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Abstract: Real-world applications of automated theorem proving require modern
software environments that enable modularisation, networked inter-operability, robust-
ness, and scalability. These requirements are met by the Agent-Oriented Programming
paradigm of Distributed Arti�cial Intelligence. We argue that a reasonable framework
for automated theorem proving in the large regards typical mathematical services as
autonomous agents that provide internal functionality to the outside and that, in turn,
are able to access a variety of existing external services.
This article describes theMathWeb architecture that encapsulates a wide range of tra-
ditional mathematical systems each into a social agent-shell. A communication language
based on the Knowledge Query and Manipulation Language (KQML) is proposed in
order to allow conversations between these mathematical agents. The individual speech
acts of their conversations are about performances of the encapsulated services. The
objects referred by these speech acts are mathematical objects, formulae in various log-
ics, and (partial) proofs in di�erent calculi whose formalisation is done in an extension
to the OpenMath standard. The result is a exible framework for automated theorem
proving which has already been implemented to a large extent in the context of the

mega proof development system.
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1 Introduction

The work reported in this article originates in the e�ort to develop a practi-
cal mathematical assistant that integrates external deductive components. The

mega system [Benzm�uller et al., 1997] is an interactive, plan-based deduc-
tion system with the ultimate goal of supporting theorem proving in main-
stream mathematics and mathematics education. To provide the necessary rea-
soning and symbolic computation facilities it incorporates the �rst-order theorem
provers bliksem, EQP, Otter, ProTeIn, Spass, WaldMeister (see [Sut-
cli�e and Suttner, 1997] for references), the two higher-order theorem provers
TPS [Andrews et al., 1996] and LEO [Benzm�uller and Kohlhase, 1998], and the
computer algebra systems Maple, MagMa, GAP and �CAS (see [Kerber et
al., 1998] for references).

Traditional deduction systems, such as the ones integrated into 
mega, as
well as today's tactical theorem provers, such as Isabelle [Paulson, 1994] or
NqThm [Boyer and Moore, 1979], are monolithic systems. They either work like
compilers { reading a problem �le and writing proof and log �les after successful
computation { or like programming environments featuring their own command
interpreter or graphical user interface. Driven by the complexity of real-world
reasoning problems and practical considerations in designing and interacting
with the system, we have seen a rapid move towards integrative frameworks
combining various external reasoners [Denzinger, 1993; Benzm�uller et al., 1997;
Dahn, 1997] and computation systems [Clarke and Zhao, 1992; Harrison and
Th�ery, 1993; Ballarin et al., 1995; Kerber et al., 1998].

Ideally, the reasoning modules in the 
mega system interact with each other
to complete open subgoals during the development of a proof. This can be initi-
ated and supervised on-line by the user. This can be also guided by the 
mega
system itself, for instance during proof planning in order to expand a given proof
plan to a full proof. Unfortunately, it is not always clear in advance, which prover
is best suited for the problem at hand. Furthermore, the user could be asked to
support the system with additional knowledge. Thus, 
mega will call several
`services' in parallel in order to maximise the likelihood of success and minimise
the time the user has to spend waiting for the system. The proprietary proofs
found by these systems are transformed into the internal format of the 
mega
system; again, this transformation process should run in parallel to the ongoing
user interaction.

The role of the mathematical assistant in particular, but also of general
applications of theorem proving in the large, for instance in program veri�ca-
tion [Hutter et al., 1996], call for an open and distributed architecture. In such
an architecture, the developer of a deduction system or a mathematical tool
upgrades it to a so-called mathematical service [Homann and Calmet, 1996] by
providing it with an interface to a common mathematical software bus [Calmet
and Homann, 1997]. That is, it provides the mathematical service instead of the
software itself. In the context of the 
mega system, we have implemented and
experimented with such a network design, where the integrated theorem provers
and mathematical tools interact distributed over the Internet and can be dynam-
ically added to and subtracted from the coordinated reasoning repertoire of the
complete system. The possible bene�ts of such an approach to semi-automated
proof development are:
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Modularisation The more external reasoners a system like the 
mega system
integrates the heavier the burden of installing and maintaining them gets.
For instance, the kernel of 
mega alone is a rather large system (roughly
17 MB of Common Lisp code for the main body in the current version), its
successful installation depends on the presence of (proprietary) compilers or
interpreters. This situation is similar for the other reasoning systems inte-
grated into the 
mega system, which come from numerous di�erent original
sources. For the user it is a burden to install and understand the complete
system, for the developers it is a tedious task to port the system to com-
monly available compilers. Thus providing a mathematical service instead
of software encapsulates related functionality into re-usable components and
eases the maintenance of the particular modules and environments built
upon them at the cost of requiring a constant pool of hardware resources.
Deduction systems are among the most complex existing AI programs, they
are typically developed by more than one individual and the respective com-
ponents require specialised know-how that is nowadays impossible to acquire
for a single person. The equivalent is true for Computer Algebra systems that
exist in a vast variety from multipurpose to very specialised ones. Both user
and developer can hardly distinguish which system is best suited for a par-
ticular task, let alone being able to use all di�erent systems. Thus a modular
architecture of mathematical services allows the focused and independent
development in specialised research groups, for specialised application areas,
and with specialised techniques.

Inter-Operability Having a means of modularisation, the requirement appears
of being able to easily put together a complete and working system out
of heterogeneous components. Having a common platform of exchanging
services across the network makes components inter-operable: they are able
to provide additional functionality for the system as a whole and, in turn, are
provided with additional services in order to perform their service far more
e�ciently. For inter-service exchange of data, it is important to even take
possible, but yet not existing components into account, i.e., the interaction
scheme should be generic and open. This accelerates the availability of new
developments, because it avoids ubiquitous re-engineering.

Robustness Fixed software architectures pose the problem of failure handling,
e.g., a typical proof system with a static topology will not work if one of its
integral mathematical modules does not function or has to undergo mainte-
nance. A dynamic, decentralised network architecture provides the ability of
bringing together available and partially redundant components on the y.
Temporarily shutting o� a particular mathematical service for maintenance
purposes thus should not do any harm.

Scalability Finally, the performance aspect of theorem proving in the large
is addressed by a distributed architecture. In local computer networks, the
situation is quite common that users have relatively low-speed machines on
their desktop, whereas some high-speed servers operate freely accessible in
the background. Running, e.g., the user interface on the local machine uses
the local resources that are `close to the relevant data' and su�cient for this
task while the more powerful servers can be fully exploited for the really
complex task of actually proving theorems. A exible, dynamic topology
is the key to optimally adapt to changing computational resources, thus
increases the scalability of theorem proving.
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Indeed, these desiderata comply remarkably well with the aims of the Agent-
Oriented Programming paradigm developed in the �eld of Distributed Arti�cial
Intelligence: Intelligent agents are self-interested, autonomous service programs
which exibly interact in a shared, also human-inhabited environment by means
of communication. The agent metaphor has been successfully applied to a spec-
trum of sophisticated software problems ranging from `hardbots' in robotics and
telematics to `softbots' in user assistance systems.

Consequently, the present article proposes this perspective as the basis of the
MathWeb architecture which generalises the work done in 
mega:MathWeb-
agents `incarnate' particular mathematical services and possess a (partial) repre-
sentation of the service network.MathWeb-agents share a standardised commu-
nication language to talk about mathematical objects, formulae, and proofs (ob-
jects of communication) and to address the services which they provide (speech
acts of communication). MathWeb agents are reactive in the sense that they
are steadily interacting with users and other software agents working on shared
proofs and mathematical computations. They are pro-active in that they adopt
and autonomously work on particular mathematical goals. And they are social
in the sense that they request other agents or even the human user to support
the successful execution of their services.

Thus theorem proving in MathWeb is the joint e�ort of a society (a multi-
agent system) of communicating mathematical agents. We propose MathWeb

as a convenient design stance to enable modularisation, networked inter-operabi-
lity, robustness and scalability in theorem proving. In particular MathWeb

does not in itself aim at improving the expressivity of theorem proving per
se, as other approaches to cooperating theorem provers do (see e.g. [Denzinger
and Dahn, 1998] and the references therein). This may be an ultimate e�ect of
providing the distribution layer in MathWeb, but the current paper does not
make any concrete claim in this direction.

1.1 Structure of the Article

We start with a motivational example showing how it is processed by the hybrid

mega system in Section 2. From these considerations, the requirement of �nd-
ing a suitable methodology for distributing mathematical services immediately
arises. This software methodology is given by the agent metaphor of Distributed
Arti�cial Intelligence and corresponding e�orts for building domain-independent
communication languages, such as the Knowledge Query and Manipulation Lan-
guage (KQML) (Section 3). TheMathWeb architecture for automated theorem
proving (Section 4) thus extends 
mega into an open and distributed society of
mathematical agents which use KQML performatives (speech act types) to ad-
dress their services.MathWeb agents are equipped with a standardised content
language OpenProof (Section 5) derived from the OpenMath speci�cation to
talk about mathematical objects, formulae, and proofs. At hand of a collection of
existing (and planned) mathematical services, we demonstrate that MathWeb

is a powerful agent-oriented tool for their integration.

1.2 Related Work

In [Fisher and Ireland, 1998], Fisher and Ireland propose an agent-based ap-
proach to proof planning that is motivated by a �ne-grained parallelisation of
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the proof planning process more than the distribution aspect. They propose a
society of agents that are organised by a contract net architecture, building on
earlier studies of Fisher [Fisher, 1997] on agent-based theorem proving.

Calmet and Homann present a framework for establishing the semantics
of intimately integrated deduction and computation systems [Homann, 1996;
Homann and Calmet, 1996]. In a servicing architecture like the one described
in this paper, the semantics of the protocol employed in the communication is
not a correctness problem, since our approach assumes that proofs are commu-
nicated, so that the initiator of a reasoning task can always collect the partial
proofs and verify the correctness of the �nal resulting proof if he does not trust
the mathematical services.

To our knowledge, only three distributed theorem proving systems besides

mega have actually been implemented up to now. The modal-logic theorem
prover from [Pitt, 1996] uses a trader model like the one realized in 
mega.
The ILF system [Dahn, 1997] connects to Mathematica and some automated
theorem provers in a simple master-slave model. A group of experimental sys-
tems centreing around the Discount theorem prover has been presented by
[Denzinger et al., 1997; D. Fuchs, 1997]. Their experiments explore a tight coop-
eration between the theorem provers that renders them as a group signi�cantly
more successful than any of them could be alone. The underlying Teamwork
and Techs approach to distribution (see [Denzinger and Dahn, 1998]) is prob-
ably the work closest to MathWeb, but the emphasis was laid on supporting
the particular cooperation model and not so much on standardisation and gen-
erality. In particular, MathWeb would provide a drop-in replacement for their
implementation.

By introducing a service-independent communication language based both
on KQML [Finin and Fritzson, 1994] and OpenMath [Abbot et al., 1996], our
approach is unique so far with respect to the consequent application of Shoham's
Agent-Oriented Programming paradigm [Shoham, 1990] to Automated Theorem
Proving. As such, it is the logical progression of our work on distributing the

mega system [Hess et al., 1998; Siekmann et al., 1998] and opens up the possi-
bility for developing particular negotiation protocols. In general multi-agent sys-
tem design, a similar stance has been taken by the MECCA architecture [Steiner,
1992].

2 Distributing Mathematical Services

In this section we introduce a small example to elaborate the principle of the
hybrid 
mega architecture [Benzm�uller et al., 1997] in order to motivate a
software methodology for distributed mathematical services. We use a simple
problem from Algebra | more precisely group theory | that states the equiv-
alence of two di�erent axiomatisations of a group. Both are rather common and
can be found in most textbooks of group theory (cf. [Hall, 1959]):

De�nition 2.1 Let G be a non-empty set, then G together with binary operation
`�' is a group if the following properties hold:

G1) For all a; b 2 G there is a c 2 G with a � b = c.
G2) For all a; b; c 2 G holds (a � b) � c = a � (b � c).
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G3) There exists an e 2 G such that e � a = a and a � e = a for all a 2 G.
G4) For all a 2 G exists x 2 G such that a � x = e and x � a = e.

De�nition 2.2 Let G be a non-empty set, then G together with binary operation
`?' is a group if the following properties hold:

H1) For all a; b 2 G there is a c 2 G with a ? b = c.
H2) For all a; b; c 2 G holds (a ? b) ? c = a ? (b ? c).
H3) For all a; b 2 G exist uniquely determined x; y 2 G such that a ? x = b and

y ? a = b.

To prove the equivalence of both de�nitions we have to infer the axioms of the
second de�nition assuming that the �rst de�nition holds and vice versa. However,
in both cases we have to decide in advance how we express the operation on one
group de�nition by a suitable term involving the operation given in the other
de�nition. This is generally a non-trivial task, however in the case of our example
we can simply identify both operations with each other. The actual veri�cation
of the single axioms is then done by �nding suitable combinations of the given
equations.

For instance, we verify the �rst part of the existence of divisors in de�ni-
tion 2.2 by showing the existence and uniqueness of the solutions of equation
ax = b using de�nition 2.1: The existence of a suitable x is obvious by setting
x = a 1b, where a 1 denotes the inverse element introduced by G4, and verifying
that ax = a(a 1b) = (aa 1)b = eb = b holds. To show uniqueness we assume now
that there exist two solutions x; x0 2 G of our original equation, then we have
with b = ax = ax0 and multiplication with a 1 the uniqueness of solutions by:
a 1b = x = x0.

2.1 Formal Proof Development in Hybrid 
mega

The equivalence of di�erent axiomatisations of the same mathematical entity
is a general problem that arises in the hybrid 
mega system (Figure 1 shows
only the components and the information ow which are relevant for our ex-
ample) when the same entity is tried to be de�ned alternatively in 
mega's
knowledge base. A similar situation appears when 
mega receives de�nitions
from two separate knowledge bases, as depicted in Figure 1. The central compo-
nent of 
mega is the controller. It supervises the process of proving a theorem
by handling requests to knowledge bases, distributing subproblems to reasoning
components and accepting user input via some user interface. To illustrate the
processing of our equivalence problem, we assume that both group axiomati-
sations in the knowledge bases are given as higher order formulas in a typed
Church �-calculus [Andrews, 1986] with base types fo; �g:

group-1 := �G�!o �Op(�;�)!� not-empty(G) ^ closed-under(G;Op) ^

associative(G;Op) ^ 9e G(e) ^

unit(G;Op; e) ^ inverse-exists(G;Op; e) (1)

group-2 := �G�!o �Op(�;�)!� not-empty(G) ^ closed-under(G;Op) ^

associative(G;Op) ^

divisors-exist(G;Op): (2)
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Figure 1: Distributed Mathematical Services in 
mega

Both terms consist of conjunctions of high level concepts that are in turn
de�ned in the respective knowledge bases using other �-terms. All high level
concepts directly correspond to a single axiom given in the informal de�nitions
(this is of course indicated by the choice of names). Here we assume for sim-
plicity that not-empty, closed-under, and associative represent the same
concepts and are equally named in both knowledge bases. In order to compare
both concepts, 
mega tries to prove the equivalence of the given formalisations.
This goal is speci�ed by user interaction via the interface. The corresponding
theorem is of the form:

8G (9Op1 group-1(G;Op1) � 9Op2 group-2(G;Op2)) (3)


mega sends this theorem together with the retrieved �-terms (1) and (2)
to the proof planner. The planner uses a set of domain independent planning-
operators (called methods) that it can employ to simplify the theorem. This set
contains a particular method (cf. [Cheikhrouhou and Sorge, 1998]) that applies
to formulae like the one given in (3). It splits the equivalence, expands the
group de�nitions and partitions the proof into single subgoals. Each one of these
subgoals contains one of the conjuncts given in (1) and (2). This method also
introduces meta-variables for the existentially quanti�ed variables, i.e., the two
di�erent operations de�ned on the group and the identity element.

There are other methods which are able to close some of the trivial sub-
goals, i.e., subgoals that directly correspond to formulas given as hypotheses.
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For example, the properties not-empty, closed-under, and associative can
be directly inferred for both axiomatisations. Thereby the methods compute
possible instantiations for the introduced meta-variables. The planner �nally re-
turns a proof plan, containing the partial proof derived so far, together with the
proposed instantiations for the meta-variables. In case of our example the plan-
ner would propose to instantiate both meta-variables for the two operations of
the group with the same constant and the identity element of de�nition 1 with
any arbitrary constant. Expanding the planning steps in 
mega results in four
remaining subgoals.

H ` g(E) (4)

H ` unit(g;Op1; E) (5)

H ` inverse-exists(g;Op1; E) (6)

G ` divisors-exist(g;Op2) (7)

Here g denotes a constant instantiated for the universally quanti�ed variable
in (3) and the over-lined letters indicate the meta-variables introduced by the
planner. Furthermore, H and G specify sets of hypotheses which correspond to
the axiomatisations of de�nition 2.1 and 2.2 respectively.

In order to further treat the subgoals (4) through (7) 
mega expands the
high level concepts given both in the goal and the hypotheses, by fetching the
appropriate de�nitions from the knowledge bases. These de�nitions are again
�-terms that can easily be substituted in the formulas which are subsequently
�-normalised. For example the existence of inverses in a group corresponds to

�G�!o �OP(�;�)!� �E� 9F�!� 8X� G(X)! OP (X;F (X)) = E (8)

With all de�nitions expanded it is now possible to hand the remaining problems
over to an automated theorem prover. In our example it su�ces to give a single
subproblem together with its expanded hypotheses lines to some automated the-
orem prover, such as Otter [McCune and Wos, 1997] or Spass [Weidenbach,
1997]. For this, 
mega translates higher order syntax into �rst order and sub-
stitutes the meta-variables with the instantiations proposed by the planner. If
the planner has proposed more than one possible instantiations of the meta-
variables, the process of calling ATPs is iterated for all the instantiations until
some proof could be found. If we have dependencies between subproblems, i.e.
meta-variables need to be substituted with the same term in di�erent subprob-
lems, 
mega keeps track of these meta-variables and compares instantiations
given by the respective automatically generated subproofs. If di�erent instantia-
tions are returned, 
mega tries to match or unify these, and if this fails 
mega
successively uses generated meta-variable substitutions of one subproblem on
the dependent ones and tries to prove those subproblems again by calls to au-
tomated components. Eventually, if all this fails, the proof is left to the user. In
our example, however, the proofs returned from the theorem provers are simply
translated back into 
mega's syntax and calculus and complete the proof.

During the whole process of proof construction a user can always monitor
the progression of the proof and, if necessary, interfere and inuence the next
step. In our example, the expansion of de�nitions and the actual activation of
theorem provers has to be con�rmed by an 
mega user.
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2.2 Desiderata of a Methodology for Distributing Mathematical
Services

The above example illustrates how work on a single problem can be shared be-
tween di�erent components of a hybrid system. The system is basically built
around the 
mega controller as the central unit that cannot only deploy other
systems but has deductive capabilities by itself, i.e. it can expand planning meth-
ods and de�nitions, compare meta-variable instantiations by means of uni�ca-
tion, or apply single deduction steps indicated by the user. The advantages of
such a system are that problems can be tackled that are beyond the reach of a sin-
gle automated theorem prover. As displayed in Figure 1, however, the protocols
that 
mega mediates are proprietary ones and the architecture itself is static in
a sense that single components, e.g., the controller, cannot be easily exchanged.
For instance, it is a expendable task to simply substitute one �rst-order theo-
rem prover for another since usually the syntax translator of the interface has
to be redesigned. The same problem arises in other approaches concerned with
the integration of two or several theorems provers (cf. [Felty and Howe, 1997;
Slind et al., 1998; Benzm�uller and Sorge, 1998]) or theorem provers with de-
cision procedures or Computer Algebra systems (cf. [Clarke and Zhao, 1992;
Harrison and Th�ery, 1993; Ballarin et al., 1995; Kerber et al., 1998]) that gener-
ally do not follow a common paradigm, i.e., a similar input-output speci�cation.
Their solutions do heavily depend on the integrated systems.

The question how di�erent theorem provers can be easily combined in a single
environment that is exible enough to handle both replacement and addition of
systems has led to the concept of Open Mechanized Reasoning Systems [Giun-
chiglia et al., 1996]. Within an OMRS, theorem provers can be viewed as easily
replaceable plug and play components. The concept of OMRS has been gener-
alised to OpenMathematical Environments [Homann and Calmet, 1995] where
all kinds of mathematical services [Homann and Calmet, 1996] can be combined.
It turned out that in order to handle a mathematical service (either a theorem
prover or a Computer Algebra system) as a plug and play component the sys-
tems have to be at least separated into distinct components for control and logic
or computation. Thus, it is practically impossible to integrate any monolithic
system without redesigning major parts. Moreover, commercial systems where
the sources are not available cannot be re-engineered and are therefore lost for
an integration.

This inspired the extension of the latter architecture to cope with heteroge-
neous mathematical services (such as theorem provers, Computer Algebra sys-
tems, editors, display components, etc.). On the mathematical software bus [Cal-
met and Homann, 1997], connected services can exchange information by directly
sending standardised mathematical objects to a speci�ed service. Yet, the ap-
proach still has two major drawbacks: Firstly, all connected systems have to
communicate in some standardised language. Although there have been some
e�orts to establish some standard for exchange of mathematical object lately
(cf. [Caprotti, 1998; Ion, 1998]) these languages are still far from being general
enough for a variety of possible services. A second drawback of the architecture
is the principle of a software bus itself. Connected services need to know of other
services or at least of a central directory (request broker) available on the soft-
ware bus in order to send directed messages. To maintain this knowledge within
each service or within a central directory is a di�cult task for a freely expanding
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software bus that is for example distributed over the Internet. Furthermore, this
architecture lacks robustness in a sense that if a connected service, especially the
central directory, fails there are no means for the requesting service to redirect
its query.

These considerations reveal a methodological challenge: which is the right
software engineering metaphor to integrate a variety of mathematical services
as particular modules? How is it possible to make these modules inter-operable,
preferably over a global network, at the same time staying open for future en-
hancements? How do we support a dynamic architecture which is robust to the
exchange or maintenance of embedded services and which is scalable to e�-
ciently adapt to changing computational resources? As can be seen from our
preceding critique, the listed desiderata are not fully addressed by Distributed
Object-Oriented Programming paradigms, such as the Common Object Request
Broker Architecture (CORBA) approach [Siegel, 1996].

3 Agent-Oriented Programming

Social Model

Agent

kbcanoncial

kbvirtual

in
fe

re
nc

e inference

Communication

Perception Action

Communication

Figure 2: A (Social) Agent Architecture

Following Russell & Norvig [Russell and Norvig, 1995], the term agent de-
scribes a self-contained computational structure, i.e., a state and a correspond-
ing calculation (Figure 2). This structure is encapsulated by a separate envi-
ronment which the agent perceives through sensors and upon which the agent
acts through e�ectors. The de�nition is close to the one of a robot which it
generalises to software environments (softbots). Both physical and virtual envi-
ronments share the requirements of local, decentralised control (modularisation),
the handling of inherent complexity (scalability and robustness), and heteroge-
neous, open structures (inter-operability). The agent paradigm put forward by
research in Distributed Arti�cial Intelligence is a novel combination of fundamen-
tal technologies from Distributed Systems, Embedded Systems, Object-oriented
Programming, and Arti�cial Intelligence and seems to be the natural metaphor
to manage these requirements.
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3.1 Properties of Agents

Despite of the sometimes mentalistic terminology of DAI, agent properties are
deeply rooted in purely technical concepts. Partly due to the broadened perspec-
tive and partly due to new insights into the agent as a situated entity, an enlarged
set of key properties of agency proposed by Wooldridge & Jennings [Wooldridge
and Jennings, 1995] is nowadays commonly agreed on (Other agent features
which are researched are mobility and veracity.):

Autonomy: Agents are encapsulated, i.e., they should be able to perform the
majority of their problem solving tasks without the direct intervention of
humans or other agents, and they should have a degree of control over their
own actions and their own internal state. Autonomy is the focus of the agent
de�nition given by Russell & Norvig [Russell and Norvig, 1995].

Responsiveness, Reactivity: Agents should respond in a timely fashion to
changes which occur in their environment, i.e., they are reactive. Note that
this does not necessarily entail real-time behaviour.

Pro-activeness and Deliberation: Agents should not simply act in response
to their environment, but also exhibit goal-directed behaviour to take initia-
tive where appropriate. We speak of deliberative abilities in this respect and
presume rationality , i.e., from its current belief, the agent decides (chooses)
intentions which are actions to achieve its goals. Furthermore, the agent
avoids behaviour which he believes to conict with them. Interestingly, re-
garding the agent's state as a knowledge base and its computation as a ra-
tional inference procedure (Figure 2) closely mirrors the image of a theorem
prover. And in fact historically, the �rst agents were modelled as deduc-
tive/abductive inference systems.

Adaptivity: Agents should be able to modify their behaviour according to
changing environmental and computational constraints to their functioning
(resources, such as fuel, space, tools; time, memory). According to the more
and more popular bounded rationality principle [Good, 1976; Simon, 1982],
they should do that in an approximately optimal manner.

Social Ability: Agents should be able to interact, when they deem appro-
priate, with other arti�cial agents and humans in order to complete their
own problem solving and help others with their activities. This requires that
agents have, as a minimum, a means by which they can communicate their
requirements to others and an internal, rational mechanism (social model)
for deciding when social interactions are appropriate (Figure 2) | both in
terms of generating appropriate requests and judging incoming requests.
Social abilities are the key to design open systems in which heterogeneous
information entities operate in a common framework upon di�erent goals
and on behalf of di�erent users.

3.2 Agent Communication Languages: KQML

Shoham coined the term Agent-Oriented Programming [Shoham, 1990] as a soft-
ware methodology in which softbots, such as the one depicted in Figure 2, are
used to encapsulate arbitrary, traditional software applications, e.g., legacy sys-
tems. These agent-shells are able to interface and control the operation of the
embedded services quite similarly to the way a knowledge base would operate.

166 Franke A., Hess S.M., Jung Ch. G., Kohlhase M., Sorge V.: Agent-Orinted Integration ...



On top, they introduce a social model referring to other service agents with which
they comprise a society. The prominent means for the interaction between social
agents in a functional service network turn out to be common communication
languages which enable the agents to coordinate their behaviour, i.e., steer the
embedded applications by exchanging beliefs, goals, and intentions. As a part of
the fast-growing research threads in Computer Science, Shoham's work triggered
a gamut of innovative software applications, e.g., in robotics, personal assistants,
work-ow management, telecommunication, information retrieval, etc.

Arti�cial communication languages go back to philosophical and linguistic
(especially pragmatics) observations into human language which they transfer
into a formal setting. For example, the speech act theory [Searle, 1969] clearly
distinguishes nested modes of human communication, i.e., the utterance force of
producing some sound, the locutionary force of saying some sentence, the illo-
cutionary force of meaning some object, and the perlocutionary force of causing
some e�ect in the mind of the recipient. Perlocutionary and illocutionary force
are particularly di�erent in cases in which the utterer uses an indirect way of
persuading the recipient to do something, e.g., by lying.

Performative Layer, e.g., KQML

Network Layer, e.g., IP

Link Layer, e.g., X.21

Physical Layer, e.g., Ethernet

Transport Layer, e.g., TCP

Session Layer, e.g., LU6.2

Presentation Layer, e.g., XML

Application Layer

Content Layer, e.g., KIF

Figure 3: Arti�cial Communication: KQML and the OSI Reference Model

In a society of benevolent, i.e., truthful, service agents, such as the Knowl-
edge Query and Manipulation Language (KQML) [Finin and Fritzson, 1994] pre-
sumes, the perlocutionary and illocutionary role of a speech act can be uni�ed.
KQML is thus able to identify domain-independent types of speech acts, such as
`telling' or `requesting' something, which is captured by so-called performatives.
Languages which address this level of communication are also called interlinguae.
For example, the Foundation for Intelligent Physical Agents (FIPA) [Steiner,
1997] aims to develop an industrial-strength standard quite similar to KQML.
Interlinguae are strongly connected to nested ontolinguae or content languages
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which are used to represent the domain-dependent objects of a performative.
Examples of content languages are ISO-Prolog [ISO, 1995] or the Knowledge
Interchange Format (KIF) [Genesereth and et al., 1992].

On the lower level of arti�cial communication, the human `producing a sound'
is substituted by standardising the information exchange from physical (Ether-
net) up to presentational issues (XML, see below). This results in a layered struc-
ture (the Open Systems Interconnection (OSI) reference model [DIN ISO 7498,
1982]) for KQML communication illustrated by Figure 3. The former OSI appli-
cation layer now hosts the performative and the content layer. This way, KQML
agents which do not share any content language are still able to understand their
basic intentions and are thus able to process at least a subset of the utterances.

KQML-Content ::= <KQMLCONTENT> (ContentjKQML) </KQMLCONTENT>

KQML-Aspect ::= <KQMLASPECT> Content </KQMLASPECT>

Performative ::= "tell" j "deny" j : : : j
"insert" j "delete" j : : : j
"error" j "sorry" j "reply" j : : : j
"evaluate" j "ask-one" j "stream-all"j : : : j
"standby" j "ready" j "next" j "discard" j "eos" j : : : j
"register" j "unregister" j "forward" j "broadcast" j : : : j
"advertise" j "broker-one" j : : : j

KQML ::= <KQML perf=Performative language=AttValue
ontology=AttValue reply-with=AttValue
in-reply-to=AttValue sender=AttValue
receiver=AttValue from=AttValue
to=AttValue name=AttValue : : : >

KQML-Content KQML-Aspect
</KQML>

Figure 4: Expressing KQML in XML

Syntactically, KQML messages can be encoded using the eXtensible Markup
Language (XML [Bray, 1997]) as the underlying presentation layer (cf. Figure 4).
Originally, KQML uses an ASCII-based string representation. Compliance with
todays successful presentation languages, such as the Hypertext Markup Lan-
guage (HTML) [Raggett, 1998], and upcoming standards, like MathML [Ion,
1998] and OpenMath [Abbot et al., 1996; Caprotti, 1998], however, is a key
issue in designing open systems. These languages use the XML framework as
their basis.

For expressing KQML in XML we introduce a special <KQML/> tag that is
annotated with a particular performative (perf=Performative). The tag fur-
thermore carries information about the content language used in the KQML
message (language) and the semantics of nested primitive symbols (ontology).
The reply-with attribute describes whether an answer to the message is ex-
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pected and with which in-reply-to annotation it should be given. The sender
and receiver agents of the message are identi�ed using a unique naming con-
vention, such as Uniform Resource Locations (URL's). Sender and receiver can
be di�erent from the originator (from) and the destination (to) of the message.
name carries the name of some arbitrary agent for introduction purposes.

The actual content of the KQMLMessage is an expression in the content lan-
guage Content corresponding with the language attribution. It is encapsulated
in the <KQMLCONTENT> tag. Since performatives could be nested, the content
could also contain a KQML expression itself. The KQML-Aspect part of the
KQML message speci�es whether and with which content the current performa-
tive is to be answered.

It is di�cult to give a semantics to communication languages in the general
case | think of the di�erence between perlocutionary and illocutionary force.
Presuming benevolent agents, however, giving a �xed meaning to each KQML
message according to the chosen Performative makes sense. Because delibera-
tive capabilities are a necessary precondition for reasonable communication, the
identi�cation of an agent with a virtual knowledge base (see Figure 2) is helpful
for this purpose. Virtual, because not every fact or belief must be present in the
state of the knowledge base, but could possibly be deduced from the canonical
representation using a rational inference procedure. The semantics of "tell",
for example, is straightforward to describe, then: The utterer noti�es that the
embedded KQML-Content is an element of its virtual knowledge base. "deny"
simply means the contrary.

Indeed, KQML stems from an attempt to combine heterogeneous knowledge
sources over the network. The set of performatives and their semantics thus
captures all the reasonable interactions between knowledge sources. Besides the
informatives like "tell" and "deny", KQML introduces database performatives,
such as "insert" and "delete" with which the utterer suggests the recipient
to change the content of its virtual knowledge base. A basic response to such
a suggestion could be "error" (the operation would cause inconsistencies) or
"sorry" (the recipient is not able to process the operation because of technical
reasons, e.g., it is not able or does not have enough computational resources to
perform it).

A more sophisticated "reply" response is necessary to process the query
performatives "evaluate" and "ask-one". "evaluate" requests the recipient
just to convert (simplify) the content expression into the canonical representation
used by its knowledge base. The simpli�ed expression does not have to be valid
for that purpose. By "ask-one", a match of the content expression with the
virtual knowledge base is invoked, i.e., whether it could be derived from the
canonical data. This presupposes the content language to exhibit some notion of
partial speci�cation, for example by introducing variables and uni�cation. With
respect to the traditional input-output speci�cation of services, talking about
constrained objects is a far more expressive scheme. The results of matching are,
again, expressions in the content language embedded in a "reply" performative.
The desired format of responses can be speci�ed in advance by the requesting
agent in the KQML-Aspect part of the respective query performative.

Access of knowledge sources must not stick with a simple query-response
scheme. By allowing for advanced queries with multiple responses (for exam-
ple, stream-all: try to match the content in all possible ways with the virtual
knowledge base and send the result in separate "reply" messages) and nested
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performatives, KQML is able to introduce on-demand strategies:

<KQML perf="standby">
<KQMLCONTENT>

<KQML perf="stream-all">
<KQMLCONTENT> Match </KQMLCONTENT> </KQML>

</KQMLCONTENT>
</KQML>

This is an exemplary enquiry of a `client' to a recipient `server' to prepare for
an on-demand streaming service which the server acknowledges with "ready".
Now the client is able to utter "next" performatives to trigger subsequent
replies regarding the Match expression. If the service is obsolete, the client
sends "discard". If there is no further response, the server sends "eos" (`end
of stream').

Finally, KQML supports the maintenance of agents' social model (Figure 2),
i.e., the management of names, characteristics, and capabilities of neighbour
agents, in order to build a functional `neighbourhood' of knowledge sources.
"register" and "unregister" are simple naming capabilities with which agents
introduce themselves and exit the society. Thus, agents can maintain a list of
active neighbours to which they could "forward" embedded KQML messages.
The "broadcast" performative also uses this mechanism to route KQML mes-
sages to all connected agents in a network. The reply-with attribution can be
used to avoid cycles.

Using nested KQML expressions and the matching principle of the encapsu-
lated content language, the "advertise" performative allows to build up a more
detailed domain-related model of neighbours. The content of an advertisement
are those KQML message patterns which the agent is willing or able to pro-
cess. Thus each agent is able to maintain a lookup table with agent names and
their capabilities in terms of KQML patterns. This table is used, for example,
in delegating a particular task to another agent ("broker-one").

Our presentation of KQML performatives has of course neither been exhaus-
tive nor detailed. It should however have become clear that using an agent-
oriented architecture and communication language combines the achievements
of, e.g., an object-oriented methodology and distributed programming, and is
able to provide an open, exibly interacting, and robust network of software ser-
vices, such as knowledge bases and mathematical services. As such, agents are
not a prime construct for improving the expressivity of a service domain which
is not the aim of the present article.

4 Agent-Oriented Integration of Mathematical Services

Coincidently, the desiderata for distributed automated theorem proving that we
have sketched in Section 2 �t exactly with the application pro�le of the Agent-
Oriented Programming techniques developed in Section 3. Furthermore, a virtual
knowledge base agent is very close to a mathematical service: it maintains a set
of mathematical `truths' upon which a rational inference procedure (proof proce-
dure or calculation) operates. For example, a theorem prover virtually represents
a knowledge base for all proofs that it could derive. A computer algebra system
could be seen as the set of all computations (equations) it could solve. Also the
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user interface that is able to ask for the user's help represents the combined
knowledge of its user. Subsequently, we propose the MathWeb architecture
(Figure 5) as a reasonable, agent-oriented integration of mathematical services.

User-

Interface

MATHWEB-
Agent

O
penP

roof

K
Q

M
L Capability List

"next" MATHWEB-
Agent

O
penP

roof

K
Q

M
L Capability List

MEGAΩ
Controller

OTTER

MATHWEB-
Agent

O
penP

roof

K
Q

M
L Capability List

SPASS

MATHWEB-
Agent

O
penP

roof

K
Q

M
L Capability List

KB 2

MATHWEB-
Agent

O
penP

roof

K
Q

M
L Capability List

KB 1

MATHWEB-
Agent

O
penP

roof

K
Q

M
L Capability List

Proof-
Planner

"reply"(<P>)

"ready"

"reply"(<P>)

"standby"("stream-all"(<P>))

MATHWEB-
Agent

O
penP

roof

K
Q

M
L Capability List

"tell"(<
P

>
)

"broadcast"("
ask-one"(<

P>))

"re
ply"

(<
F>)

"a
sk

-o
ne

"(<
F>)

MATHWEB-
Agent

O
penP

roof

K
Q

M
L Capability List

"deny"("a
sk-one"(<

P>))

<P>: OpenProof proof

<F>: OpenProof formula

"re
p

ly"(<
F

>
)

"ask-one"(<F>)

"reply"(<F>)

"reply"(<P>)

"ask-one"(<F>)

"re
pl
y"

(<
P>)

"evaluate"(<P>)

"b
ro

a
d

ca
st

"(
"a

sk
-o

n
e

"(
<

P
>

))

Mediator
ND(HOL)<->

RES(CNF(FOL))

"e
va

lu
at

e"
(<

P
>
)

"reply"(<
P

>
)

"ask-one"(<F>)

"reply"(<F>)

"broker"(<P>)

Figure 5: Agents as Distributed Mathematical Services in MathWeb

Following the Agent-Oriented Programming paradigm, MathWeb encap-
sulates mathematical services, such as the user interface, the 
mega control
module, the proof planner, knowledge bases, proof mediators, and proof systems
like Spass and Otter, each into an agent-shell. These agents are reactive in
that they are steadily interacting with users and other software agents working
on shared proofs and mathematical computations. They are pro-active in that
they adopt and autonomously work on particular mathematical goals. And they
are social in that they request other agents or even the human user to support
the successful execution of their services by communicating via KQML.

MathWeb embeds a particular content language into KQML. OpenProof
which is explained in detail in Section 5 is derived from the OpenMath [Abbot
et al., 1996] standard that has been designed as a fundamental (higher-order)
language for exchanging mathematical objects, such as symbols, variables, func-
tional abstractions, and applications.OpenProof extends this repertoire to rep-
resent formulae in various logics, mathematical computations upon those, and
especially proofs in di�erent calculi. Using OpenMath variables, these struc-
tures can be de�ned even left partially unspeci�ed which introduces a sophis-
ticated notion of matching a virtual (mathematical) knowledge base: a partial
proof or a partial computation can be given in a KQML query. Matching into the
virtual knowledge base amounts to deductive or algebraic computations which
further instantiate the proof and which will be �nally returned in a response per-
formative. Similarly, OpenProof expressions can be transformed by the user
interface forth-and-back into human-oriented visualisations or verbalisations to
interact with the user. In each case, proof and computation structures which are
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constrained on di�erent levels of representation are fundamentally more power-
ful and exible than traditional protocols for specifying deduction problems. For
example, the operation of a proof planner, which takes some (partial) proof and
returns several (partial) subproblems can be expressed in OpenProof.

It is, however, necessary to care for an e�cient treatment of the mathemati-
cal structures.MathWeb agents especially assume a clean separation of (meta-
)variables for identifying a particular service invocation and (object-)variables
in the problem speci�cation. This way, MathWeb agents can pragmatically
preprocess received KQML(OpenProof) messages in order to control the en-
capsulated operation of theorem provers and mathematical systems. Vice versa,
it is possible forMathWeb agents to construct KQML(OpenProof) messages
if the embedded computations need some support. The generic facility of any
MathWeb agent to analyse and generate KQML(OpenProof) is thus coupled
to a concrete, service-speci�c interface. For each type of mathematical services,
a suitable interface structure and respective encodings in KQML(OpenProof)
can be speci�ed (see Section 5.3 for an overview).

We allow a single agent to manage several, simultaneous instances of the
same service, e.g., to elaborate several theorem provers at the same time, but
based on shared canonical knowledge (the background theory). This is an im-
portant restriction, because the functioning of KQML strongly depends on the
constructibility of a consistent virtual knowledge base for each agent. Having
several service instances operating on di�erent background theories and allow-
ing di�erent services within the same agent is therefore not advisable.

MathWeb agents maintain a social model of their environment in the form
of a capability list, i.e., they keep book about a portion of the overall service
architecture. For example, the user interface agent might only know the proof
planner and the 
mega control agent. The Spass and Otter agents might only
know each other and be aware the mediator agent which encapsulates some of the
previous functionality of the 
mega controller to translate between higher-order
natural deduction proofs (ND(HOL)) and �rst-order resolution using clausal
normal form (RES(CNF(FOL))). The 
mega control agent could connect the
proof planner, theorem provers, and the mediator.

A MathWeb agent organises information about the capabilities of other
MathWeb agents in a lookup table. The table stores the incoming "advertise"
performatives carrying KQML messages to which these agents could successfully
respond to (see Section 5.3). Again, the expressiveness of the content language
OpenProof is useful to specify, e.g., knowledge bases which are able to deliver
formula de�nitions of mathematical symbols responding to "ask-one"messages,
proof systems which are able to process similar queries regarding proofs, media-
tors which could "evaluate" formulae or proofs from/into particular formalisms,
and even services, such as the proof planner which provide a streaming service
in order to transmit multiple partially instantiated (sub-)results on-demand.

Besides the usual "reply" performative, answers to service requests inMath-
Web will also transport processing errors and technical errors. KQML's "error"
and "sorry" performatives, however, are somehow restricted for this purpose,
since ignoring their content. It is thus useful to allow particular error expres-
sions in the content language (Section 5) as ordinary KQML replies. Theorem
proving is a challenging domain for coping with failures since it is undecidable
in general. How could a service ever return a message saying that a requested
proof is not possible? When does a client know that it has received all possible
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(useful) answers to the requested computation?
It is necessary to take the bounded rationality aspect of MathWeb agents

into account right from design time: Objects of mathematical computations
should be intimately coupled with the situative context in which they are in-
voked, i.e., with the resources that they are allowed to consume in processing.
For this purpose, OpenProof proofs or computations are annotated with de-
scriptions of the time, the memory, the information, and the user interaction that
have been necessary to derive them. This makes it possible to establish a priori
estimations of the utility of a service which helps to optimise the MathWeb.

Now reconsider the example of Section 2. Figure 5 shows one of the many
extended possibilities using MathWeb: Initially, the user interface starts, su-
pervised by a human user, a proof delegation ("broker-one") to the 
mega
control agent. We assume that the initial proof goal has been entered by the
user. The controller delegates the task of breaking down the proof into proper
subproblems to the proof planner agent. All subproblems are requested in the
form of a streaming service ("standby"). Not until needed in the proof planner,
the group de�nitions referred in the proof speci�cation are looked up by querying
the two knowledge base agents. Perhaps with the help of the human user which
proposes some instantiation of the proof via "tell", the proof planner constructs
appropriate subproblems and replies them to the 
mega controller which, in
turn, "broadcast"s the higher-order natural deduction structures to the prover
agents to concurrently run for solutions. Because Otter and Spass operate on
�rst-order clausal normal form and construct resolution-type proofs, the Otter
agent-shell �rst asks the mediator agent for help in translation ("evaluate") be-
fore routing the translated broadcasts to Spass. For this purpose, the mediator
agent looks up the remaining de�nitions, such as of inverse-exists, from the
knowledge bases. In a simpli�ed version, the sent KQML messages look the fol-
lowing way. The actual content tags use the OpenProof syntax of the following
section, of course.

<KQML perf="ask-one">
<KQMLCONTENT>

F = inverse-exists
</KQMLCONTENT>
<KQMLASPECT>

F
</KQMLASPECT>

</KQML>

<KQML perf="reply">
<KQMLCONTENT>

�G: �! o �OP : (�; �)! � �E: �
9 F : �! � 8 X: �
G(X)! OP (X;F (X)) = E

</KQMLCONTENT>
</KQML>

In our example, Spass has found a result �rst; the noti�ed controller will
then "deny" the original request to shut down the redundant computations in
Otter. Finally, when all subproofs are collected by the controller, the mediator
agent is once again contacted to transform the overall result back into natural
deduction form which is used in the user interface for presentation purposes.

With respect to the central role of the 
mega controller in the heart of Fig-
ure 1,MathWeb now amounts to a dynamically rearrangeable decentralisation.
This has been possible due to the richness of agent-based communication. Es-
pecially we can now uncouple the syntax translations necessary to communicate
subproblems and proofs between the 
mega controller and the theorem prov-
ing agents. The uni�ed view onto (mathematical) services allows to integrate
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further services without ubiquitous re-engineering of proprietary interfaces. In-
stead, the envisaged application is wrapped into the generic MathWeb shell
by customising a library of suitable interfaces. A further advantage of such an
open approach is that several users with di�erent demands can use the system
cooperatively or independently at the same time. The particular modules then
decide based on priority and workload whether to process particular tasks or not.
In short, MathWeb provides the modular, inter-operable, robust, and scalable
framework for automated theorem proving motivated by this article. Of course,
MathWeb owes much to the OpenProof content language that we outline in
the following section.

5 A Content Language for Mathematics and Deduction

Given a generic interlingua such as KQML, it additionally requires a suitable
ontolingua to express the content of services to talk about service performances a
particular application domain for interacting agents. In the case of mathematical
theorem proving, this content comprises mathematical objects, formulae, theo-
rems, theories, but also (partial) proofs, and even proof plans. Appropriate can-
didates for such a language are the so-called `DFG syntax' [H�ahnle et al., 1996]
or the speci�cation put forward by the OpenMath initiative (see http://www.
openmath.org), which strives for a standard exchange platform for mathemat-
ical software systems. For MathWeb, we propose a content language (see 5.1
for details) which is an extension of the latter, since it has more support for dis-
tribution and also covers symbolic computation services. There are even already
someOpenMath-compliant systems, such asMaple [Redfern, 1998], which can
immediately serve as mathematical services.

We will now give a brief overview on the emerging OpenMath standard
(cf. [Caprotti, 1998]) and indicate where it meets the communication needs
for MathWeb. In the Section 5.2 we will extend the OpenMath suiting our
needs to a content language, which in lack of a better name we have called
OpenProof.

5.1 The OpenMath Standard

The OpenMath initiative's aim is to establish a common information exchange
platform among software tools used in mathematics. At the moment, their ef-
forts are largely focusing at representational issues for the communication be-
tween computer algebra systems. We will use the mechanisms provided by the
OpenMath standard to express the logical side of mathematics (de�nitions,
theorems,. . . ), too.

TheOpenMath language is syntactically a member of the XML [Bray, 1997]
family of languages to which also HTML [Raggett, 1998] or its extension for
mathematics, MathML [Ion, 1998], belong. XML derivates can be nested, thus
OpenMath expressions �t very well into our KQML variant of Section 3. The
OpenMath standard de�nes a canonical way to represent the structure of math-
ematical objects. It o�ers primitive constructs for logical constants (called `sym-
bols' in OpenMath and indicated by the <OMS/> tag), variables (<OMV/>), ap-
plications (by <OMA/>), and a primitive binding construct <OMBIND/> that allows
to formalise quanti�ers or �-abstraction (the bound variables are tagged using
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<OMBVAR/>). For instance the expression sin(x) and the function f(x) = sin(x)
have the following OpenMath representations

<OMOBJ><OMBIND>
<OMS cd="ecc" name="Lambda"/>
<OMBVAR>

<OMV name="x"/>
</OMBVAR>

<OMOBJ><OMA> <OMA>
<OMS cd="trig" name="sin"/> <OMS cd="trig" name="sin"/>
<OMV name="x"/> <OMV name="x"/>

</OMA> </OMOBJ> </OMA>
</OMBIND></OMOBJ>

In order to support a standardised semantics, especially when resolving sym-
bols in OpenMath syntax, a set of so-called content-dictionaries , referred by
the cd attribute of OpenMath symbols is provided. Content dictionaries are
globally agreed on speci�cations on the meaning of OpenMath symbols. Based
on uniquely named content dictionaries, the individual mathematical systems
implement so-called phrase-books , i.e., transformation procedures that interpret
OpenMath representations and transform them into internal representations of
the systems proper (and vice versa). Therefore, such phrase books are an integral
part of the interface between a mathematical service and the embracing Math-
Web agent. Note that due to the explicit annotation of individual symbols, the
original ontology attribute in KQML-performatives which is a more rigid way
of �xing the semantics of symbols becomes redundant.

There are some special tags for grounding integers (<OMI>), oats (<OMF>,
strings (<OMSTR>), and byte arrays (<OMB>) directly in the language. Further-
more, the OpenMath protocol provides so-called `error objects' that allow to
pass information about exceptional computation states in the mathematical ser-
vices themselves. Errors are OpenMath symbols applied to a list of objects.
Consider for instance the following representation of division by zero:

<OMOBJ><OME>
<OMS cd="arith" name="DivisionByZero"/>
<OMA>

<OMS cd="arith" name="divide"/>
<OMV name="x"/>
<OMI> 0 </OMI>

</OMA>
</OME></OMOBJ>

KQML usually manages failure handling by its builtin performatives, e.g.,
"error" and "sorry", annotated with some comment or code of the failure. In
MathWeb, this would amount to an extensive list of failure codes depending on
the various mathematical services. A "reply" containing an OpenMath error
object is however more informative both on the mathematical and the deductive
service level.

5.2 OpenProof: Formulae and Proofs in OpenMath

OpenMath is simplistic in that it does not immediately introduce logical ex-
pressions, e.g., from propositional logic, equality logic, clause logic, higher-order
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logic, etc. | let alone proofs in various calculi, such as �rst-order natural de-
duction or higher-order semantic tableaux. Similarly, there is no notion of a
mathematical computation including intermediate results.

OpenMath's expressive binding constructor, however, allows us to build
such structures as mathematical objects including `meta'-information, e.g., in
which logical language a formula is expressed, and `meta'-variables, e.g., unspec-
i�ed parts of a logical formula, using a new OpenProof content dictionary and
additional dictionaries for particular logics and proof calculi. We will elaborate
on this approach in the rest of the section without giving a formal de�nition
of the openproof dictionary, which is outside the scope of this article. To con-
serve space, we will replace some lengthy syntactical forms with conventional
mathematical notation for presentation purposes.

The openproof content dictionary introduces four new binding symbols:
formula and term (for formulae and terms containing meta-variables), proof
and computation (for proofs and computation objects) in OpenMath. Attri-
butions of variables allow us to make assertions about the type and syntactical
nature of the logical objects they represent; this will become essential for de-
scribing the e�ect of mathematical services. Consider for instance the following
OpenMath representation.

<OMOBJ><OMBIND>
<OMS cd="openproof" name="formula"/>
<OMBVAR>

<OMATTR><OMATP>
<OMS cd="openproof" name="language"/>
<OMS cd="FFOL" name="CNF"/>

</OMATP>
<OMV name="F"/>

</OMATTR>
</OMBVAR>
<OMV name="F"/>

</OMBIND><OMOBJ>

It stands for any formula F that is a �rst-order formula in conjunctive nor-
mal form. Here we assume the existence of a content dictionary FFOL `Frag-
ments of �rst-order logic' that de�nes �rst-order logic (i.e. the logical symbols
8; 9;^;_;: : : :) and various sub-languages. Along the same lines, we represent
the schematic term X +X , where the meta-variable X stands for an arithmetic
expression (as de�ned in the content dictionary arith):

<OMOBJ><OMBIND>
<OMS cd="openproof" name="term"/>
<OMBVAR><OMATTR>

<OMATP><OMS cd="arith" name="arith-expression"/></OMATP>
<OMV name="X"/>

</OMATTR></OMBVAR>
<OMA>

<OMS cd="arith" name="plus"/>
<OMV name="X"/>
<OMV name="X"/>

</OMA>
</OMBIND><OMOBJ>

OpenProof representations for proofs and computation objects are de�ned
in much the same way. Conceptually, they are �ve-tuples (dec; obj; seq; res; lang),
where
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1. dec is a set of declarations for meta-variables in the proof or computation
object.

2. obj is the proof object or the computation object itself, i.e. a tree represen-
tation of the proof or the computation (see [Homann and Calmet, 1996] for
details).

3. For a proof object, seq is a sequent H ` A, where H is the set of hypotheses,
and A is the assertion of obj; for a computation object, seq is a computation
sequent, A 7! R, where A is a set of argument objects and R is the resulting
object of the computation.

4. res is a speci�cation of the resources used by the proof or computation
object. We have already motivated that such an annotation is essential for
providing e�ective mathematical services.

5. lang is the logical system that is used to represent the meta-formulae.

These �ve-tuples are represented as binding objects proof and computation,
where dec is represented as the list of attributed bound variables and seq,
res, and lang are represented as attributions to obj. It is straightforward to
use OpenMath terms to encode formal proofs using ideas from the so-called
`propositions-as-types' paradigm (or the Curry-Howard isomorphism [Thomp-
son, 1991]). For instance, the �-term ) I(�XA^B : ^ I(^ER(X);^EL(X)) is
a representation of the following Natural Deduction proof with its attached
OpenMath representation. For simplifying uncritical parts of the lengthy ex-
pression, we use convenient conventional notations:

[A ^B]1

^ER
B

[A ^B]
1

^EL
A

^I
B ^A

)I1

A ^B ) B ^A

<OMOBJ><OMBIND><OMS cd="ND(FOL)" name="impliesI"/>
<OMBVAR><OMATTR>

<OMATP><OMS cd="openproof" name="assertion"/>
A ^B

</OMATP>
<OMV name="X"/>

</OMATTR></OMBVAR>
<OMA><OMS cd="ND(FOL)" name="andI" >

<OMA><OMA><OMS cd="ND(FOL)" name="andEr">
<OMV name="X"/>

</OMA>
<OMA><OMS cd="ND(FOL)" name="andEl">

<OMV name="X"/>
</OMA></OMA></OMA>

</OMBIND></OMOBJ>

Here, we assume the existence of a content dictionary ND(FOL), which speci-
�es a Natural Deduction calculus for �rst-order logic [Gentzen, 1935] by de�ning
the inference rules as OpenMath symbols impliesI, impliesE, andI, andE,. . .
(of appropriate types). Note that in contrast to the classical `propositions-as-
types' approach, we have made use of the OpenMath binding construct again
to eliminate the �-abstraction in the argument of)I , instead we have made the
symbol impliesI a binding symbol itself. This is unnecessary from a theoretical
point of view, but gives a more direct encoding of the respective proof trees. Now,
we can express partially speci�ed proof objects by introducing meta-variables.
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[A ^B]1

.

.

.

[A ^B]1

^EL
A

^I
B ^A

)I1

A ^B ) B ^A

<OMOBJ><OMBIND><OMS cd="openproof" name "proof"/>
<OMBVAR><OMATTR>

<OMATP><OMS cd="openproof" name="sequent"/>
A ^ B ` A
<OMS cd="openproof" name="language"/>
<OMS cd="ND(FOL)" name="FO-ND"/></OMATP>

<OMV name="F"/>
</OMATTR></OMBVAR>
<OMATTR><OMATP><OMS cd="openproof" name="sequent"/>

; ` A ^ B ) B ^ A
<OMS cd="openproof" name="resources"/>

3 � R � 5
<OMS cd="openproof" name="language"/>
<OMS cd="ND(FOL)" name="FO-ND"/></OMATP>

) I(�X: ^ I(^EL(X);F(X))
</OMATTR>

</OMBIND> </OMOBJ>

In this partial proof, the meta-variable F stands for a sub-proof in �rst-order
ND for the sequent A ^ B ` B; F is bound in the proof environment and
the information about the calculus and the sequent are added by attribution.
The resources R used by the overall proof are at least 3 ND proof steps and
should not exceed 5 proof steps. The partial proof above could be sent to a
MathWeb theorem proving agent using the KQML-performative "ask-one":
the sending agent wants to know whether there is a single instance of this proof
(given the resource bounds of 5 steps) in the virtual knowledge base of the
prover agent. The answer could be the OpenProof equivalent to)I(�XA^B :^
I(^ER(X);^EL(X)) (see above) which has the variable F instantiated by the
(functional) symbol ^ER and carries the �nal resource amount of 4 steps. We
will come back to the issue of dealing with resources in the conclusion (Section 7).

Note that the exibility of KQML communication based on meta-variables
has to be paid with the necessity of requiring matching the level of agents. In
this respect, the content-languageOpenProof (and for the same reason already
OpenMath) is more problematic than traditional agent content languages. How-
ever, since we can restrictOpenProof to second-order expressions, we only need
second-order matching, which is known to be decidable [Huet and Lang, 1978].
We are currently investigating whether more restrictive policies for addressing
services via OpenProof can be captured with comparably more lightweight
mechanisms.

5.3 A Categorisation of Mathematical Services

In this section we briey categorise mathematical services by their behaviour
and communication needs. A special emphasis is put on specifying possible in-
teractions with other agents inMathWeb, thus on the suitability of messages in
KQML(OpenProof). We follow categorisations made in [Homann and Calmet,
1996; Hess et al., 1998] and do not claim that our list is complete.

5.3.1 Mathematical Filters

Certain mathematical programs can be used in a �lter-like way, that is they
can read a request from an input stream and write some answer to an out-
put stream. Mathematical �lters can be further grouped in computation �lters
and deduction �lters. The �rst perform some numerical or algebraic calculation
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which result they return (maybe coupled with some protocol information on
how the result was obtained), while the latter attempt to prove a given problem
and return, if successful, the proof or signal failure. Using partially speci�ed
KQML(OpenProof) proof and computation expressions, mathematical �lters
can be genuinely addressed in one-solution, single-shot modes up to all-solutions,
streaming modes.

Unlike computation �lters which terminate eventually, deduction �lters will
not always return a result. Thus deduction agents need to have additional prop-
erties for maintenance: On the one hand a requesting client must be able to send
a termination signal, e.g., "deny", to a deduction service in order to declare an
earlier request as obsolete. On the other hand the service itself needs to survey
its own running processes, assign resources to incoming requests and terminate
processes that have not produced any results after their allocated resources have
been consumed. Two instances of �lter agents that we have already integrated
into 
mega are the automatic theorem prover Spass [Weidenbach, 1997] and
the Computer Algebra system Maple [Redfern, 1998]. Furthermore, there is
a service competitive-atp that calls sets of ATP concurrently as competing
services (this strategy is known to yield even super-linear speedups in practice).

5.3.2 Mediators

Although OpenProof is a generic representation device for formulae in various
logics and proofs in di�erent calculi, it would be an overkill to demand from each
MathWeb agent to cope with arbitrary structures besides the natural format of
its encapsulated service. This would increase the computational burden that the
agent shell has to carry. Instead, the problems involved in translating between
the di�erent formats are rather themselves reasonable mathematical services
(see the example of Figure 5) to be embedded into agents and to be integrated
into the MathWeb. An example of such a mediator agent is a syntax trans-
former that can convert between di�erent representations of �rst-order logic, e.g.,
negation normal form and clausal form. Another service is `relativisation' which
transforms formulae of sorted �rst-order logic or higher-order logic to classical
�rst-order logic [Schmidt-Schau�, 1989; Kerber, 1991]. Finally, there are proof
transformers [Pfenning, 1987; Huang and Fiedler, 1996] that can transform from
one calculus into another one (possibly even transforming the base logic along the
way). Since mediators do not need a virtual knowledge base in the KQMLsense
for that purpose, we rather regard their task to simplify incoming expressions
into a canonical format, thus implement the "evaluate" performative of KQML
with corresponding OpenProof formula or proof contents.

5.3.3 Knowledge Bases

Mathematical knowledge bases are used to uniquely store formulae (axiomatisa-
tions, de�nitions, etc.) and also proof steps and proofs in order to give commonly
used, convenient symbols a semantics. Thus, they are a similar concept to the
OpenMath content dictionaries. For MathWeb, a close connection of these
concepts is envisaged: Knowledge bases with a MathWeb shell are automati-
cally able to produce properOpenMath code of their knowledge, thus a reason-
able content dictionary. On the other hand,MathWeb knowledge bases can ac-
cess existing content dictionaries to provide their information in theMathWeb.
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This happens typically over the "ask-one" performative carrying a higher-order
equation (see Section 4).

Contrary to other mathematical services, knowledge bases have the property
that they can be dynamically changed by clients, i.e., the user edits a de�ni-
tion in the user interface and "insert"s it to the knowledge base or requests
a "delete". The knowledge base agents therefore have some additional infor-
mation on access rights for particular agents/particular users sending requests.
The Mizar Library [Rudnicki, 1992] is a knowledge base that already o�ers its
services via the Internet, but is not yet integrated into MathWeb.

MathWeb currently only includes the MBase service, a simple web-based
mathematical knowledge base system that stores mathematical facts like theo-
rems, de�nitions and proofs and can perform type checking, de�nition expansion
and semantic search. It communicates with other mathematical services by me-
diators and with humans by the interaction unit OctOpus.

5.3.4 Display Components

This point covers possible interaction devices that enable a user to view and
elaborate processed mathematical data in a desired way. To these services belong
(graphical or non-graphical) displays and browsers for formulas and proofs, as
well as systems that can transform provided data into a human-oriented format.
As an example of the latter, one might consider systems that translate proofs
into natural language. An example for a graphical user interface that is already
available in MathWeb is L
UI [Siekmann et al., 1998] the interface for the

mega system. The user interface is a basic source of activity, as maintenance
of knowledge bases, transformations of logical expressions, and the initiation of
proofs are triggered from here (see the above services). Note that the user, thus
his user interface, could also appear as requestable entity in the MathWeb,
for example to propose an instantiation, to solve some lemma, etc. Therefore,
the user interface should also process incoming "ask-one" commands, but for
upholding the convenience of the user, it should not accept "stream-all" or
similar requests.

5.3.5 Anytime Services

Anytime services provide a means to organise the output of computations that
might have more than one result (possibly in�nitely many results) to a clients re-
quest. The general functionality of these services is similar to those of mathemat-
ical �lters, but they can also store additional information on both the requested
service and the client. The latter itself receives a result along with information on
how long the anytime service can provide further results and how these results
can be retrieved. Using these speci�cations, subsequent requests of the client
can then be answered by the anytime service using the already computed results
(always provided the requests are within the given time limit). A predestined
candidate for an anytime agent is, for instance, a uni�cation engine for higher or-
der logics. The necessary information exchange can be encoded in KQML using
streaming together with the resource attribution of OpenProof.
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5.3.6 Mathematical Control Units

Finally control units form the link between several di�erent other mathematical
services. They have the ability to permanently store data of ongoing proofs or
computations, making it available to other agents requests as well as using it
to assign other agents to certain tasks. While incorporating less or no appli-
cation services, control units overview a greater portion of the overall service
architecture and function as brokers to which agents with a smaller `social hori-
zon' could turn to. MathWeb should always have a `backbone' of persistent,
mutually-aware control units in order to bridge dispersed areas of services. As
elaborated in the example in Section 4 the 
mega control unit contains all nec-
essary information in order to carry out the steps leading to a complete proof of
the given example. "broadcast", "forward", and "broker-one" messages are
typically sent to the control unit for routing purposes.

6 Implementation and Experiences

MathWeb is implemented as an object-oriented toolbox that provides the func-
tionality for building a society of software agents that render mathematical
services by either encapsulating legacy deduction software or their own func-
tionality. The system is available at http://www.ags.uni-sb.de/~omega/www/
mathweb.html.

The current list of integrated mathematical services consist of the theorem
provers and computer algebra systems mentioned in the introduction, the knowl-
edge base system MBase, the proof transformation and presentation system
ProVerb [Huang and Fiedler, 1996] and the L
UI [Siekmann et al., 1998] and
OctOpus user interfaces. Currently, these services are used by the three control
components InKa [Hutter and Sengler, 1996], �Clam [Richardson et al., 1998],
and the 
mega kernel [Benzm�uller et al., 1997]. A �rst synergy e�ect ofMath-
Web has been that the �rst two systems can now partake in infrastructure (such
as L
UI and MBase) developed for the latter, while the 
mega system can
now turn to InKa or �Clam when it needs support for inductive proofs. Further-
more,MathWeb approach has been a key factor in keeping the 
mega system
maintainable and the near future will see further modularisation and `agenti�-
cation' of system components, which will lead to simpler system maintenance
and a more open development model.

In the current implementation, the software bus functionality of MathWeb

is realized by a CORBA-like model [Siegel, 1996] in which a central broker agent
provides routing and authentication information to the mathematical services
(see [Hess et al., 1998] for details). The agents are realized in a distributed pro-
gramming system mOZart (see http://www.mozart-oz.org for details), an
interactive and distributed implementation of the concurrent constraint pro-
gramming language Oz [Smolka, 1995]. mOZart

Furthermore, MathWeb provides the mOZart shell (Mosh), a tool for
launching and administering multiple mOZart applications (the agents) within
only one mOZart process. It combines some frequently used shell commands
(for �les, processes and environment) with some (thread-related) mOZart com-
mands. These allow (remotely) administering the mathematical services across
the Internet, since the administrator can connect to remote Mosh daemons {
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which run continually at the host providing the services { launch and terminate
services. This also allows for a limited form of self-organization of mathematical
services, since these can use Mosh scripts themselves to launch and administer
other services.

By providing several trading points which are interconnected using the KQML
interlingua we are now smoothly migrating into the fully distributedMathWeb

in which each mathematical service agent possesses the complete functionality
of the trading point including the capability lookup table. The current trading
points still use a proprietary protocol | both at the interlingua and the content
language levels | for communication with several embedded mathematical ser-
vices that is customised to the current needs and functionality of 
mega. Since it
resembles KQML performatives, we will come up with a fully KQML-compliant
system in the near future.

mOZart's main advantage as a basis for MathWeb comes from its net-
work transparency, i.e., the full support of remote computations in the base
language (lexical scoping, logical variables, objects, constraints,. . . ), and its net-
work awareness, i.e., the full control over network operations, such as the choice
between stationary and mobile objects, which make it easy to `agentify' arbitrary
applications. Incorporating both properties goes well beyond the distribution fa-
cilities of e.g. CORBA. mOZart also provides high-level inference primitives
like constraint propagation, search, and search control which makes it a good
implementation choice for the mathematical services proper. mOZart provides
low-level primitives to seamlessly integrate C/C++ code and to control arbi-
trary external processes via Operating System functionality. An example of a
mathematical service that is fully implemented in mOZart is the generic proof
visualisation tool L
UI.

For the content language, MathWeb still uses a mix of languages, consist-
ing mainly of the 
mega, InKa, and �Clam internal formats and the various
input languages of the legacy systems, turned into mathematical services by
MathWeb. Work is under way to implement the translation services needed for
integrating the content language OpenProof proposed in section 5.2. A uni�ed
content language will greatly simplify the administration of mathematical ser-
vices, since with n input languages of legacy systems, we only need 2n transfor-
mation services for pairwise communication instead of n2 without OpenProof.
In fact, the need for a development content language came from this practical
need as much as the desire for standardisation.

Apart from the application in mathematics and software engineering that has
been the primary focus, MathWeb has been tested in the Doris1 system, a
natural language understanding system that uses �rst-order automated theorem
provers and model builders as external mathematical services to solve the consis-
tency and entailment problems pertaining to various disambiguation problems
in text and dialogue understanding. Doris generates up to 500 deduction prob-
lems for each sentence it processes, distributes them to competing mathematical
services (over a network of workstations) and collects the results to obtain the
desired result. Using the MathWeb approach, the integration of the theorem
provers was very simple: the only new parts were a socket connection from Pro-

1 See http://www.coli.uni-sb.de/~bos/atp/doris.html for a web-based interface
that acts as a MathWeb client.
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log on the Doris side and a new service module for the doris service2 on the
MathWeb side. Experience with this application shows that distribution using
MathWeb does not come for free: A test with around 1300 Doris deduction
queries yielded the following timings:3

30{1250 ms pure theorem proving time
50-120 ms spent in the service module (opening an inferior shell, creating

�les,. . . ). This depends strongly on the e�ciency of the server �le system.
5{500 ms Internet latency (we have measured inter-departmental (in Saar-

br�ucken) and international (Saarbr�ucken/Amsterdam) connections)

However, the large number of deduction problems and the possibility of coarse-
grained parallelisation by distribution lead to a signi�cant increase in overall
system performance, compared to an earlier centralised, sequential architecture.
In particular, the timings also show that it can pay o� for a client in Saarbr�ucken
to delegate deduction problems to faster machines in Amsterdam or vice versa.

7 Conclusion

We have proposed a distributed network architecture for automated and in-
teractive theorem proving, MathWeb, that extends and generalises earlier ef-
forts in the 
mega proof development system to support modularisation, inter-
operability, robustness, and scalability of mathematical software systems. The
key concept is the identi�cation of mathematical applications with communi-
cating, autonomous agents, called mathematical services. We have described
an agent{ and communication model for the MathWeb architecture based on
the KQML and OpenMath standards which provides the functionality to turn
existing theorem proving systems and tools into mathematical services homoge-
neously integrated into a networked proof development environment.

7.1 Resources

Future work will concentrate on the resource part of OpenProof, since the
number of proof steps used in the examples in section 5.2 is certainly not an
universally meaningful unit of measure throughout the MathWeb. Particular
provers and calculi need less basic operations than others for performing particu-
lar manipulations or inferences. Particular machines running MathWeb agents
are faster than others. Thus having comparable processing times seems to be a
better approach. Additional costs, such as memory usage, required transforma-
tions, the information looked up in knowledge bases, user interactions, etc., are
also not yet accounted for. Gerber & Jung [Gerber and Jung, 1998] propose ab-
stract resources as a reasonable representation device for such interdependencies
between autonomous agents. They furthermore describe topological and algo-
rithmic means for organising a society of agents towards optimality based on
abstract resources.
2 I.e. a small (60 line) mOZart program that relays problems, results and statistics
between the Doris program and the competitive-atp service.

3 These times have been measured on a collection of SUN Ultra machines running
Solaris 5 in Saarbr�ucken and Amsterdam (all timings given in total elapsed time;
normalised to our fastest machine, a SUN Ultra 4 at 300 MHz).
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7.2 Negotiation

One means for load-balancing in multi-agent systems with central decision mak-
ing has been adopted from economics: the market metaphor. If (mathematical)
agents are equipped with a notion of (sel�sh) utility, thus money, and is pro-
vided a communicative platform for performing negotiations, the whole system
is able to perform self-regulation, i.e., suboptimalities from ine�cient or dis-
abled services will be adapted by reorientation of service requests. The contract
net protocol [Smith, 1980] and its derivates, for example, introduce an auction
mechanism for the delegation of tasks charged with certain costs. An agent herein
`announces' a task, such as the proof of a certain theorem, to a number of service
agents. Each service now judges its competence and predicts the expected costs
that his processing will produce. It `bids' for the task accordingly. The initiative
agent then selects one or several service agents in order to reduce costs and max-
imise performance. Using the KQML performatives, such auction mechanisms
can be easily implemented.
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