
A Decision Method for Duration Calculus

Nathalie Chetcuti-Sperandio
(Institut de Recherche en Informatique de Toulouse, France

chetcuti@irit.fr)

Luis Fari~nas del Cerro
(Institut de Recherche en Informatique de Toulouse, France

farinas@irit.fr)

Abstract: The Duration Calculus is an interval logic introduced for designing real-

time systems. This calculus is able to capture important real-time problems like the

speci�cation of the behaviours of schedulers and classical examples like a gas burner.

From a practical point of view an important challenge becomes to de�ne automated

proof procedures for this calculus. Since the propositional calculus is undecidable, we

are interested then into isolating decidable fragments of this calculus. A �rst fragment

was given and its decidability proved via regular languages.

In this paper we isolate another fragment and we de�ne a tableau method which gives

a natural procedure to decide whether a given formula is satis�able.

Key Words: Duration Calculus, automated deduction, tableau method.

Category: D.2.1, F.4.1, I.2.3, I.2.4

1 Introduction

The Duration Calculus [Zhou, Hoare and Ravn 91] is an interval logic intro-
duced for designing real-time systems. This calculus is able to capture impor-
tant real-time problems like the speci�cation of the behaviours of schedulers
and classical examples like a gas burner. From a practical point of view an
important challenge becomes to de�ne automated proof procedures for this cal-
culus. Since the propositional calculus is undecidable, we are interested then
into isolating decidable fragments of this calculus. A �rst fragment was given
[Zhou, Hansen and Sestoft 93] and its decidability proved via regular languages.
In this paper we isolate another fragment and we de�ne a tableau method which
gives a natural procedure to decide whether a given formula is satis�able. This
fragment is not comparable with the one of [Zhou, Hansen and Sestoft 93] as
both fragments strictly overlap each other without including or being included
in the other one.
This paper is organized as follows: �rstly we introduce propositional Duration
Calculus, then the fragment we isolated and �nally the tableau method we de-
�ned before concluding.

2 Propositional Duration Calculus

Duration Calculus [Zhou, Hoare and Ravn 91] is a temporal logic based on In-
terval Temporal Logic [Moszkowski 85] with an additional notion of duration in

Journal of Universal Computer Science, vol. 5, no. 11 (1999), 743-764
submitted: 3/9/99, accepted: 23/11/99, appeared: 28/11/99  Springer Pub. Co.



a state, i.e. the duration for which a system stays in a particular state.
This section introduces Duration Calculus but the reader interested by a thor-
ough presentation of Duration Calculus can refer to [Hansen and Zhou 97] for
the logical aspects.

2.1 Syntax

Three types of expressions are considered:

1. state expressions, built from state variables and classical logic operators {
the states of a system are modelled as state expressions, state variables being
basic states {,

2. terms, de�ned as usual with a peculiar operator
R
{
R
� being the duration

for which the system is in state � for a given temporal interval {,
3. formulae which are boolean formulae with a special operator called chop

such that �1;�2 is true in a given interval if this interval can be split into
two subintervals, �1 being true in the former and �2 in the latter.

2.2 Abbreviations

Apart from classical abbreviations, standard modal operators can be de�ned in
this calculus:

{ �� � >;� ;>
� is true for some subinterval of the current interval

{ �� � :�(:�)
� is true for every subinterval of the current interval

and more typical abbreviations:

{ ` �
R
1

` is the length of the current interval
{ de � ` = 0
the current interval is a point interval

{ d�e � (
R
� = `) ^ ` > 0

state expression � is 1 almost everywhere on the current interval and this
one is not a point interval.

2.3 Semantics

Time is modelled by the set of the real numbers. For each b, e 2 Time such that
b � e, the closed interval [b; e] denotes the set ft 2 Time : b � t � eg and Int
will denote the set of intervals.

State expressions A state expression is interpreted as a boolean function over
temporal points: Time �! f0; 1g. State variables are �nitely varied, i.e. they
may have only a �nite number of discontinuities on a bounded interval, state
expressions being thus Riemann-integrable on any bounded interval.

744 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



Terms A term is interpreted as a real-valued function: Int �! R, giving for
any temporal interval the duration of a given state expression.

Formulae A formula is interpreted as a boolean function over intervals: Int�!
ffalse; trueg.

Let I be an interpretation and let [b; e] be a Time interval. Semantically, M =
(I; [b; e]) satis�es � (orM is a model of �), denotedM j= �, if IJ�K([b; e]) = true.
Likewise, (I; [b; e]) 6j= � � IJ�K([b; e]) = false.

2.4 Proof System and Decidability

Michael R. Hansen and Zhou Chaochen give a sound and relatively complete
axiomatization of Duration Calculus in [Hansen and Zhou 92].

Some subsets have been identi�ed to be decidable while the others are undecid-
able [Zhou, Hansen and Sestoft 93].

In a decidable subset of Duration Calculus, a regular language L(�) can be
generated from a formula �. L(�) represents a set of strings corresponding to
interpretations satisfying �, such that � is satis�able if, and only if, L(�) is not
empty. The emptyness of a regular language being decidable, so is the satis�a-
bility of a formula.
A decision algorithm for checking the validity of formulae of a decidable Dura-
tion Calculus subset was implemented in [Skakkeb�k and Sestoft 94].

In what follows, a new fragment of Duration Calculus is presented and a de-
cidable tableau-based method is given.

3 Duration Calculus: an Interval Fragment

We will consider only a fragment of Duration Calculus; nevertheless this fragment
is a decidable subset of Duration Calculus.
In this section we introduce the syntax and the semantics of our fragment then
we show how to express a simpli�ed version of a gas burner in our fragment.

3.1 Syntax

State expressions State expressions are de�ned by induction in the following
way:

1. state variables are state expressions,

2. if s is a state expression then :s is a state expression,

3. if �1 and �2 are state expressions then �1 ^ �2 is a state expression.

745Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



Terms Terms are de�ned in the following way:

1.
R
1 is a term, denoted by `,

2. if � is a state expression then
R
� is a term,

3. if k is a function symbol of arity 0 then k is a term, called constant.

A constant is interpreted as a real number.

Formulae Now, formulae are de�ned, still by induction, in the following way:

1. ? and > are formulae,
2. if k is a constant then ` S k, where S 2 f<;�;=; 6=;�; >g, is a formula,
3. if � is a state expression then

R
� = 0 and

R
� = ` are formulae,

4. if �1 and �2 are formulae then �1 _ �2, �1 ^ �2 and �1;�2 are formulae.

The binary predicate symbols f<;�;=; 6=;�; >g are interpreted as binary boo-
lean functions over the set of the real numbers: R2 �! ftrue; falseg.

3.2 Semantics

An interpretation I associates with each state variable, a boolean function over
Time: Time �! f0; 1g.

State expressions The semantics of a state expression in interpretation I is a
function: Time �! f0; 1g, de�ned by induction in the following way:

{ if s is a state variable then IJsK(t) = I(s)(t),
{ if � is a state expression then IJ:�K(t) = 1� IJ�K(t),
{ if �1 and �2 are state expressions then IJ�1 ^ �2K(t) = IJ�1K(t)� IJ�2K(t).

Terms The semantics of a term in interpretation I is a function: Int �! R

de�ned in the following way:

{ IJ`K([b; e]) =
R e

b
1dt,

{ if � is a state expression then IJ
R
�K([b; e]) =

R e

b
IJ�K(t),

{ IJkK([b; e]) = k.

Formulae The semantics of formulae in interpretation I is a function: Int�!
ffalse; trueg de�ned by induction in the following way:

{ IJ?K([b; e]) = false,
{ IJ>K([b; e]) = true,
{ if k is a constant and S is a binary predicate symbol such that S 2 f<;�;=
; 6=;�; >g then IJ` S kK([b; e]) = true if, and only if, IJ`K([b; e]) S k,

{ if � is a state expression then IJ
R
� = 0K([b; e]) = true if, and only if,

IJ
R
�K([b; e]) = 0,

746 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



{ if � is a state expression then IJ
R
� = `K([b; e]) = true if, and only if,

IJ
R
�K([b; e]) = IJ`K([b; e]),

{ if �1 and �2 are formulae then IJ�1 _ �2K([b; e]) = true if, and only if,
IJ�1K([b; e]) = true or IJ�2K([b; e]) = true,

{ if �1 and �2 are formulae then IJ�1 ^ �2K([b; e]) = true if, and only if,
IJ�1K([b; e]) = true and IJ�2K([b; e]) = true,

{ if �1 and �2 are formulae then IJ�1;�2K([b; e]) = true if, and only if, 9m 2
[b; e] such that IJ�1K([b;m]) = true and IJ�2K([m; e]) = true.

Note 1. { In formulae, state expressions only appear within a
R
.

{ Let �1 and �2 be two state expressions and let �1 be �2 except for a �nite
number of points then 8[b; e] 2 Int;

R e

b
�1(t)dt =

R e

b
�2(t)dt. Therefore for

any state expression we can drop a �nite number of discontinuity points
without altering the truth value of formulae.

3.3 Example: a Gas Burner

The classical example on which Duration Calculus relies is the gas burner
[Ravn, Rischel and Hansen 93]; in this section we show how to express the re-
quirements for a simpli�ed gas burner system in our fragment.
There are three requirements for a gas burner:

1. Gas must never leak for more than 4 seconds in any period of 30 seconds at
most.

2. Heat request o� must after 60 seconds result in the 
ame being o�.
3. Heat request on must after 60 seconds result in the gas burning unless an

ignition or 
ame failure occurred. An ignition failure occurs if the gas does
not ignite within 0.5 second and a 
ame failure occurs if the gas stops burning
while still 
owing.

We shall consider the second as a time unit.
First we need state variables to express the gas burner state:

{ HeatRequest, valued 1 when there is a heat request to the gas burner,
{ Gas, valued 1 when the gas is 
owing,
{ Ignition, valued 1 when the ignition transformer tries to ignite the gas,
{ and F lame, valued 1 when the gas is burning.

As far as the �rst requirement (Req1) is concerned, the gas is leaking when it is

owing and not burning; we consider that for any period of 30 seconds at most
the gas may leak only once and for 4 seconds at most:

` > 30 _ ((

Z
(:Gas _ F lame) = `);

(

Z
(Gas ^ :F lame) = ` ^ ` � 4); (

Z
(:Gas _ F lame) = `))

As far as the second requirement (Req2) is concerned, there are three possible
cases:

747Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



{ the time period is less than 60 seconds: ` � 60,
{ the period is composed of a time interval of 60 seconds at most followed by
a time interval during which the gas is not burning:
` � 60; d:F lamee

{ Heat request is not o� on the whole period; again we consider that heat
request may be o� only once in a given period:

(dHeatRequeste; (

Z
:HeatRequest = `); (

Z
HeatRequest = `))

_ ((

Z
HeatRequest = `); (

Z
:HeatRequest = `); dHeatRequeste)

Consequently the second requirement can be formalized as:

(` � 60) _ (` � 60; d:F lamee)

_ ((dHeatRequeste; (

Z
:HeatRequest = `); (

Z
HeatRequest = `))

_ ((

Z
HeatRequest = `); (

Z
:HeatRequest = `); dHeatRequeste))

As far as the third requirement (Req3) is concerned, there are �ve possible cases:

{ the time period is less than 60 seconds: ` � 60,
{ the period is composed of a time interval of 60 seconds at most followed by
a time interval during which the gas is burning: ` � 60; dF lamee

{ Heat request is not on on the whole period; again we consider that heat
request may be on only once on a given period:

(d:HeatRequeste; (

Z
HeatRequest = `); (

Z
:HeatRequest = `))

_ ((

Z
:HeatRequest = `); (

Z
HeatRequest = `); d:HeatRequeste)

{ an ignition failure can occur:
>; (dGas ^ Ignitione ^ ((` > 0:5 ^

R
:F lame = `);

R
F lame = `));>

{ a 
ame failure can occur:
>; (dGase ^ (>; dF lamee; d:F lamee;>));>

Consequently the third requirement can be formalized as:

(` � 60) _ (` � 60; dF lamee

_ (d:HeatRequeste; (

Z
HeatRequest = `); (

Z
:HeatRequest = `)))

_ (((

Z
:HeatRequest = `); (

Z
HeatRequest = `); d:HeatRequeste))

_ (>; (dGas ^ Ignitione ^ ((` > 0:5 ^

Z
:F lame = `);

Z
F lame = `));>)

_ (>; (dGase ^ (>; dF lamee; d:F lamee;>));>)

748 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



Finally the gas burner must satisfy the three requirements:

Req1 ^ Req2 ^ Req3

4 Tableau Method

In this section we de�ne a tableau method characterized by a set of extension
rules. A step-by-step procedure applies these rules to a tree initially possessing
an only node, called root, to which a single formula is attached; the tree thus
constructed is called a tableau. If the original formula is consistent, there exists
a model associated with its tableau satisfying it.

4.1 Tableau Method

Extension Rules We shall call bounded formula (respectively bounded state
expression) an interval-stamped formula (respectively interval-stamped state ex-
pression), e.g. F[b;e].

An extension rule constructs a new tree Ti+1 from a tree Ti by adding sons
to a terminal node of Ti.
It is made up of a father and one or several sons, each node containing patterns
of bounded formulae, bounded state expressions or interval bound constraints. If
a childless node n contains bounded formulae, bounded state expressions or in-
terval bound constraints matching all the rule father's ones then the rule applies
to n.

Extension Rules for Duration Calculus

{ stop rules:
� stop1:

S;?[b0;e0]

stop
� stop2:

S; x[b0;e0];:x[b0;e0]

stop
� stop3:

S; b0 < e0; b0 = e0

stop

749Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



{ building rules:

� >:

S;>[b0;e0]

S; b0 � e0

� double negation: � is a state expression.

S; (::�)[b0;e0]

S; �[b0;e0]

� negation and: �1 and �2 are state expressions.

S;:(�1 ^ �2)[b0;e0]

�
�
��

@
@
@@

S;:�1[b0;e0] S;:�2[b0;e0]

� interval length S: k is a constant.

S; (` S k)[b0;e0]

S; b0 � e0; (e0 � b0) S k

where S 2 f<;�;=; 6=;�; >g

� null length: � is a state expression.

S; (
R
� = 0)[b0;e0]

S;:�[b0;e0]; b
0 � e0

� maximal length: � is a state expression.

S; (
R
� = `)[b0;e0]

S; �[b0;e0]; b
0 � e0

� or: x and y are formulae.

S; (x _ y)[b0;e0]

�
�
��

@
@
@@

S; x[b0;e0] S; y[b0;e0]

� and:

750 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



S; (x ^ y)[b0;e0]

S; x[b0;e0]; y[b0;e0]

� subinterval sequence:
S; (x; y)[b0;e0]

S; x[b0;b1]; y[b1;e0]

b1 new interval bound
� interval union:

S; x[b0;b1]; x[b1;e0]

S; x[b0;e0]

� interval disjunction:
S; x[b1;e1];:x[b2;e2]

������

HHHHHH
S; x[b1;e1];:x[b2;e2]; e1 � b2 S; x[b1;e1];:x[b2;e2]; e2 � b1

Rule interval disjunction does not apply if constraints e1 � b2 or e2 � b1
appear in the father.

Tableaux

De�nition 1 (Tableau). Let F be a formula and fT0, T1, : : : , Ti, Ti+1, : : : g
be a series of trees such that

{ T0 is a single node containing solely F[b;e], where b and e are generic interval
bounds,

{ Ti+1 is obtained by applying an extension rule to Ti.

If this series has a limit (note that any applicable rule is eventually applied), it
is called a tableau for formula F .

Fact 4.11 Any constraint belonging to a node also belongs to its stop-free de-
scendants (if it has any).

Firstly, stop rules are not concerned as they generate sons containing stop. Sec-
ondly, on the one hand each rule carries the bounded formulae, bounded state
expressions and constraints not involved in its application from the father to the
son(s), on the other hand no rule makes any constraint disappear.

Theorem 1 (Existence of a Tableau). For every formula F , there exists a
tableau for F .

751Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



Proof. First the series of trees constructed to �nd a tableau for F is never empty
since the �rst tree T0 is a single node containing the only formula F[b;e], where
b and e are generic interval bounds.
Secondly as each element of the series is built by applying an extension rule to
its predecessor and as the application of an extension rule to a node creates two
sons at most, it su�ces to prove that each extension rule applies �nitely often in
a given branch to prove that the series of trees is �nite, yielding thus a tableau.

{ Rules stop1, stop2 and stop3 stop the construction of the current branch, so
they apply only once to a given node.

{ Rules double negation, negation and, or, and and subinterval sequence generate
bounded subformulae of the bounded formula to which they apply in the sons
of the current node. Formulae being �nite, the number of their subformulae
is also �nite, so rules double negation, negation and, or, and and subinterval

sequence apply �nitely often.
{ Rule > just generates a constraint in the son of the current node, so it applies
only once to a given node and a given bounded formula.

{ Rule interval union applies to two bounded formulae and generates a single
one in the son of the current node. The number of formulae being �nite (as
formulae are �nite), rule interval union applies �nitely often.

{ Rule interval length S just generates two constraints in the son of the current
node so it applies only once to a given node and a given bounded formula.
The number of formulae being �nite, this rule applies only �nitely often.

{ Rule null length generates the negation of a bounded state subexpression and
a constraint. Formulae being �nite, the number of their state subexpressions
is also �nite, hence rule null length applies �nitely often.

{ Rule maximal length generates a bounded state subexpression and a con-
straint. Formulae being �nite, the number of their state subexpressions is
also �nite, thus rule maximal length applies �nitely often.

{ Rule interval disjunction carries both bounded state expressions to which it
applies and generates a b � e-like constraint in both sons of the current
node. Rule interval disjunction can not apply twice to the same pair of state
expressions because of the application condition on rule interval disjunction

and because of fact 4.11. Furthermore formulae being �nite, the number of
state expressions, hence the number of pairs of state expressions, is �nite so
rule interval disjunction applies �nitely often.

De�nition 2. { A node is preconsistent if it is stop-free.
{ A terminal node is open if it is preconsistent and the set of its constraints

is consistent, otherwise it is closed.
{ A tableau branch is open if its terminal node is open, otherwise it is closed.
{ A tableau is open if one of its branches is open, otherwise it is closed.

4.2 De�nitions and Preliminary Lemmas

T-satis�ability

752 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



De�nition 3 (Model). A model for bounded expressions and constraints is a
triplet (V; I; [b; e]) such that

{ V : finterval boundsg ! Time,

{ I : fstate variablesg �! (Time �! f0; 1g),

{ [b; e] is a Time-interval.

De�nition 4 (T-satis�ability). T-satis�ability is de�ned on bounded expres-
sions and constraints in the following way:

{ Let F[b0;e0] be a bounded formula. A model M = (V; I; [b; e]) t-satis�es F[b0;e0]

if [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= F ,

{ Let x[b0;e0] be a bounded state expression. A model M = (V; I; [b; e]) t-satis�es
x[b0;e0] if [V(b

0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); I(x)(t) = 1,

{ Let b0 R e0 be an interval bound constraint with R 2 f<;=;�g. A model
M = (V; I; [b; e]) t-satis�es b0 R e0 if V(b0) 2 [b; e], V(e0) 2 [b; e] and the
constraint V(b0) R V(e0) is satis�ed,

{ Let (e0 � b0) S k be a quantitative interval bound constraint with S 2 f<;�
;=; 6=;�; >g and k 2 R. A model M = (V; I; [b; e]) t-satis�es (e0 � b0) S k if
V(b0) 2 [b; e], V(e0) 2 [b; e] and the quantitative constraint (V(e0)� V(b0)) S k

is satis�ed.

Lemma 1. For all interval bounds b0 and e0, bounded formula F[b0;e0] is t-satis-
�able if, and only if, formula F is satis�able.

Proof. � ()) Let b0 and e0 be interval bounds. F[b0;e0] is t-satis�able
, 9(V; I; [b; e]) : [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= F

) 9(I 00; [b00; e00]) : (I 00; [b00; e00]) j= F (just take I 00 = I, b00 = V(b0) and
e00 = V(e0))
, F is satis�able.

� (() F is satis�able
, 9(I; [b; e]) : (I; [b; e]) j= F

) 8b0; e0 2 finterval boundsg; 9(V; I 00; [b00; e00]): [V(b0); V(e0)] � [b00; e00] and
(I 00; [V(b0); V(e0)]) j= F (just take V(b0) = b = b00, V(e0) = e = e00 and I 00 = I)
, for all interval bounds b0 and e0, F[b0;e0] is t-satis�able.

T-satis�ability Preservation

Lemma 2. For every rule, the father's bounded formulae, bounded state ex-
pressions and constraints are t-satis�able if, and only if, the bounded formulae,
bounded state expressions and constraints in one of the sons are t-satis�able.

Proof. see Appendix A.

753Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



Tableau Fundamental Propriety

De�nition 5. � is a partial order relation de�ned on tree nodes by:

{ n0 � n if n0 is a descendant of n,
{ n0 < n if n0 is a descendant of n or is the same node as n.

Fact 4.21 If a bounded state expression x[b;e] belongs to a node then any bounded
state subexpression coming from x[b;e] is [b; e]-stamped.

Looking at the rules applied to bounded state expressions, i.e. rules double nega-

tion, interval length S, null length, maximal length, and, interval union and interval

disjunction, it is obvious.

De�nition 6. Let n be a node and b, b0 interval bounds. b and b0 are connected
in n, denoted by b ./ b0 2 n, if there exist b1; : : : ; bm interval bounds such that the
set of constraints fb R 1b1; b1 R 2b2; : : : ; bm R m+1b

0 : R i 2 f<;�;=gg belongs
to n.

Fact 4.22 { The binary relation ./ is transitive.
{ If b ./ b0 then b � b0.

Lemma 3. Let F[b;e] be a bounded formula or bounded state expression in a
preconsistent node n. In every preconsistent terminal node such that n

0 < n,
b ./ e.

Proof. see Appendix A.

Lemma 4. As far as rule interval disjunction is concerned, its application while
not in the stated conditions is useless, i.e. it does not bring any new information.

Proof. see Appendix A.

Interval Bound Constraint Resolution The interval bound constraints of
a given terminal node n can be represented as a Simple Temporal Problem with
inequations (STP6= [Gerevini and Cristani 97]):

{ the set of variables is the set of the interval bounds appearing in n,
{ each constraint is a pair of which the second element is the set of excluded
points:
� each (e � b 6= k)-like interval bound constraint is translated as the
excluded point k,

and of which the �rst element is a binary constraint composed of a single
interval:
the constraint between two variables b and e is the intersection of all the
constraints involving b and e given that
� each (b R e)-like interval bound constraint is translated as the constraint

� (0;+1) if R is <,
� [0;+1) if R is �,

754 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



� or [0; 0] if R is =
between b and e,

� and each ((e� b) S k)-like interval bound constraint is translated as the
constraint
� (�1; k) if S is <,
� (�1; k] if S is �,
� [k; k] if S is =,
� [k;+1) if S is �,
� or (k;+1) if S is >

between b and e.

Computing a STP 6= consistency is in O(n3+k) time and O(n2+k) space, where
n is the number of variables and k is the number of inequations. A solution (if
there is any) can be found in O(n3 + k) time too [Gerevini and Cristani 97].

4.3 Model Associated with an Open Tableau

De�nition 7. Let n be a consistent terminal node of some open tableau then
the model (V; I; [b; e]) associated with n is constructed in the following way :

{ Let B = fb1; : : : ; bmg be the set of interval bounds occurring in the constraints
of n.
V : B ! Time associates with every bound of B a Time value such that the
order on fV(b1); : : : ; V(bm)g complies with the bound constraints of n, i.e. if
bi R bj 2 n then V(bi) R V(bj), where R 2 f<;�;=g and if (bj � bi) S k 2 n

then (V(bj)� V(bi)) S k, where S 2 f<;�;=; 6=;�; >g and k 2 R.
Let b = mini2f1;::: ;mg(V(bi)) and e = maxi2f1;::: ;mg(V(bi)).

{ Let fx1; : : : ; xpg be the set of state variables occurring in node n.
8j 2 f1; : : : ; pg I(xj) 2 Time! f0; 1g such that
if xj [b0;e0] belongs to node n then 8t 2 [V(b0); V(e0)); I(xj)(t) = 1

and 8t 62
S
f[V(b0); V(e0)) : xj [b0;e0] 2 ng; I(xj)(t) = 0.

4.4 Soundness

Theorem 2 (Soundness). If a tableau for a formula F is open then F is
satis�able.

Proof. Let n be a consistent terminal node of an open tableau for F and let
(V; I; [b; e]) be the model associated with n.
First, let us prove that model (V; I; [b; e]) t-satis�es every bounded state expres-
sion and every interval bound constraint of node n:

{ if bi R bj 2 n with R 2 f<;�;=g then, by de�nition 7, V(bi) 2 [b; e], V(bj) 2
[b; e] and V(bi) R V(bj).

{ if (bj�bi) S k 2 n with S 2 f<;�;=; 6=;�; >g and k 2 R then, by de�nition 7,
V(bi) 2 [b; e], V(bj) 2 [b; e] and (V(bj)� V(bi)) S k.

755Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



{ if x[b0;e0] 2 n then, by lemma 3, as n is a consistent terminal node b0 ./ e0

thus b0 2 B, e0 2 B and b0 � e0 (by fact 4.22) so, by de�nition 7, V(b0) 2 [b; e],
V(e0) 2 [b; e] and V(b0) � V(e0).
Owing to the construction of (V; I; [b; e]), 8t 2 [V(b0); V(e0)); I(x)(t) = 1
hence (V; I; [b; e]) t-satis�es x[b0;e0].

{ if :x[b0;e0] 2 n then, by lemma 3, since n is a consistent terminal node b0 ./ e0

thus b0 2 B, e0 2 B and b0 � e0 (by fact 4.22) so V(b0) 2 [b; e], V(e0) 2 [b; e]
and V(b0) � V(e0).
Rule interval disjunction applied to all x[b00;e00] 2 n

) for all x[b00;e00] 2 n, e00 � b0 or e0 � b00

) for all x[b00;e00] 2 n, b00 2 B, e00 2 B and (V(e00) � V(b0) or V(e0) � V(b00))
) for all x[b00;e00] 2 n, [V(b0); V(e0)) \ [V(b00); V(e00)) = ;
) [V(b0); V(e0)) \

S
f[V(b00); V(e00)) : x[b00;e00] 2 ng = ;

) 8t 2 [V(b0); V(e0)), t 62
S
f[V(b00); V(e00)) : x[b00;e00] 2 ng.

Moreover, by de�nition 7, 8t 62
S
f[V(b00); V(e00)): x[b00;e00] 2 ng, I(x)(t) = 0,

so 8t 2 [V(b0); V(e0)), I(x)(t) = 0, thus 8t 2 [V(b0); V(e0)), I(:x)(t) = 1.
Hence (V; I; [b; e]) t-satis�es :x[b0;e0].

Furthermore, by lemma 2, for every rule, the father's bounded formulae, bounded
state expressions and interval bound constraints are t-satis�able if the bounded
formulae, bounded state expressions and interval bound constraints in one of the
sons are t-satis�able. Consequently (V; I; [b; e]) t-satis�es F[�;�].
Accordingly, by lemma 1, F is satis�able.

4.5 Completeness

Theorem 3 (Completeness). If F is a satis�able formula then there exists
an open tableau for F .

Proof. Let F[�;�] be the root bounded formula. If F is satis�able then F[�;�]

is t-satis�able (lemma 1). According to lemma 2, for every rule if the father's
bounded formulae are t-satis�able then the bounded formulae of one of the sons
are t-satis�able too. This entails the existence of an open tableau for F .

4.6 Decidability and Complexity

The ending of a tableau construction is provided by the proof of theorem 1.
Consequently this Duration Calculus fragment is decidable.
As far as complexity is concerned, since the consistency problem of a STP6=

(Simple Temporal Problem with inequations) is polynomial the overall complex-
ity of the method will be the one associated with the tableau construction: our
current work is to characterize this complexity.

5 Conclusion

In this note a deduction method for a fragment of the Duration Calculus was
presented. In this fragment we can express quantitative constraints, i.e. con-
straints concerning the duration of actions, which is essential to reason in the

756 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



�eld of real-time systems.
Work in progress concerns on the one hand the study of the complexity of our
method, on the other hand the implementation of this method. The results
presented in this paper concerning the tableau construction characterize the
theoretical feasibility of the decision procedure. In order to apply this proof pro-
cedure to realistic speci�cations, the introduction of strategies is necessary (see
for example the section \Comparison" in [TABLEAUX'98,TABLEAUX'99]) ;
this work is currently under way.

References

[Allen 83] Allen, J. F.: \Maintaining Knowledge about Temporal Intervals"; Commu-
nications of the ACM, 26, 11 (1983), 832{843.

[Gerevini and Cristani 97] Gerevini, A., Cristani, M.: \On Finding a Solution in Tem-
poral Constraint Satisfaction Problem"; Proc. IJCAI'97, Morgan Kaufmann,
2 (1997), 1460{1465.

[Hansen and Zhou 92] Hansen, M. R., Zhou, C.: \Semantics and Completeness of
Duration Calculus"; In W.-P. de Roever, J. W. de Bakker, C. Huizing, and
G. Rozenberg, editors, Real-Time: Theory in Practice, REX Workshop, volume
600 of Lecture Notes in Computer Science, Springer-Verlag (1992), 209{225.

[Hansen and Zhou 97] Hansen, M. R., Zhou, C.: \Duration Calculus : Logical Foun-
dations"; Formal Aspects of Computing, BCS, Springer, 9, 3 (1997), 283{330.

[Moszkowski 85] Moszkowski, B.: \A Temporal Logic for Multilevel Reasoning about
Hardware"; Computer, IEEE Computer Society, 18, 2 (1985), 10{19.

[Ravn, Rischel and Hansen 93] Anders P. Ravn, A. P., Rischel, H. and Hansen, K. M.:
\Specifying and Verifying Requirements of Real-Time Systems"; IEEE
Transactions on Software Engineering, Special Issue on Software for Critical
Systems, 19, 1 (1993), 41-55.

[Skakkeb�k and Sestoft 94] Skakkeb�k, J. U., Sestoft, P.: \Checking Validity of
Duration Calculus Formulas"; Technical Report ID/DTH JUS 3/1, De-
partment of Computer Science, Technical University of Denmark, 2800
Lyngby, Denmark (1994), also appeared as electronic version, available at
ftp://ftp.it.dtu.dk/pub/ProCoS/Jens.U.Skakkebaek/IDDTH-JUS-3-1.ps.Z.

[TABLEAUX'98] de Swart, H., editor, Automated Reasoning with Analytic Tableaux

and Related Methods, TABLEAUX'98, volume 1397 of Lecture Notes in
Arti�cial Intelligence, Springer-Verlag (1998).

[TABLEAUX'99] Murray, N.V., editor, Automated Reasoning with Analytic Tableaux

and Related Methods, TABLEAUX'99, volume 1617 of Lecture Notes in
Arti�cial Intelligence, Springer-Verlag (1999).

757Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



[van Beek 90] van Beek, P.: \Exact and Approximate Reasoning about Qualitative
Temporal Relations"; PhD thesis, University of Waterloo, Canada (1990).

[Zhou, Hoare and Ravn 91] Zhou, C., Hoare, C.A.R., Ravn, A. P.: \A calculus of
durations"; information processing letters, North{Holland, 40, 5 (1991),
269{276.

[Zhou, Hansen and Sestoft 93] Zhou, C., Hansen, M. R., Sestoft, P.: \Decidability and
Undecidability Results for Duration Calculus"; In P. Enjalbert, A. Finkel, and
K. W. Wagner, editors, STACS 93, 10th Annual Symposium on Theoretical As-
pects of Computer Science, volume 665 of Lecture Notes in Computer Science,
Springer-Verlag (1993), 58{68.

A Proofs of lemmas

Lemma 2 (page 11). For every rule, the father's bounded formulae, bounded
state expressions and constraints are t-satis�able if, and only if, the bounded
formulae, bounded state expressions and constraints in one of the sons are t-
satis�able.

Proof. First, let us prove that for all stop rules, the father's bounded formulae
are not t-satis�able.

{ stop1:
Let M = (V; I; [b; e]) be a model of the father's bounded formulae:
M t-satis�es ?[b0;e0]

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= ? ) impossible.

{ stop2:
Let M = (V; I; [b; e]) be a model of the father's bounded formulae:
x is a state expression.
M t-satis�es x[b0;e0] and M t-satis�es :x[b0;e0] , [V(b0); V(e0)] � [b; e] and
8t 2 [V(b0); V(e0)), I(x)(t) = 1 and 8t 2 [V(b0); V(e0)), I(:x)(t) = 1
, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)), I(x)(t) = 1 and I(:x)(t) = 1
, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)), I(x)(t) = 1 and I(x)(t) = 0
) impossible.

{ stop3:
Let M = (V; I; [b; e]) be a model of the father's bounded formulae then
V(b0) 2 [b; e], V(e0) 2 [b; e], V(b0) < V(e0) and V(b0) = V(e0) which is impossi-
ble.

Let us prove now that for every rule (but stop1, stop2 and stop3) a model M
t-satis�es the father's bounded formulae, bounded state expressions and con-
straints if, and only if, M t-satis�es the bounded formulae, bounded state ex-
pressions and interval bound constraints in one of the child nodes.

758 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



{ >:
M t-satis�es >[b0;e0]

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= >
, V(b0) 2 [b; e], V(e0) 2 [b; e] and V(b0) � V(e0)
, M t-satis�es b0 � e0.

{ double negation:
M t-satis�es (::�)[b0;e0]

, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); I(::�)(t) = 1
, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); I(:�)(t) = 1�I(::�)(t) = 0
, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); I(�)(t) = 1�(1�I(::�)(t)) =
1
, M t-satis�es �[b0;e0]

{ negation and:
M t-satis�es :(�1 ^ �2)[b0;e0]

, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); I(:(�1 ^ �2))(t) = 1
, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)), I(�1 ^ �2)(t) = 1� I(:(�1 ^
�2))(t) = 0
, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)), I(�1)(t) � I(�2)(t) = 0
, [V(b0); V(e0)] � [b; e] and (8t 2 [V(b0); V(e0)), I(�1)(t) = 0 or I(�2))(t) = 0)
, ([V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)), I(�1)(t) = 0) or ([V(b0); V(e0)]
� [b; e] and 8t 2 [V(b0); V(e0)); I(�2))(t) = 0)
, ([V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)), I(:�1)(t) = 1) or ([V(b0); V(e0)]
� [b; e] and 8t 2 [V(b0); V(e0)), I(:�2))(t) = 1)
, M t-satis�es :�1[b0;e0] or M t-satis�es :�2[b0;e0]

{ interval length S:
M t-satis�es (` S k)[b0;e0] where S 2 f<;�;=; 6=;�; >g
, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= ` S k

, V(b0) 2 [b; e], V(e0) 2 [b; e], V(b0) � V(e0) and (V(e0)� V(b0)) S k

, M t-satis�es b0 � e0 and M t-satis�es (e0 � b0) S k.
{ null length:

� M t-satis�es (
R
� = 0)[b0;e0]

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j=
R
� = 0

, [V(b0); V(e0)] � [b; e] and IJ
R
�K([V(b0); V(e0)]) = 0

, [V(b0); V(e0)] � [b; e] and
R
V(e0)

V(b0)
IJ�K(t)dt = 0

, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); IJ�K(t) = 0 except for a
�nite number of points
) [V(b0); V(e0)] � [b; e] and by note 1 8t 2 [V(b0); V(e0)); IJ�K(t) = 0
, V(b0) 2 [V(b0); V(e0)], V(e0) 2 [V(b0); V(e0)], V(b0) � V(e0), [V(b0); V(e0)]
� [b; e] and 8t 2 [V(b0); V(e0)); IJ:�K(t) = 1
, M t-satis�es :�[b0;e0] and M t-satis�es b0 � e0

� M t-satis�es :�[b0;e0] and b0 � e0

, [V(b0); V(e0)] � [b; e], 8t 2 [V(b0); V(e0)), IJ:�K(t) = 1, V(b0) 2 [V(b0),
V(e0)], V(e0) 2 [V(b0); V(e0)] and V(b0) � V(e0)
, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); IJ�K(t) = 0

) [V(b0); V(e0)] � [b; e] and
R
V(e0)

V(b0) IJ�K = 0

759Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



, [V(b0); V(e0)] � [b; e] and IJ
R
�K([V(b0); V(e0)]) = 0

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j=
R
� = 0

, M t-satis�es (
R
� = 0)[b0;e0]

{ maximal length:
� M t-satis�es (

R
� = `)[b0;e0]

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j=
R
� = `

, [V(b0); V(e0)] � [b; e] and IJ
R
�K([b; e]) = IJ`K([b; e])

, [V(b0); V(e0)] � [b; e] and
R
V(e0)

V(b0) IJ�K(t)dt =
R
V(e0)

V(b0) 1dt

, [V(b0); V(e0)] � [b; e] and
R
V(e0)

V(b0) IJ�K(t)dt = V(e0)� V(b0)

, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); IJ�K(t) = 1 except for a
�nite number of points
) [V(b0); V(e0)] � [b; e] and by note 1 8t 2 [V(b0); V(e0)); IJ�K(t) = 1
, V(b0) 2 [V(b0); V(e0)], V(e0) 2 [V(b0); V(e0)], V(b0) � V(e0), [V(b0); V(e0)]
� [b; e] and 8t 2 [V(b0); V(e0)); IJ�K(t) = 1
, M t-satis�es �[b0;e0] and M t-satis�es b0 � e0

� M t-satis�es �[b0;e0] and b0 � e0

, [V(b0); V(e0)] � [b; e], 8t 2 [V(b0); V(e0)), IJ�K(t) = 1, V(b0) 2 [V(b0),
V(e0)], V(e0) 2 [V(b0); V(e0)] and V(b0) � V(e0)
, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); IJ�K(t) = 1

) [V(b0); V(e0)] � [b; e] and
R
V(e0)

V(b0) IJ�K(t)dt =
R
V(e0)

V(b0) 1dt

, [V(b0); V(e0)] � [b; e] and
R
V(e0)

V(b0) IJ�K(t)dt =
R
V(e0)

V(b0) IJ1K(t)dt

, [V(b0); V(e0)] � [b; e] and IJ
R
�K([V(b0); V(e0)]) = IJ

R
1K([V(b0); V(e0)])

, [V(b0); V(e0)] � [b; e] and IJ
R
�K([V(b0); V(e0)]) = IJ`K([V(b0); V(e0)])

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j=
R
� = `

, M t-satis�es (
R
� = `)[b0;e0]

{ or:
x and y are formulae.
M t-satis�es (x _ y)[b0;e0]

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= (x _ y)
, [V(b0); V(e0)] � [b; e] and ((I; [V(b0); V(e0)]) j= x or (I; [V(b0); V(e0)]) j= y)
, ([V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= x) or ([V(b0); V(e0)] � [b; e]
and (I; [V(b0); V(e0)]) j= y)
, M t-satis�es x[b0;e0] or M t-satis�es y[b0;e0]

{ and:
if x and y are state expressions then
M t-satis�es (x ^ y)[b0;e0]

, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); I(x ^ y)(t) = 1
, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)), (I(x)(t) = 1 and I(y)(t) = 1)
, ([V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); I(x)(t) = 1) and ([V(b0); V(e0)]
� [b; e] and 8t 2 [V(b0); V(e0)); I(y)(t) = 1)
, M t-satis�es x[b0;e0] and M t-satis�es y[b0;e0]

if x and y are formulae then
M t-satis�es (x ^ y)[b0;e0]

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= (x ^ y)

760 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



, [V(b0); V(e0)] � [b; e], (I; [V(b0); V(e0)]) j= x and (I; [V(b0); V(e0)]) j= y

, ([V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= x) and ([V(b0); V(e0)] � [b; e]
and (I; [V(b0); V(e0)]) j= y)
, M t-satis�es x[b0;e0] and M t-satis�es y[b0;e0]

{ subinterval sequence:
� M t-satis�es (x; y)[b0;e0]

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= (x; y)
, [V(b0); V(e0)] � [b; e] and there exists b2 2 [V(b0); V(e0)] such that
(I; [V(b0); b2]) j= x and (I; [b2; V(e

0)]) j= y

) let b1 be a new interval bound such that V(b1) = b2, [V(b
0); V(e0)] �

[b; e], V(b1) 2 [V(b0); V(e0)], (I; [V(b0); V(b1)]) j= x and (I; [V(b1); V(e0)])
j= y

, ([V(b0); V(b1)] � [b; e] and (I; [V(b0); V(b1)]) j= x) and ([V(b1); V(e
0)]

� [b; e] and (I; [V(b1); V(e0)]) j= y)
, M t-satis�es x[b0;b1] and M t-satis�es y[b1;e0]

� M t-satis�es x[b0;b1] and M t-satis�es y[b1;e0]

, ([V(b0); V(b1)] � [b; e] and (I; [V(b0); V(b1)]) j= x) and ([V(b1); V(e
0)]

� [b; e] and (I; [V(b1); V(e0)]) j= y)
) [V(b0); V(e0)] � [b; e] and there exists b2 2 [V(b0); V(e0)] such that
(I; [V(b0); b2]) j= x and (I; [b2; V(e0)]) j= y

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= (x; y)
, M t-satis�es (x; y)[b0;e0]

{ interval union:
if x is a state expression then
� M t-satis�es x[b0;b1] and M t-satis�es x[b1;e0]

, [V(b0); V(b1)] � [b; e], 8t 2 [V(b0); V(b1)); I(x)(t) = 1, [V(b1); V(e
0)] �

[b; e] and 8t 2 [V(b1); V(e
0)); I(x)(t) = 1

) [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); I(x)(t) = 1
, M t-satis�es x[b0;e0]

� M t-satis�es x[b0;e0]

, [V(b0); V(e0)] � [b; e] and 8t 2 [V(b0); V(e0)); I(x)(t) = 1
, [V(b0); V(e0)] � [b; e] and 8b2 2 [V(b0); V(e0)], 8t 2 [V(b0); b2), I(x)(t) =
1 and 8t 2 [b2; V(e

0)); I(x)(t) = 1 (the temporal domain is dense)
) let b1 be an interval bound such that V(b1) 2 [V(b0); V(e0)], [V(b0); V(b1)]
� [b; e], 8t 2 [V(b0); V(b1)); I(x)(t) = 1, [V(b1); V(e

0)] � [b; e] and 8t 2
[V(b1); V(e

0)); I(x)(t) = 1
, M t-satis�es x[b0;b1] and M t-satis�es x[b1;e0]

if x is a formula then
� M t-satis�es x[b0;b1] and M t-satis�es x[b1;e0]

, [V(b1); V(e
0)] � [b; e], (I; [V(b0); V(b1)]) j= x, [V(b1); V(e

0)] � [b; e] and
(I; [V(b1); V(e

0)]) j= x

) [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= x;x
, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= x

, M t-satis�es x[b0;e0]

� M t-satis�es x[b0;e0]

, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= x

761Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



, [V(b0); V(e0)] � [b; e] and (I; [V(b0); V(e0)]) j= x;x (the temporal domain
is dense)
, [V(b0); V(e0)] � [b; e] et 8b2 2 [V(b0); V(e0)], (I; [V(b0); b2]) j= x and
(I; [b2; V(e0)]) j= x

) let b1 be an interval bound such that V(b1) 2 [V(b0); V(e0)], [V(b1); V(e
0)]

� [b; e], (I; [V(b0); V(b1)]) j= x, [V(b1); V(e
0)] � [b; e] and (I; [V(b1); V(e0)])

j= x

, M t-satis�es x[b0;b1] and M t-satis�es x[b1;e0]

{ interval disjunction:
Additional hypothesis: e1 � b2 does not belong to the father and neither
does e2 � b1.
M t-satis�es x[b1;e1] and M t-satis�es :x[b2;e2]
, [V(b1); V(e1)] � [b; e], 8t 2 [V(b1); V(e1)); I(x)(t) = 1, [V(b2); V(e2)] � [b; e]
and 8t 2 [V(b2); V(e2)]; I(:x)(t) = 1
, [V(b1); V(e1)] � [b; e], [V(b2); V(e2)] � [b; e], 8t 2 [V(b1); V(e1)), I(x)(t) = 1
and 8t 2 [V(b2); V(e2)], I(x)(t) = 0
, ([V(b1); V(e1)] � [b; e], 8t 2 [V(b1); V(e1)), I(x)(t) = 1 and [V(b2); V(e2)]
� [b; e], 8t 2 [V(b2); V(e2)], I(x)(t) = 0 and V(e1) 2 [b; e], V(b2) 2 [b; e],
V(e1) � V(b2)) or ([V(b1); V(e1)] � [b; e], 8t 2 [V(b1); V(e1)], I(x)(t) = 1
and [V(b2); V(e2)] � [b; e], 8t 2 [V(b2); V(e2)], I(x)(t) = 0 and V(e1) 2 [b; e],
V(b2) 2 [b; e], V(e2) � V(b1))
, (M t-satis�es x[b1;e1] and M t-satis�es :x[b2;e2] and M t-satis�es e1 � b2)
or (M t-satis�es x[b1;e1] and M t-satis�es :x[b2;e2] and M t-satis�es e2 � b1)

Lemma 3 (page 12). Let F[b;e] be a bounded formula or bounded state expres-
sion in a preconsistent node n. In every preconsistent terminal node such that
n
0 < n, b ./ e.

Proof. { If F is a formula, we prove the lemma by structural induction on F :
� if F = ? then applying rule stop1 generates stop in the only son, the
requirements of the lemma are not met: it does not apply to ?.

� base case: F = >, ` S k,
R
� = 0 or

R
� = `, where S 2 f<;�;=; 6=;�; >g,

k is a real number and � is a state expression.
� if F = > then applying rule > generates constraint b � e in the only
son of n. By fact 4.11, this constraint propagates to the preconsistent
terminal descendants of n, if n is not terminal itself. Thus the lemma
is true for >.

� if F = (` S k), where S 2 f<;�;=; 6=;�; >g and k 2 R, then applying
rule interval length generates constraints b � e and (e � b) S k in
the only son of n. By fact 4.11, these constraints propagate to the
preconsistent terminal descendants of n, if n is not terminal itself.
Thus the lemma is true for ` S k, where S 2 f<;�;=; 6=;�; >g and
k is a real number.

� if F = (
R
� = 0), where � is a state expression, then applying rule null

length generates the constraint b � e in the only son of n. By fact 4.11,

762 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



that constraint propagates to the preconsistent terminal descendants
of n, if n is not terminal itself. Thus the lemma is true for

R
� = 0,

where � is a state expression.
� if F = (

R
� = `), where � is a state expression, then applying

rule maximal length generates the constraint b � e in the only son
of n. By fact 4.11, that constraint propagates to the preconsistent
terminal descendants of n, if n is not terminal itself. Thus the lemma
is true for

R
� = `, where � is a state expression.

� induction hypothesis: the lemma is true for all subformulae of F ; let us
prove that it is true then for F if F = F1 _ F2, F1 ^ F2 ou F1;F2.
� if F = F1 _ F2 then applying rule or generates respectively F1[b;e]

and F2[b;e] in the two sons of n,n0
1
and n

0
2
. By induction hypothesis

the lemma is true for F1[b;e] and F2[b;e] hence in every preconsistent
terminal node n

00
1
such that n00

1
� n1

0 { so n
00
1
� n {, b ./ e and in

every preconsistent terminal node n00
2
such that n00

2
� n

0
2
{ so n00

2
� n {,

b ./ e. Thus the lemma is true for F1 _ F2.
� if F = F1 ^ F2 then applying rule and generates bounded formu-
lae F1[b;e] and F2[b;e] in the only son of n, n0. By induction hypothesis
the lemma is true for F1[b;e] and F2[b;e] hence in every preconsistent
terminal node n

00 such that n00 � n
0 { so n

00 � n {, b ./ e. Thus the
lemma is true for F1 ^ F2.

� if F = F1;F2 then applying rule subinterval sequence generates
bounded formulae F1[b;b0] and F2[b0;e], where b0 is a new interval
bound, in the only son of n, n0. By induction hypothesis the lemma
is true for F1[b;b0] and F2[b0;e] hence in every preconsistent terminal
node n

00 such that n
00 � n

0 { so n
00 � n {, b ./ b0 and b0 ./ e. By

fact 4.22, b ./ e 2 n
00. Thus the lemma is true for F1;F2.

Therefore the lemma is true for every formula.
{ Suppose now that F is a state expression.
The root contains a formula F 0 so any state expression belonging to a de-
scendant comes from a subformula of F 0, more precisely from a (

R
� = k)-

like subformula of F 0 because rules null length and maximal length are the
only ones to generate a state expression from a formula. Given that from a
bounded formula (

R
� = 0)[b0;e0] rule null length generates a bounded state

expression :�[b0;e0] and from a bounded formula (
R
� = `)[b0;e0] rule maxi-

mal length generates a bounded state expression �[b0;e0] and given fact 4.21,
if state expression F[b;e] comes from (

R
� = 0)[b0;e0] or (

R
� = `)[b0;e0] then

actually b is b0 and e is e0. Moreover applying rules null length or maximal

length to (
R
� = k)[b0;e0] generates the constraint b

0 � e0 and by fact 4.11, this
constraint propagates to n and to its preconsistent terminal descendants.
Thus the lemma is true for every state expression.

Lemma 4 (page 12). As far as rule interval disjunction is concerned, its ap-
plication while not in the stated conditions is useless, i.e. it does not bring any
new information.

763Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...



Proof. Suppose that a terminal node n contains x[b1;e1] and :x[b2;e2] but that
the application requirement of rule interval disjunction is not satis�ed.

{ case e1 � b2 belongs to n and e2 � b1 does not: the application of rule interval
disjunction carries all the bounded formulae, bounded state expressions and
constraints of n, among them e1 � b2, to both sons of n and generates
constraints e1 � b2 in node n1 and e2 � b1 in node n2, n1 and n2 being the
sons of n.
On the one hand n1 does not contain any new information, on the other
hand all the bounded formulae, bounded state expressions and constraints
of n1 belong to n2 consequently any model of n2 is a model of n1 and if n1 is
not satis�able then so is n2. As we are interested in the open branches of the
tableau, n2 is useless. Since n1 is identical to n and n2 is \less interesting"
than n1, the application of rule interval disjunction in that case is useless.

{ case e2 � b1 belongs to n and e1 � b2 does not: similar to previous case.
{ case e1 � b2 and e2 � b1 belong to n: the application of rule interval dis-

junction carries all the bounded formulae, bounded state expressions and
constraints of n, among them e1 � b2 and e2 � b1, to both sons of n and
generates constraints e1 � b2 or e2 � b1 in the sons of n. These ones being
already present in both sons of n, the application of rule interval disjunction

in that case does not bring any new information.

764 Chetcuti-Sperandio N., Farinas del Cerro L.: A Decision Method ...


