
Interactive Veri�cation Environments for

Object-Oriented Programs

J�org Meyer
(Fernuniversit�at Hagen, Germany
Joerg.Meyer@fernuni-hagen.de)

Arnd Poetzsch-He�ter
(Fernuniversit�at Hagen, Germany

poetzsch@fernuni-hagen.de)

Abstract: Formal speci�cation and veri�cation techniques can improve the quality of
object-oriented software by enabling semantic checks and certi�cation of properties. To
be applicable to object-oriented programs, they have to cope with subtyping, aliasing
via object references, as well as abstract and recursive methods. For mastering the
resulting complexity, mechanical aid is needed.
The article outlines the speci�c technical requirements for the speci�cation and veri�ca-
tion of object-oriented programs. Based on these requirements, it argues that veri�ca-
tion of OO-programs should be done interactively and develops an modular architecture
for this task. In particular, it shows how to integrate interactive program veri�cation
with existing universal interactive theorem provers, and explains the new developed
parts of the architecture. To underline the general approach, we describe interesting
features of our prototype implementation.

Keywords: Integration of veri�cation systems, program veri�cation, object-oriented
programming

1 Introduction

Formal speci�cation and veri�cation techniques can improve the quality of ob-
ject-oriented software by enabling semantic checks and certi�cation of program
properties. They can be used to show the absence of exceptions resulting e.g.
from dereferencing null pointers or from out-of-bounds access to arrays. More
generally, they can be used to prove that a program satis�es some interface
properties or a complete interface speci�cation. To include speci�cation and ver-
i�cation into the program development process, programming environments are
needed that provide integrated support for program speci�cation, implementa-
tion, and veri�cation. Programming environments supporting these tasks will be
called logic-based in the following. This article focuses on the use and integra-
tion of tools to implement veri�cation support within logic-based programming
environments.

Applying formal speci�cation and veri�cation techniques to object-oriented
programs has advantages and disadvantages when compared to a procedural set-
ting: The advantages are that object-oriented languages support (a) type-local
encapsulation constructs allowing the veri�cation of data type invariants and
(b) inheritance enabling code reuse and potential \proof reuse". Both constructs
have to be proved very useful for application frameworks and component-based
systems. The disadvantage is that subtyping, aliasing via object references, and

Journal of Universal Computer Science, vol. 5, no. 3 (1999), 208-225
submitted: 1/11/98, accepted: 15/3/99, appeared: 28/3/99 Springer Pub. Co.

abstract methods can make veri�cation of object-oriented programs more com-
plex than veri�cation of procedural programs.

The classical technique for the veri�cation of procedural programs is veri-
�cation condition generation using weakest precondition transformation. Thus,
in a �rst automatic step, the program-dependent aspects are eliminated. This
way, the veri�cation task is reduced to proving a formula in some general logic
(e.g. �rst-order predicate logic). This can e.g. be achieved by the help of an inter-
active general theorem prover. Even for procedural programs that do not make
use of pointer structures, the veri�cation conditions can become very large and
complex in practice. If proofs fail on �rst attempts, it is very diÆcult to locate
the problematic program points. I.e. why [Guaspari et al. 1990] proposes more
interactive support in program veri�cation for procedural programs as well.

For the veri�cation of object-oriented programs such interactive support is al-
most indispensable, in particular in the context of implementation independent,
i.e. abstract speci�cations. Object-oriented programs make heavy use of method
invocations and object references (from a veri�cation point of view, object ref-
erences cause the same complexity as pointers). In Section 2, we illustrate the
resulting problems and argue that veri�cation condition generation is not appro-
priate to verify abstractly speci�ed object-oriented programs. As a consequence,
we look for tactical program provers that support the interactive development
of proof outlines that are centered around the program text. Within such tools,
weakest precondition transformation is one proof strategy among others.

This article describes integration techniques and a modular architecture for
logic-based programming environments. The architecture was designed together
with a prototype environment for the speci�cation and veri�cation of sequen-
tial Java programs called Jive1. The used speci�cation technique is described in
[Poetzsch-He�ter 1997b], the programming logic is presented in [Poetzsch-He�ter
and M�uller 1999]. For specifying and verifying program-independent properties,
general theorem provers, like PVS and Isabelle (see [Crow et al. 1995] and [Paul-
son 1994]), will be integrated into the environment2.

The presentation is structured into three sections: [Section 2] outlines our
general approach to speci�cation and veri�cation of object-oriented programs
and illustrates the special aspects of object-oriented program veri�cation. In
particular, we show why the classical veri�cation condition generation technique
is not appropriate for object-oriented programs. [Section 3] describes the modu-
lar system architecture and discusses design decisions. [Section 4] focuses on the
system component that handles program-dependent veri�cation aspects.

2 Speci�cation and Veri�cation of Object-Oriented Programs

This section describes the used speci�cation and veri�cation techniques. Based
on this background, it discusses special requirements resulting from the veri�ca-
tion of object-oriented programs and argues that interactive, program-centered
veri�cation is needed to meet these requirements.

1 Jive stands for Java Interactive Veri�cation Environment [see M�uller et al. 1997].
2 At the time, this paper was written, we used only PVS for proving program-
independent properties.

209Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

2.1 Interface Speci�cation of Object-Oriented Programs

Formal interface speci�cations serve three major purposes: 1. They provide for-
mal, declarative, and abstract documentation of program properties. By abstract
we mean here that the speci�cation can be done without referring to the hid-
den implementation parts. 2. They can be used to prove that an implementation
of the interface is correct. 3. They provide the basis to verify programs using
the interface. Our speci�cation technique builds on the two-tiered Larch ap-
proach [see Guttag and Horning (1993)]. Speci�cations consist of two major
parts: (1) Program-independent speci�cations providing the needed background
theories to express the program behavior (e.g., de�nitions of abstract data types,
functions, etc.) and (2) program-dependent parts relating the implementation to
general speci�cations. An interface speci�cation of a class C consists in partic-
ular of (a) abstract attributes, (b) a class invariant, and (c) a speci�cation for
each public method of C. Class invariants essentially describe properties that
have to hold for each object of a class in any state where the object is acces-
sible from outside. Method speci�cations are given by pre-/postconditions and
so-called modi�es-clauses. In the following, we sketch the speci�cation technique
along with a small example (for a detailed description see [M�uller and Poetzsch-
He�ter 1999]).

[Fig. 1] shows a speci�cation of a Java interface type. The type Collection
taken from the Java package java.util is an interface for implementations of
object sets (equality between objects is de�ned w.r.t. object identi�ers3). In the
interface speci�cation, this is expressed by the abstract attribute set of type
ObjectSet where ObjectSet is a sort speci�ed in a general speci�cation framework
(e.g. as a PVS speci�cation). Type Collection has a method to add objects to
the set (the other methods are omitted). The properties of add are speci�ed by a
pre-/post-pair and a modi�es clause. (1) If the parameter o is non-null, the result
of add is true i� the value of set in the prestate contains o; after execution, set
contains o and the elements it contained in the prestate. (2) The modi�es-clause
speci�es that execution of add modi�es only the abstract attribute set and has
no side-e�ects on other objects.

interface Collection f

abstract ObjectSet set;

boolean add(Object o);
pre o 6= null
post result = (o 2 set^) ^ set = fog [set^

mod set
...

g

Figure 1: Example Speci�cation

3 I.e. the speci�cation technique is suÆciently strong to handle objects by their
identities.

210 Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

2.2 Relating Interface Speci�cations and Veri�cation

Modular veri�cation has two sides: (1) Verify the correctness of an implementa-
tion w.r.t. its interface speci�cation. (2) Verify properties of programs that use
the interface. For both tasks, interface speci�cations have to be embedded into a
programming logic. We use a Hoare-style programming logic because (1) it can
be applied quite intuitively, (2) it is suÆciently expressive for our needs, (3) it
enables interactive veri�cation close to the programs, which is important in the
context of large programs [see Subsection 2.3], and (4) it is fairly well known
which is an important prerequisite for industrial application. Our programming
logic is essentially an extension of the partial correctness Hoare logic for pro-
cedural programs. Details of the logic are given in [Poetzsch-He�ter and M�uller
1999].

We demonstrate the embedding of interface speci�cations into our Hoare logic
with the speci�cation of method add. To keep things simple, we do not consider
class invariants here. The pre-/postcondition is translated into the following
triple:

f o 6= null ^ $(this:set) = PRESET g
Collection : add(Object o)

f result = (o 2 PRESET) ^ $(this:set) = fog [PRESET g

The identi�er this refers to the implicit method parameter. The dollar sign is a
global program variable denoting the current object store. Object stores model
the state of the objects. Object store OS applied to an attribute location yields
the value of the attribute in OS ; i.e. $(this:set) denotes the current value of
attribute set. In addition to this, there are operations to update an object store,
to allocate a new object, and to test whether an object is alive, i.e. allocated in
an object store (see [Poetzsch-He�ter and M�uller 1998] for details). The formal
meaning of the modi�es-clause of method add reads: If some object Z is alive in
the prestate and an attribute L of Z is not used to implement this.set, then
it has the same value V in pre- and poststate:

f alive(Z; $) ^ Z:L 62 down(this:set; $) ^ $(Z:L) = V g
Collection : add(Object o)

f $(Z:L) = V g

The set of attributes used to implement this.set is denoted by
down(this:set; $) [see M�uller and Poetzsch-He�ter 1999]. In summary, the spec-
i�cation of method add is formally expressed by two triples.

The details of interface speci�cations for object-oriented programs are not
important for this article. However, it is essential to understand the shape of
formulas resulting from such speci�cations, because the veri�cation environment
has to cope with their complexity. The above example gives a suÆcient impres-
sion of the technical aspects resulting from object stores and aliasing via object
references. A further source of complexity is subtyping and recursion. A treat-
ment of these aspects is out of the scope of this article [see Poetzsch-He�ter
1997b].

2.3 Interactive, Program-centered Veri�cation

The classical approach to the veri�cation of procedural programs is based on
veri�cation condition generation. This way the proper veri�cation task is shifted

211Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

to general theorem proving. In this subsection, we argue that this technique
| although important and helpful | is not suÆcient for the veri�cation of
object-oriented programs. It has to be complemented by interactive, program-
centered veri�cation support. Thus, logic-based programming environments have
to integrate program-centered proof techniques with general theorem proving.

Adapting the weakest precondition transformation to object-oriented pro-
gramming would mean to provide speci�cations for all methods and invariants
for all loops. Then, veri�cation conditions can be generated and one can try to
prove them by general theorem provers. In practice, this technique has already
turned out to be problematic for realistic procedural programs without pointers
(cf. the work on the Penelope system, e.g. [Guaspari et al. 1990]). The situation
in object-oriented program veri�cation is more diÆcult, because of aliasing in
object stores, the extensive use of possibly recursive methods, and the use of
sometimes complex abstraction functions.

To illustrate a typical proof pattern where interaction can help, we consider
a simpli�ed part of the Java AWT4: The class Component is the superclass of all
user interface components. A Container is a component that is used to build tree
structures of components. To implement the tree structures, components have an
attribute parent referencing the component up in the tree; containers have an
attribute children of type Collection referencing the contained components
and methods to add and remove components:

class Component f

Container parent;

...

g

class Container extends Component f

Collection children;

boolean removeComp(Component c) f...g

Component addComp(Component c) f...g
...

g

To verify properties of the AWT (e.g. the correctness of layout algorithms),
one has to prove (beside other things) that method addComp does not violate the
reference structure of the component tree. To illustrate the veri�cation of such
properties, we consider the proof that the following formula is invariant under
execution of method addComp, i.e. that each component is always in the children
set of its parent container:

8Component C : $(C:parent) 6= null) C 2 $($($(C:parent):children):set)

Let us assume that addComp has the implementation given in [Fig. 2], that the
precondition of addComp guarantees that the parameter c is not null, and that
we have some appropriate speci�cation for removeComp. Even for this simple ex-
ample, wp-transformation techniques applied to the above formula yield a fairly
complex formula of more than ten lines. The complexity mainly results from the
two methods calls: Since their speci�cations do not match the needed postcon-
ditions, we have to use adaption techniques (see e.g. [Gries(1981)], Section 12.2)
leading to large preconditions. For implementations of realistic size, the gener-
ated veri�cation conditions are often unmanageable: (a) They cannot be proven
automatically, mainly because of the use of abstractions and the complexity of

4 Abstract Window Toolkit, the framework to implement graphical user interfaces.

212 Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

boolean addComp(Component c) f
if(c.parent != null) f
c.parent.removeComp(c);

g
c.parent = this;

children.add(c);

return c;

g

Figure 2: Implementation of addComp

object stores. (b) It is often very painful to prove them interactively, because
of their size and because of universal quanti�cations over object stores. That is
why we develop interactive, program-centered veri�cation support.

f c 6= null ^ $(c:parent) 6= null) (c 2 $($($(c:parent):children):set)) g

if(c.parent != null) f
c.parent.removeComp(c);
g

f c 6= null g

c.parent= this;

f c 6= null ^ $(c:parent) = this g
)
f 9PS : c 6= null ^ $($((this:children):set) = PS ^ $(c:parent) = this g

[ex.-rule [see Appendix 4]]
V

f c 6= null ^ $($((this:children):set) = PS ^ ^ $(c:parent) = this g
)
(
c 6= null ^ $($(this:children):set) = PS ^
alive($(c:parent); $) ^ c:parent 62 down($(this:children):set; $) ^
$(c:parent) = this

) (P1)

(P2)

children.add(c);
�
$($(this:children):set) = fcg [PS ^
$(c:parent) = this

�
(Q1)
(Q2)

) [interactive reformulation to adapt postcondition]
f c 2 $($($(c:parent):children):set) g

"
f c 2 $($($(c:parent):children):set) g
return c;

f c 2 $($($(c:parent):children):set) g
) [interactive simpli�cation]
f $(c:parent) 6= null) c 2 $($($(c:parent):children):set) g

Figure 3: A proof outline

The scenario for the above proof task in an interactive program veri�ca-
tion environment is as follows. The user decides to make a case distinction:
(1) c = C and (2) c 6= C. Since the proof techniques for both cases are similar,

213Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

we demonstrate only case (1). Starting with the last program statement and
the postcondition, the proof outline shown in [Fig. 3] is interactively developed
with the system by stepping backward through the program. Roughly speaking,
each line corresponds to the application of one proof strategy. The proof outline
gives only an overview over the proof; several rule applications are missing. In
particular, the precise handling of logical variables is not visible in the proof
outline.

At two positions in the proof outline, the user has provided guidance to the
system. In the simpli�cation step near the end, he or she has used the knowledge
that $(c:parent) = this, thus that c's parent is non-null. The central step was
the adaption of the postcondition of the invocation of add to two postconditions
specifying add [see Subsection 2.2]: Q1 is an instantiation of the triple result-
ing from the pre-post-clause; Q2 is an instantiation of the the modi�es-clause
embedding. The remaining steps can be done almost automatic by the system.

In this section, we gave a short overview to our speci�cation and veri�cation
technique. By the examples, we wanted to show (1.) that the complexity of
speci�cation and veri�cation for object-oriented program can hardly be managed
without powerful tool support, and (2.) why suitable veri�cation tools should
support interactive veri�cation centered around the program text.

3 A Modular System Architecture

This section describes the subtasks, the formal data, and the components of logic-
based programming environments. We explain the tool support for the subtasks
and how these tools are integrated into a modular architecture for logic-based
programming environments. As mentioned in the introduction, the described
architecture is realized in the prototype enviroment called Jive.

3.1 Subtasks

Logic-based programming environments for object-oriented programs have to
perform �ve major tasks:

1. Speci�cation. They have to support interface speci�cations.
2. Program editing and syntactical analysis. They should support syntax anal-

ysis and static checking of programs.
3. Program veri�cation. They should provide exible and powerful support for

interactive veri�cation.
4. Proving program-independent theorems. Interface speci�cations make use

of general speci�cation parts (in the example of [Section 2], we used the
sort ObjectSet). Program proofs lead to program-independent proof obliga-
tions. Therefore, an interface to general speci�cation framework and theorem
provers must be provided.

As stated above the development of formal correct software is a task, which in-
volves several subtasks like programming, specifying, or verifying. The variety
of subtasks reaches from simple information management or working with syn-
tactical program- or formula structures up to theorem proving. User interaction
during proofs and development cycles (see example in [Section 2]) complicates

214 Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

the situation. In contrast to batch-oriented proof tools where all subtasks are
completed in a sequential style, the sequence of tasks is determined by user in-
teraction. This means for logic-based programming environments that it has to
control the di�erent subtasks in order to keep the speci�cation and proof data
consistent. This is in particular necessary, if subtasks are delegated to di�erent
tools. An example from our environments for this situation is the typechecking
of interface speci�cation formulas. They are developed in subtask 1, typechecked
with the tool performing subtask 3 using theories of subtask 4. The splitting of
operations carries over to splitting up the speci�cation and proof data to di�er-
ent system parts. In the following, we describe the di�erent kinds of speci�cation
and proof data managed by our proof environment.

3.2 Speci�cation and Proof Data

Logic-based programming environments combine several di�erent subtasks each
of which works with di�erent information. Essentially, they have to handle the
following formal data:

{ The structure of the program to be proved, i.e the abstract syntax trees.
{ The results of static program checks (e.g. type information). Treating object-
oriented languages, this information is needed to derive proof obligations
which result from subtyping and inheritance.

{ The interface speci�cations of the programs.
{ General data types and functions used in the interface speci�cations.
{ Abstraction functions.
{ A formalized data and state model for the underlying programming language
(in particular the object store).

{ Lemmata which simplify properties of the formal object store and the pro-
gram dependent data types.

{ Hoare triples.
{ Program proofs.

We group these data into three classes: program-related data, program-indepen-
dent data, and program proof data. An interactive veri�cation environment has
to guarantee the consistency between these di�erent kind of data and has to
keep track of all made changes. In the following, we give a short overview of the
data ow and data dependencies within our environment.

The scenario of verifying a program starts with a given speci�ed program. In
addition to that, the data types and functions used in the interface speci�cation
have to be given. From this, two things are generated: (1) A theory describing
static program properties which make e.g. type information available for theorem
proving and (2) the Hoare-triples embedding the speci�cation into the program-
ming logic (see [Subsection 2.2]). Now the users interactively construct proofs
for the generated Hoare-triples. Occurring formulas have to be typechecked ac-
cording to the general data and function de�nitions. Implications occurring in
weakening or strengthening steps have to be proved using the underlying general
theorem prover. [Fig. 4] shows these dependencies. The above described scenario
leads to the following requirements for the handling of the speci�cation and proof
data by the system:

215Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

Program

Specification

Lemmata

Object Store
Specification

Lemmata

Data Types and
Function Definitions

Program dependent
Theories

Hoare-Triples

Program Proofs

Figure 4: Data dependencies

{ All subtasks are related to the general speci�cation language; in particular,
the interface speci�cation language, the program annotation language (pre-,
postconditions, lemmas) and the subtasks regarding program-independent
theories are based on it. Therefore it must be general enough to be usable
for all subtasks.

{ As Hoare-style proofs are based on the abstract program syntax, it has to
be accessible from the di�erent system components.

{ Because static program information is needed within theories, we need a pa-
rameterization mechanism to adapt the static theories to di�erent programs.

{ The use of Hoare-style logic entails to prove lemmas in the general speci�ca-
tion framework. To ful�ll these proof obligations they have to be embedded
into the parameterized static theories during runtime. To combine di�erent
theories a module concept for theories is needed.

How the described subtasks and the management of the di�erent data can be in-
tegrated within a modular veri�cation environment is explained in the following
subsection.

3.3 Architecture and Tools

In this subsection, a modular architecture for logic-based programming environ-
ments is presented that ful�lls the above requirements. Along with the presen-
tation, we describe the tools that we used to implement our prototype Jive.
We start with a discussion about reusing and integrating existing tools versus
building a monolithic system.

3.3.1 Monolithic vs. Loosely Coupled Architectures

Logic-based programming environments can either be designed as monolithic
systems or as a set of loosely coupled heterogeneous tools. There are four rea-
sons why we designed an architecture for loosely coupled tools: 1. To make the
application of logic-based programming environments as simple and convenient
as possible, the most powerful, eÆcient, and automated techniques have to be
used. Without reusing implementations for these techniques, such tools would be

216 Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

too expensive. 2. Incorporation of existing tools allows one to bene�t from the
progress made in each of the related research areas by replacing a component by
a new one. This way logic-based programming environments can be customized
to the particular requirements of a software manufacturer. 3. A strict separa-
tion of tasks eases the adaption and generation of certain system components.
4. In an industrial context, logic-based programming environments have to be
integrated into conventional software development systems. I.e., they have to
interact with compilers, debuggers, and so on. Thus, loose architectures �t nat-
urally into existing software development environments as these are collections
of interacting tools anyway.

As described above logic-based programming environments depend on pa-
rameters like the programming language, interface speci�cation language, pro-
gramming logic, general logical foundations, etc. Existing monolithic systems
like the Stanford Pascal Veri�er [see Suzuki (1980)] or Penelope [see Guaspari
et al. 1990] have �xed those parameters, so a slight change in one of them en-
forces modi�cations of the whole system, whereas loosely coupled tool-sets enable
the change of system parts. Non-monolithic systems have two major drawbacks:
1. Users have to interact with di�erent components. 2. Data processed by one
component has to be made accessible to other components. To deal with the
former aspect, a uniform user interface supports the access to all components.
The latter problem is solved by providing a management component that serves
as information broker.

Taking all arguments of the above discussion into account we developed a
loosely coupled system architectures, because it provides more exibility and
allows to integrate existing technologies and systems.

3.3.2 Tools, Components and Interfaces

In [Subsection 3.2], we identi�ed three kinds of information: program-related
data, program-independent data, and program proof data. As the �rst two areas
are based on well known techniques, sophisticated existing tools can be used to
cover this areas. Programming language dependent tasks are performed by using
tools like Max [see Poetzsch-He�ter 1997a], the Cornell Synthesizer Generator
[see Reps and Teitelbaum (1989)] or Eli [see Gray et al. 1992]. The mentioned
tools are especially practical, because they allow (1.) analysis and generation
and (2.) the use of internal data structures during runtime to serve as a program
information server. For the formalization of program-independent theories and
general theorem proving the use of systems like PVS [see Crow et al. 1995] and
Isabelle [see Paulson 1994] is possible. For the handling of program proofs we
developed a new tool which provides the needed functionality. It is described in
[Section 4].

The main construction problem of a logic-based programming environment is
to combine used tools in a suitable tool architecture. According to the di�erent
subtasks and data, we identify three main components: The program component
handles all tasks that are center around one program unit. The theorem prover
component is used for speci�cation and veri�cation of general properties. The
management component keeps track of the consistency of the overall process.
In the following, we describe the tasks of each component:

217Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

Program Component. The program component PC combines all tasks that
directly depend on the programs. It is structured into two subcomponents, the
program information server (PIS) and the program proof component (PPC).
The PIS supports syntax analysis, context checking, and program speci�cation.
It provides type information and structural information about the programs. It
extracts the speci�cation from programs, maps it to pre-/post pairs, generates
program-dependent theories and provides needed program structure information.
We generate the PIS component for Anja5 from a Anja-speci�cation with the
Max-system. The program proof component handles interactive Hoare-style and
automated strategy based proofs. As the PPC handles the interactive veri�cation
aspects, we discuss its features in more detail in [Section 4].

Theorem Prover Component.The purpose of the TPC is to handle program-
independent speci�cations and proofs. The TPC has to ful�ll two requirements:
(a) It has to support a powerful framework for formulating general, program-
independent speci�cations (e.g., by many-sorted higher-order formulae). Such
speci�cations are needed to express the interface properties of programs and
to close the gap between program speci�cations and more abstract speci�ca-
tion layers. (b) It has to provide powerful (interactive) veri�cation support to
proof theorems and lemmas about speci�cation properties. Such lemmas can be
simply derived speci�cation properties, can result as proof obligations from the
application of Hoare-rules, or can relate properties of di�erent abstraction layers.

Management Component. Because the global system state is distributed to
the system components, we provide the MC to manage global system informa-
tion. Beneath technical tasks like control of startup and shutdown of used tools
it serves as a basis to manage di�erent programs and their proofs. As object-
oriented software development is basically component based, the MC provides
management facilities to share proof information between software components.
Furthermore, it enables consistency checks between components and the gener-
ation of program-proof documentations.

Interfacing the Components. [Fig. 5] summarizes the overall structure of the
architecture. The components are integrated based on component interfaces de-
veloped in Java. Java enables a graded attachment of tools from socket based
communication and the Java native method interface up to Java method in-
vocations depending on how tight tools are coupled to the system. Kernel sys-
tem parts are implemented in Java using Java method invocations as interface.
Loosely coupled parts (e.g. the theorem prover component) use socket connec-
tions and can run remotely if necessary. The management component is the
central tool controlling these interfaces.

4 The Program Proof Component

Most tools mentioned up to this point build on well understood techniques except
the task of the interactive handling of program proofs. This section discusses
features of the PPC, a subcomponent of the PC. Program veri�cation systems

5 Annotated Java, the Java subset we use enhanced by speci�cation parts.

218 Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

Management
Component

Java method invocation

Java native interface

Socket Connection

Program Information
Server

Program
Proof Component

Program Component

Theorem Prover
Component

Figure 5: The Jive architecture

are usually based on weakest precondition transformation or eliminate program-
dependent aspects by other techniques. The example in [Section 2] has shown
that for more complex programming languages, in particular for object-oriented
languages, such elimination techniques lead to unmanageable proof obligations.
Thus, certain parts of the proofs should be created automatically and some
should be performed with user interaction. A similar observation was made in
the Penelope project [see Guaspari et al. 1990], even if the class of programs
considered there was still relatively simple (e.g. no pointers).

Veri�cation is a fairly complex task. Therefore the user should be provided
with the possibility to adapt the systems capabilities to his special problems.
Following the idea of LCF, we provide a set of basic operations which are fun-
damental in the sense that all necessary proof steps (e.g. uses of logical rules,
composition of tactics etc.) can be performed using these operations. The use
of basic operations enables to give a precise descriptions of proof states and
proof state transitions, which is a prerequisite to use techniques as described in
[Reif and Stenzel 1993] and [Reif et al. 1998] for the reuse of proofs and proof
parts during proof development cycles. These techniques are especially useful for
object-oriented programs where reuse of software components carries over to the
reuse of proofs.

Compared to general interactive theorem provers, program provers need spe-
cial features: 1. The proof state is not restricted to one proof tree, but consists
of a set of (possibly incomplete) proof trees for a given program (e.g. in a for-
ward proof, proof trees establishing properties of single statements might be
combined to a proof tree for a compound statement). 2. Forward and backward
proofs should be supported within the PPC: A user may start with annotations
of elementary statements, i.e. with axioms, and derive new properties from al-
ready proven ones (forward proof), or she/he can state a proof goal as annotation
of a procedure or method and stepwise show that the body satis�es this anno-
tation (backward proof). 3. As extensions of programs are essential for reuse in
object-oriented languages, a proof environment must be capable to handle proof
obligations for later added subtypes [see Poetzsch-He�ter and M�uller 1998].

In the rest of this section, we show the requirements to the proof tree data

219Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

structure for program proofs, show some di�erences to ordinary theorem provers,
and give a short overview over the interaction model of the program proof envi-
ronment.

4.1 Proof Skeletons

Hoare-logic program proofs are based on the abstract program syntax. The ab-
stract syntax tree is the backbone of program proofs and provides an additional
structuring mechanism (a skeleton) for program proofs. Program proofs are rep-
resented by trees. Inner nodes in proof trees represent Hoare-triples. Leaf nodes
are either Hoare-triples representing an open proof goal or an axiom instance
of the programming logic, or formulas representing a proof obligation for the
underlying general theorem prover. Because Hoare-triples are statements about
program constructs, a program proof tree has references to the abstract syntax
tree. The proof trees and the abstract syntax tree are linked via the so called
PROG-references [see Fig. 6].

In general, the structure of a program proof is similar to the abstract syntax
tree. There are three exceptions, where the structure of program proof trees
di�ers from the abstract syntax tree: 1. Rules whose PROG-reference in the
antecedent and in the consequent are the same. In this case the abstract syntax
tree node is referred by PROG-references of the antecedent and the consequent
which results in a linear proof step [see Fig. 6]. An example for this is the classical

s
e
q
-
R
u
l
e

w
e
a
k
-
R
u
l
e

Abstract Syntax TreeProof Tree
COMP-ref

R
0
) R

Stmt1

Stmt2 Stmt3

f P g Stmt1 f Q g

f P g Stmt2 f R g f R g Stmt3 f Q g

f P g Stmt2 f R
0 g

Figure 6: Program Proof Tree and Abstract Syntax Tree

weakening-rule [see Appendix 1]). 2. The programming logic contains rules which
require to prove di�erent properties about the PROG-reference of the antecedent.
The conjunct-rule serves as an example for this. 3. The PROG-reference refers
to a language construct, which does not exist in the underlying program. An
example for this are references to inherited methods of classes. If T:m, a method
declared in type T, is inherited by a type S, the inherited method S:m can occur
in rules, although it does not have a counterpart in the abstract syntax tree.

4.2 Modeling the Proof State

The program proof state is modeled via so called proof container. Proof contain-
ers are the central part of the PPC component and contain every proof (tree)

220 Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

(completed or not) of a proof session. At the beginning of a session, the container
is �lled with all proof obligations generated from the program speci�cation by
the management component. The principle underlying the generation of triples
from interface speci�cations is sketched in [Subsection 2.2]. The generation step
also handles class invariants and further aspects of the interface speci�cation
language. A program is said to be proved, if all generated proof obligations are
ful�lled.

During the proof process, the container is used to store auxiliary proofs. Take
the following scenario as an example where such functionality is needed: During
a forward proof it is possible to derive properties of programs by combining proof
information about program parts. To derive automatically certain properties of a
program (e.g. the absence of null pointer references), the user instantiates axioms
of the programming logic with parts of the program and stores them into the
proof container. The proof system can lookup this information automatically, if
it is needed in other proof steps.

Another important property is the sharing of proof parts. Proving forward
means to combine proof trees to one proof tree with a new root. According to
the interaction model there exist several possibilities to handle such situations:
1. Combine the trees to a tree with a new root and store only the new tree in the
proof container. 2. Like 1., but combine copies of the trees. This enables us to
reuse this trees for other purposes. 3. Share parts of proof trees between trees.
The di�erent possibilities are provided by control operations as described in the
next subsection.

4.3 Proof Operations

Proof trees are build from instances of the axioms and rules of the programming
logic [see Fig. 6]. The system provides two kinds of basic operations to manipu-
late the proof state: control and logical operations. Control operations are those
operations that do not contribute to the construction of proofs. They allow to
inspect the proof state, to delete parts of a proof, and to input and output proofs.
In addition to that, they provide the basic level for the interaction model (see
[Subsection 4.4]).

Logical operations correspond to the application of a rule or an axiom. Essen-
tially, there are two ways to apply rules. In a forward proof, they allow to verify
new facts from given ones. In a backward proof, they enable to re�ne a proof
goal. For the interactive development of proof outlines, both proof directions are
helpful. I.e. why our system supports the manipulation of proof trees at the root
as well as at the leaves. As the gained exibility is constrained by the abstract
syntax tree of the program, the increased complexity of the proof state remains
manageable by the user.

Since the forward application of a rule needs other parameters and has to ful-
�ll other requirements than the corresponding backward application, the system
provides two logical operations for each rule, a forward- and a backward-variant.
E.g. consider the conjunct rule given in the appendix. The conjunct-forward op-
eration takes two proof trees having the same PROG-reference at the root. The
conjunct-backward operation splits a goal into two subgoals. It is only applicable
if the pre- and postconditions are conjunctions. In general, a logical operation
is only applicable, if the parameters ful�ll certain requirements, e.g. PROG-

221Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

references refer the correct types of abstract syntax nodes and the structure of
pre- and postconditions coincides with the formula patterns of the rule.

Since the construction of proofs is only based on the logical operations, the
correctness of the logical operations is crucial for the correct functioning of the
prover. The logical operations are derived from the rules and axioms of the
programming logic. As our logic has 26 rules and axioms, this results in 52
logical operations. Each operation is implemented as a Java method thoroughly
checking its complex parameters before applying the proof step.

Strategies. The basic proof operations are not meant to be applied by the user.
They are only used as atomic operations based on which proof strategies can
be de�ned. Strategies allow to formulate more complex, non-atomic operations
on the proof state. E.g., weakest precondition transformation can be expressed
as a strategy. Mechanisms allowing to de�ne strategies can be found in most
interactive theorem provers. The special aspect occurring in our program prover
is that the formulation of strategies needs to refer as well to the abstract syntax
tree of the program e.g. to �nd the last innermost statement in a block.

4.4 User Interaction

Many aspects of our interaction model are inherited from interaction models
found in general interactive theorem provers; i.e. through an interactive user
interface, the user manipulates a proof state. We assume that there is a current
focus within the proof tree where the next proof step should be applied. This
focus can be moved to other \open" slots in the proof.

Within the area of program proving, visualization and presentation is more
complicated than in the area of general theorem proving, because the user has
to keep two structures in mind, the program structure and the proof structure.
As stated in [Subsection 4.1], the skeleton of program proofs is based on the
abstract program syntax. On the other hand the program text simpli�es the
orientation of the user in the program. To allow a maximum of exibility at
the user interface we provide di�erent views to the proof tree data structure.
The views allow representation and interaction with the proof tree structures
according to their abstraction level. As demanded in [Nipkow and Reif 1998] this
helps to keep proofs comprehensible and human-oriented, which is a prerequisite
for user interaction. For our prototype we provide a tree view and a text view.

Tree View. A tree view is a graphical representation of a proof container at the
user interface. There are some reasons why a view with a direct interface to the
proof tree is essential: 1. They allow the direct manipulation of proof trees by
logical or control operations. 2. A proof tree provides complete information of the
proof structure whereas textual representations in form of proof outlines tend to
hide structural information. 3. Since proof trees are in general big structures, tree
views enable to work with scalable clippings of proof trees, i.e. the user interface
displays only required information. The currently used tree view is implemented
using the Java Swing API.

Text View. A text view provides primarily an interface to the program text.
This view is needed for the following tasks: 1. Our interaction model allows to do
several di�erent proofs about the same program construct. To start new proofs,
the user must have access to the program syntax tree, e.g. to select program

222 Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

parts. 2. For certi�cation and documentation purposes, proof trees can be dis-
played in a way, that selected proof information is embedded into the program
text. The mapping between abstract program and proof syntax and concrete
annotated program text is done by the user interface based on information from
the program information server and the program proof component.

5 Conclusion

We presented a modular architecture for logic-based programming environments
and sketched properties of our prototype environment Jive. The architecture
integrates general theorem provers into interactive veri�cation environments
for object-oriented programs. The components of the architecture are loosely
coupled by interfaces which enable the exchange of proof information. We ar-
gued that interactive, program-centered veri�cation is crucial for mastering the
complexity of object-oriented programs (or procedural programs with pointers).
Within such interactive provers, weakest precondition transformation techniques
are realized as proof strategies.

The goal of this research is to provide tools for the formal speci�cation and
veri�cation of object-oriented programs. We consider such tools as a base tech-
nology for several lines of future research:

{ The degree of automation in our system is still too low. To provide more
powerful strategies, more sophisticated techniques are needed for dealing
with the object store and the modi�es-clauses.

{ Based on the veri�cation experience, we started to improve the speci�ca-
tion and programming methodology in a way that simpli�es the veri�cation
process.

{ An interesting approach would be to combine our �ne-grained technology
on the level of programs with the more abstract speci�cation techniques
used for object-oriented design [see OMG (1997)]. Thus, it could be formally
veri�ed that an object-oriented program satis�es its design speci�cation.
This would enable certi�cation of software components on the level of design
speci�cations.

Using techniques from compiler construction, we aim to build the system in a
generic fashion from descriptions of its di�erent parameters (programming and
speci�cation language, logical rules and axioms, general theorem prover). The
goal w.r.t. this aspect is to enable exible enhancements and adaption of the
system.

References

[Crow et al. 1995] Crow, J., Owre, S., Rushby, J., Shankar, N., and Srivas, M.: \A Tu-
torial Introduction to PVS" (1995).

[Gray et al. 1992] Gray, R. W., Heuring, V. P., Levi, S. P., Sloane, A. M., and
Waite,W. M.:
\Eli: A complete, exible compiler construction system"; Communications of the
ACM, 35, 2(1992), 121{131.

[Gries 1981] Gries, D.: \The Science of Programming"; Springer, Heidelberg / New
York (1981).

223Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

[Guaspari et al. 1990] Guaspari, D., Marceau, C., and Polak, W.: \Formal veri�cation
of Ada programs"; IEEE Transactions on Software Engineering, 16, 9(1990), 1058{
1075.

[Guttag and Horning 1993] Guttag, J. V. and Horning,J. J.: \Larch: Languages and
Tools for Formal Speci�cation"; Springer, Heidelberg / New York (1993).

[M�uller et al. 1997] M�uller, P., Meyer, J., and Poetzsch-He�ter, A.: \Programming and
interface speci�cation language of Jive| speci�cation and design rationale"; Tech-
nical Report 223, Fernniversit�at Hagen (1997).

[M�uller and Poetzsch-He�ter 1999] M�uller, P. and Poetzsch-He�ter, A.:
\Modular speci�cation and veri�cation techniques for object-oriented software com-
ponents"; In G. Leavens and M. Sitaraman, editors, \Foundations of Component-
Based Systems", Cambridge University Press (1999).

[Nipkow and Reif 1998] Nipkow, T., and Reif, W.: \Introduction"; In W. Bibel and
P. H. Schmitt, editors, \Automated Deduction{A basis for Application", Kluwer Aca-
demic Publishers, 2, (1998), 3{11.

[OMG (1997)] OMG: \Object Constraint Language"; (1997), Available from
ftp://ftp.omg.org/pub/docs/ad/97-08-08.pdf

[Paulson 1994] Paulson, L. C.: \Isabelle: A Generic Theorem Prover"; Lecture Notes
in Computer Science, 828, Springer-Verlag, (1994).

[Poetzsch-He�ter 1997a] Poetzsch-He�ter, A.: \Prototyping realistic
programming languages based on formal speci�cations"; Acta Informatica, 34, 1997,
737{772.

[Poetzsch-He�ter 1997b] Poetzsch-He�ter, A.: \Speci�cation and veri�cation of
object-oriented programs"; Habilitation thesis, Technical University of Munich
(1997).

[Poetzsch-He�ter and M�uller 1998] Poetzsch-He�ter, A. and M�uller, P.:
\Logical foundations for typed object-oriented languages"; In D. Gries and
W. De Roever (editors), \Programming Concepts and Methods", PROCOMET
(1998).

[Poetzsch-He�ter and M�uller 1999] Poetzsch-He�ter, A. and M�uller, P.: \A program-
ming logic for sequential Java"; In D. Swierstra, editor, Lecture Notes of Computer
Science, ESOP '99, Springer-Verlag (1999).

[Reif and Stenzel 1993] Reif, W., and Stenzel, K.: \Reuse of Proofs in Software Veri�-
cation"; In R. Shyamasundar, editor, \Foundation of Software Technology and The-
oretical Computer Science\, Springer LNCS, 761, (1993), 284{293.

[Reps and Teitelbaum 1989] Reps, T. W. and Teitelbaum, T.: \The Synthesizer Gen-
erator"; Springer-Verlag (1989).

[Suzuki 1980] Suzuki, N., editor: \Automatic Veri�cation of Programs with Complex
Data Structures"; Garland Publishing (1980).

[Reif et al. 1998] Reif W., Schellhorn, G., Stenzel, K., and Balser, M.: \Struc-
tured speci�cations and interactive proofs with KIV"; In W. Bibel and
P. Schmitt, editors, \Automated Deduction|A Basis for Applications",
Kluwer Academic Publishers, (1998).

224 Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

Appendix

This appendix contains the Hoare-style rules of the programming logic used
within our Jive system which are referred in the text:
weakening-rule:

f P g PROG f Q g

Q) Q0

f P g PROG f Q0 g

(1)

conjunct-rule:

f P1 g PROG f Q
1
g

f P2 g PROG f Q
2
g

f P1 ^ P2 g PROG f Q
1
^ Q

2
g

(2)

sequence-rule:

f P g STM1 f Q g

f Q g STM2 f R g

f P g STM1 STM2 f R g

(3)

ex-rule:

f P g PROG f Q[Y=Z] g

f 9Z : P g PROG f Q[Y=Z] g
(4)

where Z, Y are arbitrary, but distinct lo-
gical variables.

225Meyer J., Poetzsch-Heffter A.: Interactive Verification Environments ...

