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Abstract: This paper reports on the integration of the higher-order theorem proving
environment Tps [Andrews et al., 1996] into the mathematical assistant 
mega [Benz-
m�uller et al., 1997]. Tps can be called from 
mega either as a black box or as an
interactive system. In black box mode, the user has control over the parameters which
control proof search inTps; in interactive mode, all features of theTps-system are avail-
able to the user. If the subproblem which is passed to Tps contains concepts de�ned in

mega's database of mathematical theories, these de�nitions are not instantiated but
are also passed to Tps. Using a special theory which contains proof tactics that model
the ND-calculus variant of Tps within 
mega, any complete or partial proof generated
in Tps can be translated one to one into an 
mega proof plan. Proof transformation is
realised by proof plan expansion in 
mega's 3-dimensional proof data structure, and
remains transparent to the user.

1 Introduction

Current theorem proving systems, whether automatic or interactive, are usually
strong in some domains while lacking reasoning power in others. Furthermore,
there are no standardised formats for databases of higher-order problems, as
there are for �rst-order problems [Sutcli�e et al., 1994], and so higher-order the-
orem provers are generally unable to share databases of problems. In recent years
there have been several attempts to combine two or more systems and hence
to allow various theorem provers with di�erent proof strategies to cooperate
on a problem [Giunchiglia et al., 1996], to allow users of an interactive system
to invoke an external automatic system on a subproblem [Slind et al., 1998a;
Slind et al., 1998b; Meier, 1997; Dahn et al., 1994] or to avoid duplication of
work by sharing databases [Felty and Howe, 1997].

In this paper we describe the integration of the higher-order theorem proving
system Tps into the mathematical assistant 
mega, and discuss the bene�ts
that this provides for both systems. For a preliminary report on our work we
refer to [Benzm�uller and Sorge, 1998b].
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1.1 The Tps system

Tps [Andrews et al., 1996] is a higher-order theorem proving system for clas-
sical type theory (Church's simply-typed �-calculus). Proofs in Tps may be
constructed automatically using the matings method (connection method) [An-
drews, 1981], or interactively using an extended variant of Gentzen's natural
deduction calculus [Gentzen, 1935]. Automatic proofs may be translated into
natural deduction format [Miller, 1984; Pfenning, 1987], and hence the user may
interleave the automatic and interactive proof methods by, for example, invoking
the automatic component on a subproblem of a partially-completed interactive
proof. This translation between automatic and natural deduction proofs provides
the basis for the integration of Tps and 
mega.

There are several built-in automatic search procedures in Tps, each of which
is governed by a set of parameters (known as ags) which may be adjusted by
the user or even automatically by Tps itself. Furthermore Tps can expand de�-
nitions using the dual instantiation strategy described in [Bishop and Andrews,
1998]; this provides an e�ective way to decide which abbreviations to instanti-
ate during a proof. Tps provides a library for storing objects such as theorems,
de�nitions and modes (groups of ag settings), and can also store and retrieve
�les containing sequences of commands (work �les) or natural deduction proofs
(proof �les). All of these facilities are also used in the integration of 
mega and
Tps.

A more complete description of the capabilities of Tps is provided in [An-
drews et al., 1997], or online at http://www.cs.cmu.edu/~andrews/tps.html.

1.2 The 
mega system

The 
mega-system [Benzm�uller et al., 1997] is designed as an interactive mathe-
matical assistant system, aimed at supporting proof development in mainstream
mathematics. It consists of a variety of tools including a proof planner [Huang et
al., 1994], a graphical user interface L
UI [Siekmann et al., 1998], the Proverb
system [Huang and Fiedler, 1997] for translating proofs into natural language,
and a variety of external systems such as computer algebra systems [Kerber
et al., 1998], automated theorem provers [McCune, 1994; Baumgartner and Fur-
bach, 1994; Weidenbach et al., 1996] and constraint solvers. 
mega also provides
the built-in higher-order theorem prover Leo [Benzm�uller and Kohlhase, 1998],
which specialises in reasoning about higher-order equality and extensionality.


mega is, like Tps, a theorem proving system for classical type theory
(Church's simply-typed �-calculus) which uses a ND calculus variant as its basic
inference mechanism. However the set of basic ND rules in Tps is larger than
that in 
mega, in order to keep Tps proofs concise and readable. Therefore cer-
tain rules in Tps abstract over small subproofs (such as RuleP, which abstracts
over proofs in propositional logic, cf. Section 3). In 
mega, however, the set of
basic ND-rules is just large enough to ensure completeness, and all extensions to
the basic ND-calculus (e.g. equality substitution) are de�ned as tactics. Never-
theless, proofs can be both constructed and displayed on several abstract levels
by using a 3-dimensional data structure (see Section 2) for representing (partial)
proofs. The structure on the one hand enables the user to freely switch back and
forth between di�erent abstract levels and on the other hand provides a means
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for directly integrating results of external reasoners while leaving the expansion
to the calculus level to 
mega's tactic mechanism.

Further information and an online version of 
mega are available over the
Internet at http://www.ags.uni-sb.de/~omega/.

1.3 Bene�ts of integrating Tps and 
mega

Both Tps and 
mega use a higher-order logic based on Church's simply-typed
�-calculus, and both use a Gentzen-style natural deduction calculus; this makes
the integration somewhat easier and more natural than it might otherwise have
been. However, the two systems are still di�erent enough for each to bene�t
considerably from the other.


mega is designed to be a mathematical assistant, and so contains a small
basic set of natural deduction rules, plus many de�ned tactics. 
mega provides
facilities such as a database of mathematical theories, a proof planner, proof
verbalisation, integration of computer algebra systems and �rst-order theorem
provers, and a graphical display in which the level of detail provided may be
varied by the user. Since many of the prede�ned theories contain higher-order
concepts, problems formulated in these theories will naturally lie beyond the
capabilities of the �rst-order theorem provers which have already been integrated
into 
mega, and so the principal bene�t of the integration for 
mega is the
addition of a powerful higher-order automated theorem prover as an external
reasoning component.

Tps, on the other hand, is designed to be a system for proving theorems in
a speci�c logic (as well as a tool for research into automated theorem proving).
Tps must keep its proofs as concise as possible, since it has a command-line
interface rather than the graphical interface of 
mega, and so it contains a
larger range of natural deduction rules than 
mega. Tps has comparatively
few prede�ned theories, since all but the smallest such theories contain far too
many axioms for any of its automatic search procedures to cope with. Further-
more, Tps cannot invoke any external reasoning components. For Tps, then,
the principal bene�ts of integration with 
mega are the addition of a graphical
interface, proof verbalisation, and the ability to use external reasoning systems
(although the present integration does not allow Tps to call such systems itself,
it can in e�ect call them through 
mega, since 
mega can call both Tps and
the other systems, and any proof known to 
mega can be passed to Tps).

2 Natural Deduction Proofs in 
mega

The essential prerequisite for a smooth integration of Tps proofs into 
mega
proofs is 
mega's ability to expand abstract inference steps into inferences in
its own calculus. This enables the de�nition of abstract inference methods that
can incorporate both decision procedures and partial proofs from other systems.
In this section we will elaborate further on this issue by giving an overview of
the core of the 
mega system.

The entire process of theorem proving in 
mega can be viewed as an in-
terleaving process of proof planning, plan execution, and veri�cation, centred
around the so-called Proof Plan Data Structure (PDS). A PDS is a hierarchical
data structure which represents a (partial) proof at di�erent levels of abstraction
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Figure 1: 
mega's 3-dim. PDS

(called proof plans). It is represented as a directed acyclic graph, where the nodes
are justi�ed by tactics or methods. Conceptually, each justi�cation represents
a proof plan (the expansion of the justi�cation) at a lower level of abstraction
that is computed when the justi�cation is expanded. A proof plan can be recur-
sively expanded until a fully explicit proof on the calculus level (ND) has been
reached. In 
mega, the original proof plan is kept in a 3-dimensional expansion
hierarchy (cf. Figure 1). Thus the PDS makes explicit the hierarchical structure
of proof plans and retains it for further applications such as proof explanation
or analogical transfer of plans.

Once a proof plan is completed, its justi�cations can successively be expanded
to verify the well-formedness of the resulting PDS. When the expansion process
is completed, the establishment of correctness of the ND proof relies solely on
the correctness of the veri�er and the calculus. This approach also provides a
basis for a controlled integration of external reasoning components { such as an
automated theorem prover or a computer algebra system { if each reasoner's
results can (on demand) be transformed into a sub-PDS.

A PDS can be constructed by automated or mixed-initiative planning, or
by pure user interaction. In particular, new pieces of the PDS can be added by
directly calling tactics, by inserting facts from a data base, or by calling some
external reasoner.

In order to demonstrate the basic expansion mechanism we consider the ND-
rule 8E and the simple tactic 8�E:

8x:A
[t=x]A

8E(t)
8x1; : : : ; xn:A

[t1=x1; : : : ; tn=xn]A
8�E(t1; : : : ; tn)

The application of the latter would be on an abstract level in the PDS and
its expansion to ND-level would result in a sequence of applications of the 8E-
rule. Besides providing a means for handling the application and expansion of
these rather small abstractions, the PDS is also the foundation for integrating
deductions from external reasoning components into 
mega on a very abstract
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Figure 2: The integration architecture

level. We exploit this possibility for the integration of Tps by specifying three
di�erent abstraction levels for Tps's deductions:

1. A single justi�cation expressing that a proof for a particular subproblem has
been found by Tps.

2. A second expansion level incorporates the original Tps proof into 
mega's
PDS . On this level the justi�cations for the respective proof lines contain
the justi�cations of the original Tps proof.

3. A third level where the Tps justi�cations are mapped to corresponding

mega tactics. However, this level does not correspond to a proof on the
calculus level, as some of the tactics might need to be expanded even further.

3 The Integration

The general integration approach, as illustrated in Figure 2, is divided into �ve
steps A{E. Currently the integration is still one-directional; Tps can be used
from within 
mega, but 
mega cannot be used from within Tps. We start with
a partial proof plan, on an arbitrary abstraction level in 
mega, that contains an
open subproblem we want to prove with Tps. In step A the focused subproblem
is extracted and, together with the relevant concepts from 
mega's knowledge
base, translated into Tps syntax. In step B Tps reads the translated problem and
either tries to �nd a proof automatically (when called in automatic mode from

mega) or pops up its command interface for interactive proof development
(when called in interactive mode from 
mega; see the screen-shot in Example 3
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in the appendix). The result is a complete or partial proof that is mirrored one-
to-one as an 
mega proof plan in step C. In step D, this proof plan is inserted
into 
mega's proof data structure (PDS) in order to �ll the given gap. Finally, a
Tps proof which has been modelled on 
mega's proof tactic level is transformed
into a proper proof in 
mega's basic ND-calculus by proof plan expansion in step
E. This transformation may require support from the other external reasoners
already integrated into 
mega. Since all of the particular expansion steps in
the proof transformation are stored in 
mega's 3-dimensional PDS , 
mega's
expansion/contraction mechanism for proof tactics allows the user to move freely
between the Tps proof on an abstract level, the proof on 
mega's basic ND-
calculus level, and all of the intermediate levels of abstraction. This ensures that
proof transformation is transparent to the user, and remains so even as the user
examines the proof on di�erent levels of abstraction.

In the following we will discuss the particular integration steps in more detail,
using the following example as an illustration:

Example 1. (THM136) 8ro��:transitive (transitive-closure r)
This example states that the transitive closure of a relation is transitive2.

This problem is de�ned within 
mega's theory RELATION, which also pro-
vides the recursively entailed de�ned concepts which are transitive-closure, tran-
sitive and sub-relation. These are de�ned as follows:
transitive-closure := �ro��:�x�:�y�:8qo��:

(sub-relation r q ^ transitive q)) q x y
transitive := �ro��:8x�; y�; z�:(r x y ^ r y z)) r x z
sub-relation := �ro��:�qo��:8x�; y�:r x y ) q x y

3.1 A: Calling Tps from 
mega

When calling Tps within 
mega the user speci�es the subgoal to be proved,
some parameters which specify the proof heuristic to be used by Tps, and a time
limit for this proof attempt. Furthermore the user may specify de�nitions that
are entailed in the problem but which are not to be passed to Tps, in order to
force Tps to treat them as uninterpreted constants.

Firstly, the focused subproblem is extracted from 
mega's PDS, by iden-
tifying the open subgoal explicitly mentioned as a parameter and determining
its support nodes. Then 
mega computes the set of all de�ned concepts that
are recursively entailed in the extracted subproblem, and eliminates from this
set all those concepts which the user has explicitly prohibited from being passed
to Tps. Thus for THM136 we get exactly the three de�nitions shown above,
assuming that the user has permitted all de�nitions to be passed to Tps. In the
next step both this subproblem and the selected de�nitions are translated into
Tps syntax. As both systems implement a logic based upon Church's simply-
typed �-calculus, and even their representations of types are very similar, this
translation process is rather trivial, and we shall not discuss it in much detail.
However, there are some minor considerations to be taken care of:

2 Information on the syntax: In Tps the type (� ! �) !  is denoted ((��)). In
particular, the type o�� (i.e. ((o�)�)) is the type � ! � ! o of a binary relation
on objects of type �.
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1. Tps uses a small set of constant symbols with a �xed semantics (e.g. the
logical connectives), and these symbols must not be rede�ned.

2. The polymorphic types which are allowed in 
mega must usually be re-
named in order for Tps to interpret them correctly.

3. It is important to maintain a mapping between the initial Tps proof lines in
the translated subproblem and their counterparts in 
mega's PDS.

Problems 1 and 2 are solved by setting up hash-tables within 
mega which store
the necessary information about renamings of constant symbols (in 1) and the
correspondence between the polymorphic type-symbols (in 2). As the line num-
bering in Tps steadily changes, we can not use another hash-table for solving 3.
Fortunately, Tps allows the user to attach arbitrary additional information to
each proof line; we use this feature to mark the Tps proof lines in the translated
subproblem with the names of their counterparts on the 
mega side.

Apart from the above-mentioned hash-tables, the most important results of
phase A are two �les containing all the necessary information for TPS. The
�rst �le | which we call the problem-�le | contains the information on the
subproblem in focus and the recursively embedded de�ned concepts. The second
�le | the command-�le | contains a sequence of commands to be executed by
Tps. These commands tell Tps to read the problem-�le, to set the proof tactic as
speci�ed by the user and, in the case that Tps is called in automatic mode (see
phase B), to invoke Tps's mating-search procedure. The problem-�le created by

mega for our example THM136 is presented in the appendix of this paper (see
Example 2).

3.2 B: Automatic or Interactive Proof Search in Tps

Tps can be called from 
mega in either automatic or interactive mode. In the
former case the Tps core image is started as a black box and the only information
visible to the user is the time resource allocated to Tps's proof attempt. Tps
executes only the commands which are speci�ed in the command-�le created by

mega.

When Tps is called in interactive mode, an xterm with Tps's command user
interface pops up (see Example 3 in the appendix) and the interactive session
is initialised by the commands stored in the command-�le. The user can then
interactively use all the available features of Tps in order to construct a complete
or partial ND-style proof.

Tps's built-in proof transformation procedure [Miller, 1984; Pfenning, 1987]
translates mating proofs into ND-calculus such that, in both interactive and
automatic modes, the �nal result of the proof attempt is either a complete or
partial proof in Tps's ND-calculus variant. This (partial) proof is then stored in
a tps-output �le3 and passed back to 
mega.

A very important feature of our approach is that Tps can use its mechanism
for dual instantiation [Bishop and Andrews, 1998] within its mating-search pro-
cedure. This is possible because we do not expand all de�ned concepts before

3 Actually there are two �les produced by Tps, one containing the (partial) proof in
ASCII format and one containing the same proof in a Lisp-like presentation. The
former is only used to present the original Tps proof within 
mega and the latter,
which is the more important of the two, is used in phase C to translate the Tps
proof to 
mega.
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passing the subproblem to Tps, but instead pass these concepts as additional
information and leave the subproblem as it is. Thus Tps can decide on its own
whether it is necessary to expand particular de�ned concepts or not. Example 1,
above, is a good example of a theorem which cannot be proven by Tps if all
the de�nitions are expanded before the mating-search procedure is called4. For
a detailed discussion see [Bishop and Andrews, 1998]. The proof generated by
Tps for THM136 is presented in Example 3 in the appendix.

3.3 C & D: Representing Tps Proofs as 
mega-Proof Plans and
Insertion of Proof Plans

One main idea of our approach is to provide as transparent a translation mech-
anism as possible, by modelling Tps's ND-calculus variant on 
mega's proof
tactic level. We implement this modelling by de�ning a special theory TPS in

mega's knowledge base. For each possible Tps ND justi�cation, the theory
TPS introduces a corresponding 
mega-tactic; the expansion contents of some
of these tactics are presented in Example 5 in the appendix. There is one ad-
ditional black box tactic tps, which will be used to provide the most abstract
view of subproblems proven by Tps. The concrete proof translation proceeds as
follows:

1. A proof generated by Tps is mirrored one to one as a proof plan in 
mega
by mapping the particular proof justi�cations in the Tps proof to the cor-
responding proof tactics provided by the special theory TPS in 
mega's
knowledge base. In order to guarantee a correct mapping of the entailed
constants and type symbols, the translation process uses the hash-tables con-
structed by 
mega in phase A. Furthermore, the correspondence between
the proof lines of the focused 
mega-subproblem and the corresponding
Tps proof lines is given as explicit information in the Tps proof. The proof
plan we obtain for THM136 is presented as Example 4 in the appendix.

2. The resulting proof plan is then stored in 
mega with a reference to the
subproblem on which Tps has been called. Some additional information
is also stored, such as the original Tps proof in ASCII format, the proof
parameters and some proof statistics.

In phase D the open line itself is �rst closed and justi�ed by using the special
black box tactic tps, thereby providing the most abstract view of the proof for
our subproblem in focus. By expanding this special tactic the corresponding
proof plan is inserted in 
mega's PDS , and the structure of the original Tps
proof can be visualised in 
mega's graphical user interface L
UI [Siekmann et
al., 1998]. Example 6 in the appendix presents the proof structure of the original
Tps proof for THM136 (see Examples 3 and 4), graphically visualised in L
UI.

3.4 E: Transparent Proof Transformation by Proof Plan Expansion

It remains to transform the abstract proof plan representing the Tps proof
into 
mega's own basic ND-calculus variant. Such a proof transformation is

4 This theorem is still a challenging problem for current ATP's. Apart from a proof
constructed by 
mega's proof planner using very special control information [Sehn,
1995], Tps is the only system known to the authors that can automatically �nd a
proof.
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necessary, as 
mega's philosophy on integrated systems is not to trust any
externally-produced proof until it can be transformed and proof checked on

mega's basic ND-calculus level. The transformation problem for Tps proofs
has a very simple solution since the ND-calculus variants of both systems are
very similar, and the other external reasoners already integrated to 
mega
(e.g. Otter [McCune, 1994]) can fruitfully support the transformation in non-
trivial cases.

Proof transformation is realised via tactic expansion. Each proof tactic de-
�ned in 
mega's special TPS theory contains speci�c expansion information
that maps any concrete application of this particular tactic onto a proof on a
lower, more detailed proof level in 
mega's PDS. Thus, by stepwise tactic ex-
pansion, the original Tps proof mirrored in 
mega can �nally be transformed
into 
mega's basic ND-calculus level. A nice side e�ect of this approach is
that the original Tps proof, the corresponding 
mega ND-proof and all inter-
mediate levels of the proof transformation process are permanently stored in

mega's PDS . Consequently the exible tactic expansion/contraction mech-
anism in 
mega allows users to analyse the proof on whatever level interests
them. Example 6 in the appendix presents two di�erent layers in 
mega's PDS .

We distinguish four categories of expansion tactics de�ned in the TPS theory,
as follows:

I Simple mapping: Many rules of the ND-calculus variant of Tps have direct
counterparts in 
mega. Examples are presented in Figure 3. Here tactic
tps*ForallE is mapped to 
mega's basic ND-calculus rule 8E and the tactic
tps*Conj is mapped to the tactic ^E , which itself expands into the basic ND-
calculus rules ^El

and ^Er
. The expansion content of the tactic tps*ForallE

is presented in Example 5 in the appendix.
II Case Distinction: Some tactics of the TPS theory need case distinctions in

their expansion mapping. For example, the tactic tps*Neg justi�es applica-
tions of the push negation as well as the pull negation principle; see Figure 3.

mega provides the corresponding tactics Pushneg and Pullneg, and thus
the expansion of tps*Neg simply analyses the situation and maps to either
Pushneg or Pullneg, as appropriate. Both Pushneg and Pullneg are tactics
that expand with case distinction mappings to a lower level in 
mega's
PDS . By subsequent tactic expansion we �nally get a medium-sized deriva-
tion in 
mega's basic ND-calculus. The de�nition of the tactic tps*Neg is
presented in Example 5 in the appendix.

III Restructuring: Existential quanti�cation elimination in TPS (the particular
rule in TPS is called RuleC) structures a proof slightly di�erently from the
corresponding rule 9E in 
mega; see Figure 3. Consequently the expansion
of the tactic tps*RuleC into rule 9E requires some simple restructuring of
the proof with respect to the dependencies between some proof lines.

IV External Reasoners: Tps abbreviates pure propositional logic derivations in
a complex ND proof with a single-step justi�cation, called RuleP, and hides
the boring details from the user. Thus both RuleP and the 
mega-tactic
tps*RuleP mean that a particular proof line follows from some premise lines
by propositional logic. We need a way to expand this rather general justi�ca-
tion, with so little detailed information available, into a concrete derivation
in 
mega's basic ND-calculus. An extravagant solution would be to imple-
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Cat. Tps tactic in 
mega Expansion Mapping 
mega's ND-calculus

I

....
8x:A

[x a]A
....

tps*Foralle(a)

....
8x:A

[x a]A
....

8E(a)

....
8x:A

[x a]A
....

8E(a)

I

....
A ^ B
A B....

tps*Conj

....
A ^ B
A B....

^E

....
A ^ B
A

^El

....
A ^ B
B

^Er

....

....
:A

A0

....

tps*Neg

....
:A

A0

....

Pushneg

....
:A

derivation D1

A0

....

II

....
A0

:A....

tps*Neg

....
A0

:A....

Pullneg

....
A0

derivation D2
:A....

III

....
9x:A

[[x a]A]1
tps*Choose(a)

....
B
B....

tps*RuleC1

....
9x:A

[[x a]A]1
....
B

B....

9E
1

....
9x:A

[[x a]A]1
....
B

B....

9E
1

IV

....
A

A0

....

tps*RuleP

....
A

A0

....

call-PL-ATP

....
A

derivation D3

A0

....

Figure 3: Transparent transformation of Tps proofs into 
mega proofs, as re-
alised by 
mega's tactic expansion mechanism.
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ment a propositional logic prover in 
mega and to employ this prover in the
expansion of tps*RuleP. Fortunately there are already several systems inte-
grated to 
mega, such as the �rst-order provers Otter [McCune, 1994],
Spass [Weidenbach et al., 1996] or Protein [Baumgartner and Furbach,
1994], which can be used instead. In fact, Tps itself also provides a special
propositional logic mode that can be used to construct detailed proposi-
tional logic proofs. Hence no additional implementation e�ort with respect
to the expansion of tps*RuleP is necessary; we simply map tps*RuleP to a
recursive call of an arbitrary system, already integrated to 
mega, that is
able to construct propositional logic derivations (see Figure 3). In the �rst
implementation we used Otter in connection with a special mapping from
higher-order to propositional logic. We can also map tps*RuleP back to a call
of Tps in propositional logic mode. Then, by expanding tps*RuleP, 
mega's
tactic mechanism automatically performs a recursive call to Tps. The de�-
nition of the tactic tps*RuleP is presented in Example 5 in the appendix.

4 Examples

Our integration approach does not restrict the set of examples that can be proved
by Tps. If one introduces the necessary de�nitions in 
mega's knowledge base
then generally all the theorems provable by Tps alone should be provable by
calling Tps from 
mega as well. Among the Tps examples that have already
been proven by calling Tps from 
mega (where they can be fully expanded and
proof checked) are5:
Cantor's theorem: 8go�:g <card (P g)
The cardinality of the powerset of a set g is greater than the cardinality of g.
THM15b: 8f��:(9g��:(iteratep+ f g)

^ (9x�:(g x) = x ^ (8z�:(g z) = z ) z = x)
) (9y�:((f y) = y))

This theorem is discussed in detail in [Andrews et al., 1996]. It states that if
some positive iterate of f has a unique �xed point, then f has a �xed point.
THM48: 8f��:8g��:(injectivep f) ^ (injectivep g) ) (injectivep (f � g))
The composition of injective functions is injective.
THM134: 8z�:8g��:(iteratep+ (�x�:z) g)) (8x�:(g x) = z)
The only positive iterate of a constant function is that function.
THM135: 8f��:8g

1
��:8g

2
��:(iteratep f g1)^(iteratep f g2)) (iteratep f (g1�g2))

The composition of two iterates of a function f is an iterate of f .

5 These examples from the Tps library are also discussed in [Andrews et al., 1996].The
de�nitions occurring in the above examples are de�ned in 
mega's knowledgebase
(analogously to Tps's library) as follows:
<card := �go�:�ho�::9f��:(surjective g h f)
surjective := �fo�:�go�:�h��:8x�:(gx)) (9y�:(fy) ^ (x = (hy)))
P := superset, superset := �uo�:�vo�:8x�(u x)) (v x)
iteratep := �f��:�g��:8po��:(p (�u�:u) ^ (8j��:(p j)) (p (f � j))))) (p g)
iteratep+ := �f��:�g��:8po��:(p f) ^ (8j��:(p j)) (p (f � j)))) (p g)
injectivep := �f� :8x�:8y� :((f x) = (f y))) (x = y)
� := �f� :�g� :�x�:g (f x)
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THM270: 8f��:8g�:8h�: (8x�:h (f x) = g x) ^ (8y�:9x�:f x = y)
^ (8x�:8y�:f (x �1 y) = (f x) �2 (f y))
^ (8x�:8y�:g (x �1 y) = (g x) �3 (g y))
) (8x� :8y�:h (x �2 y) = (h x) �3 (h y))

If f is a surjective homomorphism, g is a homomorphism, and h is any function
such that for all x, h (f x) = g x, then h is a homomorphism.

In the following we present two examples, which are not automatically prov-
able in either Tps or 
mega alone, and which motivate a cooperation between
the two systems.6

THM262: 8po(o�):partition p

) 9q(o��):equivalence-rel q ^ (equivalence-classes q) = p
This states that if p is a partition, then there is an equivalence relation q whose
equivalence classes are exactly the elements of p. We now demonstrate how a
partly interactive and partly automatic proof can be constructed, and show how
the integration of Tps and 
mega can help with this task.

Suppose that the user begins by providing the appropriate instantiation for
q (namely �x�:�y�:9so�:p s^s x^s y).This reduces the problem to two subgoals:
proving that this lambda-term de�nes an equivalence relation, and proving that
the equivalence classes of this relation are exactly p. In both cases, we have the
hypothesis that p is a partition. The former subgoal can be proven automatically
by Tps in about 35 seconds. The latter subgoal is harder for Tps; however, by
using the interactive tactics for extensionality and universal generalisation, the
user can reduce it to (equivalence-classes (�x�:�y�:9s:p s ^ s x ^ s y) bo�) � p b.
This equivalence can in turn be reduced interactively to a pair of implications,
of which one (the right-to-left direction) can be proven automatically by Tps in
about 30 seconds. This leaves the left-to-right direction of the equivalence as the
only remaining subgoal to be proven. The automatic procedures of Tps cannot
produce a proof of this subgoal, due to the complexity of the equality reasoning
which is required, and so a user constructing this proof from within Tps would
have to complete the proof interactively. The proof of this subgoal is non-trivial,
and requires a signi�cant amount of work on the part of the user.

However, with the integrated system, the user can begin proving THM262
in 
mega, exactly as above, calling Tps to complete two of the three subgoals
(none of the other systems integrated to 
mega is known to be able to complete
either subproof). For the remaining subgoal, instead of laboriously constructing
an interactive proof, the user now has the additional option of invoking one of
the other automated provers which are integrated to 
mega or to call 
mega's
proof planner. It is very likely that an improved version of 
mega0s own higher-
order theorem prover Leo, which specialises in reasoning about equality and
extensionality, will be able to �nd an automatic proof of this subgoal.7

6 The de�nitions used in this examples are as follows:
partition := �so(o�):(8po�:s p) (9:z�p z))^(8x�:9p:s p^p x^(8qo�:s q^q x) q = p))
equivalence-rel := �ro��:reexive r ^ symmetric r ^ transitive r
equivalence-classes := �ro��:�so�:(9z�:s z) ^ (8x�:s x) (8y�:s y � r x y))
reexive := �ro��:8x�:r x x symmetric := �ro��:8x�:8y�:r x y ) r y x
transitive := �ro��:8x�:8y�:8z�:r x y ^ r y z ) r x z ; := �X�:?

7 In principle Leo provides exactly the required extensionality treatment to solve this
subgoal, but due to its prototypical implementation Leo can still handle only small
search spaces; the search space de�ned by this problem is rather large because many
free predicate variables are involved. A technically improved and heuristically better-
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The following statement (which we admit is rather contrived) serves to il-
lustrate some of the strengths and weaknesses of Tps and Leo, as it is only
provable when both systems cooperate.8

(9�ooo :>�>^:(?�?)^:(?�>)^:(>�?))^ (8moo:> 2 m � (> ) >) 2 m)

The �rst conjunct claims the existence of the logical connective ^ which is spec-
i�ed by its truth table. In order to prove this statement primitive substitution9

has to be employed, which is strongly supported in Tps but widely avoided in
Leo. For the proof of the second statement, on the other hand, the uni�cation of
> 2 m and (> ) >) 2 m requires a recursive call to the higher-order theorem
prover from within higher-order uni�cation. This most general form of exten-
sionality treatment is supported in Leo but not in Tps. Hence this conjunction
is provable in the combined system with three straightforward interactions.

Both examples illustrate that the integrated system of Tps and 
mega al-
lows the user to complete some proofs in much fewer interactions than would be
required by either system alone. In fact, the few interactions which are required
are already supported by the suggestion mechanism in 
mega [Benzm�uller and
Sorge, 1998a]. While this in itself is already a major bene�t to the user, it also
suggests that it should be possible to use the built-in proof planner of 
mega to
oversee the cooperation of the various external systems, and to produce proofs
such as the one above without the necessity of user interaction.

5 Conclusion

Our objective was to integrate the two knowledge-based higher-order theorem
proving environments Tps and 
mega in a way that would be as transparent to
the user as possible. We believe that the approach to integration described above,
although designed speci�cally for these two systems, provides some generally
interesting and elegant ideas.

Our work (see also [Benzm�uller and Sorge, 1998b]) is closely related to,
and was developed simultaneously with, the approach for integrating the proof
planner CLaM and the interactive theorem prover HOL [Slind et al., 1998a;
Slind et al., 1998b]. Although we must admit that our work was simpli�ed by
the fact that 
mega and Tps are much more similar than are HOL and CLaM,
we believe that our approach provides some additional features, e.g. the commu-
nication of de�nitions between the two systems, and a more transparent proof
transformation process.

In conclusion, we now summarise some of the more interesting general prop-
erties of our integration method.

{ The integration of 
mega and Tps also includes the communication of
system-speci�c knowledge de�ned in the systems' knowledge bases. Tps and

guided version of Leo, which is currently being re-implemented, will most likely be
able to �nd the proof.

8 Although this example looks rather trivial at �rst glance, to the knowledge of the
authors it is currently not automatically provable by any system.

9 The primitive substitution principle guesses instantiations for free predicate vari-
ables. In this case the prover has to guess the instantiation ^ for � and then to verify
the conditions speci�ed by the truth table.
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mega, which are both based on classical higher-order logic, do not need
to agree on common de�nitions, rules or other logical concepts (apart from
the logical connectives which are in any case identical in both systems), as
is necessary for the integration of, for example, CLaM and HOL [Slind et
al., 1998a; Slind et al., 1998b]. Instead, 
mega need only communicate to
Tps all of the potentially important de�nitions and concepts belonging to
the the speci�c subproblem to be solved. Most importantly, 
mega does not
expand any de�nition in the focused subproblem, but leaves the decision as
to whether this is useful or necessary to Tps, which can use its mechanism
for selectively instantiating de�nitions [Bishop and Andrews, 1998]. The user
may even actively prevent some de�ned concepts from being passed to Tps.

{ Tps is not only integrated as a fully automated black box system, but can
also be called as an interactive theorem prover. Thus 
mega, with its hier-
archically structured knowledge base, can be seen in the integrated system as
a second user interface to the Tps system, with its own knowledge base. As
an automated black box system, Tps can be called from 
mega either alone
or concurrently with other integrated theorem provers such as the �rst-order
systems Otter, Spass and Protein.

{ The 
mega system models the particular ND-calculus variant used by Tps
by providing corresponding tactics in a special theory TPS which introduces
one 
mega tactic for each Tps justi�cation. Hence any Tps proof can be
translated one to one into a corresponding 
mega proof plan using the
tactics from theory TPS. As the structure of the resulting proof plans can be
visualised graphically in 
mega's graphical user interface L
UI [Siekmann
et al., 1998] Tps thereby gains a visualisation tool and graphical interface
for free.

{ Proof transformation of Tps proofs (mirrored as proof plans in 
mega)
into proofs in 
mega's basic ND-calculus is realised by tactic expansion. As

mega's 3-dimensional proof data structure (PDS) permanently stores all
di�erent abstraction levels of a proof (the 
mega basic ND-level proof at
the bottom layer, the mirrored Tps proof at an abstract level, and all in-
termediate abstraction levels between those), proof transformation becomes
and remains transparent to the user, who can freely move between di�erent
levels of abstraction in the proof.

{ Non-trivial tactic expansions (such as the one for RuleP) are supported by
other external reasoners that are already integrated to 
mega, or even by
Tps itself. This saves us from having to de�ne and implement complicated
tactic expansions from scratch. Indeed, this can serve as a general approach
for a tactic-based proof transformation within a system like 
mega that
already provides other integrated systems: as soon as a particular expan-
sion step seems overly complicated, one can recursively call other integrated
systems that are suited to support this particular expansion step.

{ The reuse of mirrored Tps proof plans within an analogy-based theorem
proving approach [Melis and Carbonell, 1998] is supported by our integra-
tion, as these proof plans are explicitly stored and thus available in 
mega's
PDS . They can also be stored in 
mega's knowledge base.

We are currently investigating whether Tps, 
mega's own higher-order the-
orem prover Leo (which is specialised in reasoning about extensionality) and the
various �rst-order theorem provers which have been integrated with 
mega can
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fruitfully cooperate. We hope to use 
mega's PDS as the central data structure
for the necessary information exchange between the cooperating systems, and

mega's planning mechanism to guide the cooperation between them.
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In the appendix we illustrate the integration architecture by presenting some con-
crete information on the interaction between 
mega and Tps when proving THM136
(see Example 1).

A: Translating from 
mega to Tps

Example 2 Problem-�le. This is the content of the problem-�le for THM136 generated
by 
mega and passed to Tps. The line with keyword ASSERTION de�nes the theorem
to be proved and the line with keyword LINES introduces the initial partial proof to be
completed by Tps, which here consists only of one line. A reference to the corresponding
open proof line in 
mega (the entry \(OMEGA-LABEL THM136)") and some further
information belonging to 
mega can be found at the end of this proof line. Note that
the de�ned concepts transitive, transitive-closure and sub-relation are not expanded in
this initial partial proof; they are passed to Tps as de�ned abbreviations (in the three
lines with keyword DEF-ABBREV).

(DEFSAVEDPROOF OMEGA-SUBPROBLEM-THM136 (1998 9 30)

(ASSERTION

"[FORALL R(OaA)[TRANSITIVE(O(OAA))[TRANSITIVE-CLOSURE(OAA(OAA))R(OAA)] ] ] ")

(NEXT-PLAN-NO 2) (PLANS ((1)))

(LINES

(1 NIL "[FORALL R(OAA)[TRANSITIVE [TRANSITIVE-CLOSURE R(OAA)] ] ] "
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PLAN1 NIL NIL "((OMEGA-LABEL THM136) (OMEGA-JUSTIFICATION OPEN))"))

0

((DEF-ABBREV TRANSITIVE (TYPE "O(OAA)") (TYPELIST ("A"))

(PRINTNOTYPE T) (FACE TRANSITIVE) (FO-SINGLE-SYMBOL T)

(DEFN

"[LAMBDA DC-50(OAA)

[FORALL DC-51(A)

[FORALL DC-52(A)

[FORALL DC-53(A)

[IMPLIES [AND [DC-50(OAA)DC-51(A)DC-52(A)] [DC-50(OAA)DC-52(A)DC-53(A)]]

[DC-50(OAA)DC-51(A)DC-53(A)]]]]]]")

(MHELP

"Definition of the predicate for transitivity. (transitive R) is true, iff Rxy and Ryz imply Rxz. "))

(DEF-ABBREV SUB-RELATION (TYPE "O(OAA)(OAA)") (TYPELIST ("A"))

(PRINTNOTYPE T) (FACE SUB-RELATION) (FO-SINGLE-SYMBOL T)

(DEFN

"[LAMBDA DC-54(OAA)

[LAMBDA DC-55(OAA)

[FORALL DC-56(A)

[FORALL DC-57(A)[IMPLIES [DC-54(OAA)DC-56(A)DC-57(A)] [DC-55(OAA)DC-56(A)DC-57(A)]]]]]]")

(MHELP

"Definition of the predicate for sub-relations. (sub-relation R R') is true, iff Rxy implies R'xy. "))

(DEF-ABBREV TRANSITIVE-CLOSURE (TYPE "OAA(OAA)") (TYPELIST ("A"))

(PRINTNOTYPE T) (FACE TRANSITIVE-CLOSURE) (FO-SINGLE-SYMBOL T)

(DEFN

"[LAMBDA DC-58(OAA)

[LAMBDA DC-59(A)

[LAMBDA DC-60(A)

[FORALL DC-61(OAA)

[IMPLIES [AND [SUB-RELATION(O(OAA)(OAA))DC-58(OAA)DC-61(OAA)] [TRANSITIVE DC-61(OAA)]]

[DC-61(OAA)DC-59(A)DC-60(A)]]]]]]")

(MHELP "Definition of the transitive closure as in TPS. ")))

(COMMENT "OMEGA proof (report problems to the OMEGA group)")

(LOCKED (1)))

B: Proof Construction in Tps

Example 3 Tps Proof. Figure 4 presents a screenshot of the Tps interface displaying
the Tps proof for THM136. This proof is discussed in detail in [Bishop and Andrews,
1998].

C & D: Translating from Tps to 
mega and Inserting the Proof Plan

Example 4 
mega Proof Plan. 
mega's special theory TPS provides one proof tactic
for each Tps justi�cation. Thus the proof presented in Example 3 can be translated
one to one into a proof plan using the proof tactics of this theory. Tactics de�ned
in this special theory have the pre�x \TPS". The structure of this proof plan can
be graphically visualised in 
mega's graphical user interface L
UI, as presented in
Example 6.

THM136 () ! (FORALL [R:(O BB BB)] TPS*UGEN: (R) (L23)

(TRANSITIVE (TRANSITIVE-CLOSURE R)))

L23 () ! (TRANSITIVE (TRANSITIVE-CLOSURE R)) TPS*EQUIVWFFS: (L22)

L22 () ! (FORALL [DC-51:BB,DC-52:BB,DC-53:BB] TPS*UGEN: (DC-51) (L21)

(IMPLIES

(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)

(TRANSITIVE-CLOSURE R DC-52 DC-53))

(TRANSITIVE-CLOSURE R DC-51 DC-53)))

L21 () ! (FORALL [DC-52:BB,DC-53:BB] TPS*UGEN: (DC-52) (L20)

(IMPLIES

(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)

(TRANSITIVE-CLOSURE R DC-52 DC-53))

(TRANSITIVE-CLOSURE R DC-51 DC-53)))

L20 () ! (FORALL [DC-53:BB] TPS*UGEN: (DC-53) (L19)

(IMPLIES

(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)

(TRANSITIVE-CLOSURE R DC-52 DC-53))

(TRANSITIVE-CLOSURE R DC-51 DC-53)))

L19 () ! (IMPLIES TPS*DEDUCT: (L18)

(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)

(TRANSITIVE-CLOSURE R DC-52 DC-53))

(TRANSITIVE-CLOSURE R DC-51 DC-53))
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Figure 4: Tps-Xterm with the proof of THM136

L18 (L1) ! (TRANSITIVE-CLOSURE R DC-51 DC-53) TPS*EQUIVWFFS: (L17)

L17 (L1) ! (FORALL [DC-61:(O BB BB)] TPS*UGEN: (DC-61) (L16)

(IMPLIES

(AND (SUB-RELATION R DC-61)

(TRANSITIVE DC-61))

(DC-61 DC-51 DC-53)))

L16 (L1) ! (IMPLIES TPS*DEDUCT: (L15)

(AND (SUB-RELATION R DC-61)

(TRANSITIVE DC-61))

(DC-61 DC-51 DC-53))

L15 (L1 L6) ! (DC-61 DC-51 DC-53) TPS*RULEP: (L7 L8 L12 L13 L14)

L14 (L1) ! (IMPLIES TPS*UI: (DC-61) (L4)

(AND (SUB-RELATION R DC-61)

(TRANSITIVE DC-61))

(DC-61 DC-52 DC-53))

L13 (L1) ! (IMPLIES TPS*UI: (DC-61) (L5)

(AND (SUB-RELATION R DC-61)

(TRANSITIVE DC-61))

(DC-61 DC-51 DC-52))

L12 (L6) ! (IMPLIES TPS*UI: (DC-53) (L11)

(AND (DC-61 DC-51 DC-52) (DC-61 DC-52 DC-53))

(DC-61 DC-51 DC-53))

L11 (L6) ! (FORALL [DC-53^1:BB] TPS*UI: (DC-52) (L10)

(IMPLIES

(AND (DC-61 DC-51 DC-52)

(DC-61 DC-52 DC-53^1))

(DC-61 DC-51 DC-53^1)))

L10 (L6) ! (FORALL [DC-52^1:BB,DC-53^1:BB] TPS*UI: (DC-51) (L9)

(IMPLIES

(AND (DC-61 DC-51 DC-52^1)

(DC-61 DC-52^1 DC-53^1))

(DC-61 DC-51 DC-53^1)))
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L9 (L6) ! (FORALL [DC-51^1:BB,DC-52^1:BB,DC-53^1:BB] TPS*EQUIVWFFS: (L8)

(IMPLIES

(AND (DC-61 DC-51^1 DC-52^1)

(DC-61 DC-52^1 DC-53^1))

(DC-61 DC-51^1 DC-53^1)))

L8 (L6) ! (TRANSITIVE DC-61) TPS*RULEP: (L6)

L7 (L6) ! (SUB-RELATION R DC-61) TPS*RULEP: (L6)

L6 (L6) ! (AND (SUB-RELATION R DC-61) (TRANSITIVE DC-61)) TPS*HYP

L5 (L1) ! (FORALL [DC-61^1:(O BB BB)] TPS*EQUIVWFFS: (L2)

(IMPLIES

(AND (SUB-RELATION R DC-61^1)

(TRANSITIVE DC-61^1))

(DC-61^1 DC-51 DC-52)))

L4 (L1) ! (FORALL [DC-61^1:(O BB BB)] TPS*EQUIVWFFS: (L3)

(IMPLIES

(AND (SUB-RELATION R DC-61^1)

(TRANSITIVE DC-61^1))

(DC-61^1 DC-52 DC-53)))

L3 (L1) ! (TRANSITIVE-CLOSURE R DC-52 DC-53) TPS*RULEP: (L1)

L2 (L1) ! (TRANSITIVE-CLOSURE R DC-51 DC-52) TPS*RULEP: (L1)

L1 (L1) ! (AND (TRANSITIVE-CLOSURE R DC-51 DC-52) TPS*HYP

(TRANSITIVE-CLOSURE R DC-52 DC-53))

E: Transparent Proof Transformation by Proof Plan Expansion

Example 5 Modelling Tps's calculus in 
mega's theory TPS . The tactics in 
mega's
special theory Tps contain expansion information that allows proof plans constructed
in this theory to be mapped to 
mega proofs on a lower abstraction level. We present
some sample expansions here. The simplest is tps*Conj, which is simply mapped to
the 
mega tactic ande. The expansion of tps*Neg �rst analyses the given situation
and then maps either to Pushneg or Pullneg. tps*RuleP recursively invokes an external
propositional logic prover integrated to 
mega.

(defun tpstac=expand-tps*Conj (outline parameters)

(tacl~init outline)

(tacl~apply 'ande outline nil)

(tacl~end))

(defun tpstac=expand-tps*Neg (outline parameters)

(tacl~init outline)

(cond ((tpstac=pushneg-a-p (node~formula (car outline)) (node~formula (cadr outline)))

(tacl~apply 'pushneg outline nil))

((tpstac=pullneg-a-p (node~formula (cadr outline)) (node~formula (car outline)))

(tacl~apply 'pullneg outline nil))

(t (warn "Something went wrong while expanding justification tps*Neg")))

(tacl~end))

(defun tpstac=expand-tps*RuleP (outline parameters)

(declare (ignore parameters))

(let* ((node (car outline))

(premises (just~premises (node~justification node))))

(tacl~init outline)

(tpstac=call-external-atp node premises)

(tacl~end)

(setf (pdsj~status (node~justification node)) "untested")))

Example 6 
mega-proof. Finally, we present in �gure 5 the visualization of the original
Tps proof (as a proof plan) in 
mega's graphical user interface L
UI. By expanding
all nodes exactly one step, we reach another layer in 
mega's 3-dimensional PDS
which is visualized in the second screenshot. Here the squares represent the recursive
calls to a propositional theorem prover which are obtained by the expansion of tactic
tps*RuleP.
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Figure 5: Transparent proof transformation within 
mega's 3-dimensional PDS.
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