. have the form xn+1 = t where t is a term
with one or more occurrences of the variable xn, e.g. xn+1 = f(xn). Now we re-
place each occurrence of xn or xn+1 by (t[xn = �])n(x0) or (t[xn = �])n+1(x0),
respectively. After that, further simpli�cation may be possible by the simpli-
�cation rules (of Fig. 6), such that we arrive at a simpli�cation system x01 =
e01 ^ � � � ^ x

0

k0= e0k0^E
0 which is similar to the system from above, but all term

variables with index n or n+1 are removed.
E0 must have the form s'11 (t1) = s0 11 (t01) ^ � � � ^ s

'l
l (tl) = s0 ll (t0l). Again, we

only consider a restricted case, namely where sj = s0j and tj = t0j for 1 � j � l.
The only remaining task now is to solve the recursive integer equation system
E = ('1 =  1 ^ � � � ^ 'l =  l). This can be done automatically by means of
a computer algebra system (as shown in Sect. 3). Provided that the computer
algebra system was able to solve E, then we proceed as follows: substitute all
integer variables mn (or mn+1) by the corresponding closed forms from the
solution of E. After that, further simpli�cation may be possible resulting in the
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desired substitution �.
Let us again illustrate the progress of our method with Ex. 2. We start with

the equation system (6) (see above), that is in this context:

x0 = 0 ^ fm0(0) = 0 ^ xn+1 = f(xn) ^ f
mn+1(0) = fmn(xn)

Let us �rst draw attention to the equation xn+1 = f(xn). Together with x0 = 0
this means, x = fn(0). From the remaining equations, we obtain E = (m0 =
0 ^ mn+1 = mn + 1 + n) as seen earlier. Finally, we get � = [x = fn(0);m =
n(n+1)=2] (see also Fig. 2). This substitution has to be applied to all literals in
P 0 which are involved in the loop (i.e. the ones in C+(r)); corresponding variables
linked according to condition 3. of Def. 5 are substituted by the same term.

4.5 Soundness and Completeness

We observe that the procedure for exponential uni�cation may fail for at least
two reasons: not only because in some cases uni�cation is impossible, but also
because of our restrictions set up in Sect. 4.4 or because the computer algebra
system is not able to solve the recurrence equation system E, at least not in
some reasonable time limit. In the latter case, the loop-detection rule should be
stopped, and the other rules should be applied before trying the loop-detection
rule again. This means, the new rule is incomplete, but the overall calculus
remains complete, because loop-detection is only used as an additional, optional
mechanism. Since the enhanced calculus presented here is very similar to the
one stated in [Baumgartner, 1998], the model generation and the soundness and
completeness proofs are analogous in both cases. We have the following theorem:

Theorem6 (soundness and completeness). Let C be a �rst-order clause set.
Each fair derivation eventually leads to a closed tableau i� C is unsatis�able.

Proof. For the direction from left to right (soundness), we prove the following
proposition: Let P = (p1; : : : ; pk) be a tableau (branch set), built according to
the rules from clauses of the clause set C, where each branch pi (for 1 � i � k)
is a sequence of literals (Li1 � � �Lili). Then, it holds

C j= 8((L11 ^ � � � ^ L1l1) _ � � � _ (Lk1 ^ � � � ^ Lklk )) (7)

where 8 denotes the universal closure of all term variables in the formula. Now, if
all branches are closed, they all contain complementary literals by construction.
Hence, the formula in (7) is unsatis�able, and therefore C must be unsatis�able,
too.

It remains to show the proposition (7). This can be done by induction on the
number of derivation steps. The base case|an initialization step according to
Def. 2|is trivial, since the empty branch set [ ] corresponds to a tautology >,
and clearly C j= >. In the induction step, we make a case distinction:

Extension Step (Def. 3): Extension steps are similar to the �-rule in tableaux
and resolution in logic programming. Because of this, the standard soundness
result (e.g. in the textbooks [Fitting, 1996, Lloyd, 1987, ChangandLee, 1973])
canbe adapted to this context.
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Link Step (Def. 4): Since a link step does not change the actual tableau, but af-
fects only the clause set C�(p), the proposition is an immediate consequence
of the induction hypothesis.

Loop-Detection (Def. 5): Here, soundness partly follows from the soundness
of the simpli�cation rules (see e.g. [Socher-Ambrosius, 1993, Peltier, 1997a]).
In addition, since loop-detection can be seen as applying the extension rule
(and possibly also the link rule) arbitrarily often, this case can be reduced
to the previous ones.

The direction from right to left (completeness) is easy. Since the versions of
the link and extension rules we use here (Defs. 3 and 4) contain the corresponding
rules in [Baumgartner, 1998] as a special case|recall that always not only the
terms with exponents but also the simple terms in their denotations are available
for extension and link steps of the extended calculus|, the completeness result
in [Baumgartner, 1998, Th. 12] can be simply adopted here without change. ut

4.6 Model Generation

As a consequence of the last theorem, we can do model generation similar to
[Baumgartner, 1998, Sect. 5]. In particular, if we have a �nite open branch p
in a tableau that is �nished, then we can read o� a model of the given clause
set that can be built from the literals in p. A branch p is called �nished i�
any further extension or link steps yield only clauses that are already in C�(p)
or C+(p) (or their denotation). Here in addition, the redundancy criteria in
[Baumgartner, 1998, Def. 10] could be applied (after adaption to our extended
calculus). Let us consider now an example for model generation.

Example 3 (the even or odd example).

R(x); R(f(x))  (8)

 R(x); R(f(x))

Fig. 7 shows a derivation for this example. After loop-detection, the selected
branch (ending with #) cannot be properly extended further. This means it
is �nished, and we can read o� a model from this branch according to the
subsequent Def. 7. Provided that the only constant and function symbols in our
language are 0 and f , there are exactly two models for Ex. 3:

I1 = fR(f
2n(0) j n � 0g and I2 = fR(f

2n+1(0) j n � 0g

De�nition 7 (model generation). Let P be a hyper-tableau, built according
to the rules of our calculus from clauses of a clause set C, with an open but
�nished branch p. Now, p constitutes a Herbrand model I of C, consisting of all
ground atoms that are produced by p. We say a ground atom A is produced by
the branch p in P i� the following conditions hold:

1. A is a ground instance of a selected literal L in a clause C 2 kC+(p)k via
the (ground) substitution  (i.e. A = L).
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2. There is no clause C 0 2 kC�(p)k such that C � C 0 % C.

Here, for clauses C1 and C2, we write C1 % C2 (C1 � C2) and mean C1 is
more general (strictly more general) than C2 i� there is an ordinary sub-
stitution Æ (which in the strict case must not be a variable renaming, i.e.
C1 6� C2), such that C1Æ = C2.

The �rst model I1 can be determined from the selected branch p, while I2
can be determined from another branch further right (not shown in Fig. 7). For
the construction of I1, note that the clauses

R(f2n(x)) _ R(f2n+1(x)) (9)

and R(f2n+1(x)) _ R(f2n+2(x)) (10)

are contained in C�(p); both clauses are instances of clause (8). Hence, for exam-
ple, R(0) is in I1, because it is produced by the selected literal in (9). However,
R(f(0)) is not in I1, although it also is an instance of the selected literal in (9)|
we just have to apply the substitution [x = f(0)]|, because it is not produced
by this literal, but by the unselected literal in (10). Of course, model genera-
tion can never be complete, because satis�ability is undecidable for �rst-order
clause sets in general. In addition, there may be uncountably many (minimal)
Herbrand models for a clause set; in order to see this, just consider a clause set
consisting only of clause (8).

R(f(x))R(x)(8)

R(f2n(x)) R(f2n+1(x))(9)

R(f2n+1(x)) #(10) :R(f2n(x)) :R(f2n+1(x))

:R(f2n(x)) :R(f2n+1(x))

�

�

�

�

�

Figure 7: Model generation for Ex. 3.

5 Other Approaches

5.1 Generating Finite and In�nite Models

Since searching for counter examples is as important as the search for proofs,
there are numerous works on model generation in theorem proving. For example,
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[Slaney et al., 1994] presents a �nite enumeration method which is able to build
�nite models. The restriction to �nite models is overcome in
[Ca�era and Zabel, 1992, Ca�era and Peltier, 1997]. This approach also allows
building in�nite models by making use of equational constraints. However, this
approach is not able to represent the model of Ex. 1 (disregarding the last
clause). Hence, in [Peltier, 1997a] equational constraints are enhanced by terms
with exponents. However, there are only linear integer expressions considered
as exponents; this restriction is dropped here. In addition, the calculus devel-
oped by Ca�era et al. is not conuent (in contrast to the one presented here),
if its rule for generating many pure literals is applied, because it only preserves
satis�ability but not equivalence of clauses sets.

5.2 Approaches Based on Formal Languages

There are simple examples that cannot be handled by terms with exponents:

Example 4 (alternative clauses).

P (0) 

P (f(x))  P (x)

P (g(y))  P (y)

In consequence, [Peltier, 1997b] proposes the use of tree grammars which
is also done in [Heintze, 1992]. Nevertheless tree grammars are less expressive
than context-free grammars. [Matzinger, 1997] observes that with tree gram-
mars only �nite models (not necessarily �nite Herbrand models) can be ex-
pressed. Other grammar types are proposed, e.g. so-called primal grammars
[Salzer, 1994, Hermann and Galbav�y, 1997]. Also, indexed grammars of the IO-
type may be used. They are more general than context-free grammars and allow
to mimic terms with linear integer exponents. The word problem for these class
of grammars is tractable [Asveld, 1981]. Nevertheless, intersection and hence
uni�cation of terms cannot be decidable. This, of course, is a severe drawback.
In summary, each approach has its advantages and disadvantages.

In order to be able to treat examples like Ex. 4, we may introduce disjunctive
terms. Its model could be stated e.g. as:

I = fP ((f(�) t g(�))n(0)) j n � 0g

We have to introduce an additional inference rule for such alternatives, which
detects more than one loop at once. The formal details of a loop-detection rule
with alternatives have to be worked out. For this, loop-detection has to be post-
poned, in order to detect multiple loops via alternative terms. An appropriate
control strategy is required for deciding when loop-detection should be applied
or not. This is still ongoing work.

6 Conclusions and Future Works

In this paper, we have extended the hyper-tableau calculus by terms with gen-
eralized exponents. Although the new inference rule for loop-detection is incom-
plete in general, the overall method remains complete wrt. computing answers.

152 Stolzenburg F.: Loop-Detection in Hyper-Tableaux ...



Because of the use of methods from computer algebra, we have model generating
capabilities that are enhanced compared with other approaches. To the best of
my knowledge, the procedure proposed here, is the �rst one that

1. makes use of an incomplete loop-detection rule,
2. exploits the power of computer algebra systems, and
3. is applicable to tableau methods.

The methods for loop-detection and model generation are also applicable
to other calculi than (hyper-)tableau. Future work should aim at making the
loop-detection rule more complete. For this, especially uni�cation should remain
a tractable operation, regardless what kind of data structures we use for rep-
resenting models. Another goal, of course, is implementing the calculus, after
addressing the question of complexity of the involved procedures, such that the
bene�ts of the combination of theorem proving, model generation, and computer
algebra can be exploited in applications such as system diagnosis or debugging
of axiomatizations [Furbach et al., 1998].
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