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Abstract: We present a novel approach to parallel computing, where (virtual) PRAM
processors are represented as light-weight threads, and each physical processor is capa-
ble of managing several threads. Instead of moving read and write requests, and replies
between processor&memory pairs (and caches), we move the light-weight threads. Con-
sequently, the processor load balancing problem reduces to the problem of producing
evenly distributed memory references. In PRAM computations, this can be achieved
by properly hashing the shared memory into the processor&memory pairs.
We describe the idea of moving threads, and show that the moving threads framework
provides a natural validation for Brent's theorem in work-optimal PRAM simulation
situations on mesh of trees, coated mesh, and OCPC based distributed memory ma-
chines (DMMs). We prove that an EREW PRAM computation C requiring work W
and time T , can be implemented work-optimally on those p-processor DMMs with high
probability, if W = 
(p �T �max(D; log p)), where D is the diameter of the underlying
routing machinery. The computation is work-optimal regardless how (virtual) PRAM
processors terminate or initiate new PRAM processors during the computation.
Our result is based on using only one randomly chosen hash function and on showing,
how the threads (PRAM processors) can spawn new threads in required time on p-
processor OCPC, 2-dimensional mesh of trees, 2-dimensional coated, and 3-dimensional
coated mesh. A deterministic spawning algorithm is provided for all cases, although
a randomized algorithm would be su�cient due to the randomized nature of time-
processor optimal PRAM simulations.

Key Words: Balanced workload, moving threads, EREW, shared memory, simula-
tion, work-optimal, randomized, OCPC, mesh of trees, coated mesh.
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1 Introduction

This paper presents a new kind of framework for the PRAM (Parallel Random
Access Machine) implementations. The idea is simply to represent each PRAM
processor as a light-weight thread { just a small set of registers { and to imple-
ment references to non-local memory locations by moving the threads instead
of read and write requests and replies. Besides simplifying the routing process
in PRAM simulations, the approach also provides a natural way to keep the
utilization of individual processors in balance.

1.1 Motivation

When PRAM models or PRAM algorithms are implemented, the cost of imple-
mentation comes essentially from three di�erent sources: (1) The maximum load
per processor, (2) the maximum memory congestion per memory module, and
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(3) the diameter and capacity of routing machinery between the processors and
the memory modules. In the moving threads framework, we eliminate the �rst by
reducing it to the second. Since there exists a rich theory of hashing the shared
memory into (local) memory modules of processors so that each memory refer-
ence pattern (produced by the PRAM processors) causes a roughly even load
to each memory module, we consequently have a method to keep the workload
of each real processor roughly in balance. In fact, we do not need to constantly
observe, whether or not the workload of individual processors is in balance or
not, since because of the framework, the workload stays in balance with high
probability. Moreover, we do not even need to specify the allocation of PRAM
processors (or threads) on the real processors, since the shared memory hash-
ing strategy together with shared memory references that the PRAM processors
make, does that automatically.

To our knowledge, balancing the workload of processors in context of the
PRAM simulation has been done either by doing the balancing on the PRAM
side or on the DMM side but not by providing the balance automatically through
an implementation framework. Thus, this work represents a completely new
approach to balancing processor allocation. We would like to claim that it is not
wise to do explicit balancing on the PRAM side, since the advantage gained may
be lost, when the PRAM is implemented on a DMM.

1.2 The problem and our solution

Purpose of a parallel algorithm description is to de�ne a set of threads, which
together, in cooperation, solve the computational problem in question. A parallel
algorithm precisely describes the instruction stream of each thread. An e�cient
implementation of parallel algorithms requires that the need for communication
and processing power is well in balance with the system resources. Moreover,
if the topology of the parallel computer is very regular (e.g., as in the mesh),
then the utilization of both resources should be as homogeneous as possible.
However, during a parallel computation the number of threads (or processes or
virtual processors) nt(�) may vary dynamically as a function of the step counter
� . Existing threads can terminate or dynamically spawn new threads. New jobs
with varying number of threads and execution time might enter to the system
more or less unexpectedly. To keep the utilization of processing power in balance,
each of the p real physical processors should have approximately nt(�)=p threads
on its responsibility at step � . (We assume that each thread causes an equal
mount of work per time unit to the executing physical processor, since we are
mainly interested of PRAM algorithms working synchronously.)

Theorem Brent, [Brent 1974] If a computation C can be performed in time
T with W operations and su�ciently many processors which perform arithmetic
operations in unit time, then C can be performed in time T + (W � T )=p with p
such processors.

Brent's famous theorem tells that it is possible to balance the workload of
real processors. Unfortunately, Brent's theorem does not tell, how threads can
be allocated, if nt(�) and the instruction streams of threads are not known
beforehand. Moreover, Brent's theorem makes an assumption about the nature of
cooperation: Arbitrary (but semantically well-de�ned) communication patterns
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between threads, consequently between processors, can be implemented with
unit cost per thread. In the connection of PRAM models, the latter is naturally
achieved.

Currently, there exists a quite rich theory of dynamically balancing the work-
load of each PRAM processor; see e.g., [Gil 1991, Gil, Matias 1991, Gil et al. 1991,
Goodrich 1991, Hagerup 1992, Matias, Vishkin 1991]. For example, consider a
parallel algorithm A that takes time T (q) using q PRAM processors, and for
which nt(�) � nt(� + 1) for all � 2 f1; : : : ; T (q)g. In [Matias, Vishkin 1991], it
is proved that there is a work-optimal simulation of A on a PRAM with p (� q)
processors in time O(T (p) + log� q log log� q) so that the processor-time prod-
uct asymptotically equals (with high probability) to the number of operations
required by A with q processors.

However, balancing a computation on the PRAM side does not necessar-
ily guarantee e�cient utilization of the processor and communication resources,
since it only attempts to achieve high processor utilization. The communica-
tion resources are needed, since the only method to actually implement PRAM
models seems to be simulation on distributed memory machines (DMMs), and
therefore implementation of non-local memory references requires communica-
tion. Even if the computation is balanced on the PRAM side, the memory
references caused by the program at each step might be severely in imbal-
ance on the DMM side. This can result in bad processor&memory pair uti-
lization, and consequently bad processor utilization. Luckily, there exist good
shared memory hashing strategies [Carter et al. 1979, Dietzfelbinger et al. 1991,
Dietzfelbinger et al. 1994], which guarantee even distribution for all reference
patterns with high probability. These are used in many work-optimal PRAM
simulations [Goldberg et al. 1994, Leppanen 1996, Leppanen, Penttonen 1995,
Luccio et al. 1988, Ranade 1991]. By implementing a PRAM processor utiliza-
tion strategy on top of a work-optimal PRAM simulation, one can expect asymp-
totically good overall utilization of resources.

Our improvement to the situation is an observation that we do not need to
explicitly strive for keeping the processor side on balance, if we reduce the prob-
lem of thread balancing to the problem of producing evenly distributed mem-
ory reference patterns. We can achieve this by applying hashing to the shared
memory and moving light-weight threads instead of the read and write requests
and the replies. Consequently, we have a practical method that automatically
keeps the utilization of system resources in balance on the DMM side. The only
requirement of good utilization is the same as for work-optimal PRAM imple-
mentations in general: On the PRAM side we must, on average, have parallel
slackness [Valiant 1990] at least proportional to the diameter of the routing ma-
chinery and the expected memory module congestion. Notice that no matter how
evenly the threads are distributed among the processors, we are on the mercy of
the maximum memory module congestion, if all or most of the processors make
a non-local memory reference during each step.

We continue by giving an overview of the moving threads based computation
on distributed memory machines in Section 2. In Section 3, we discuss the im-
plementation of an elementary operation, namely spawning new threads. Then
in Section 4, we show that EREW PRAM algorithms can be simulated work-
optimally on certain distributed memory machines, although the termination of
old threads and the spawning of new ones is not known in advance. We draw
conclusions, and propose some topics for further research in Section 5.
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2 Preliminaries

First, we give an overview of the moving threads based computation, and then
in Section 2.2, we de�ne the distributed memory machines used in this paper.

2.1 Overview of moving threads framework

In moving threads based computation [see Fig. 1], a thread is executed on some
processor Pi, and transferred via an interconnection network to another pro-
cessor Pj , when it makes a reference to a memory location stored at the local
memory of Pj . Besides the usual load, store, arithmetic, and logical operations,
we assume that each thread can do a halt and a spawn operation in unit time.
The halt operation causes the thread to terminate { i.e., it it simply destroyed.
The spawn(x; id; loc) has three arguments. It creates x (> 0) new threads, whose
identities (PIDs) are id; id + 1; : : : ; id + x � 1. The next instruction of those
new threads is at location loc of the program. (For simplicity, we assume that
each processor has a local copy of the program(s).) In addition to the virtual
processor identi�er, PID, each thread consists of a program counter (PC), a
next instruction register (INSTR), an accumulator register (ACC), and a small
set of other registers. We do not introduce synchronization primitives to the
threads but rather pass to the physical processors and the routing machinery
the responsibility to maintain certain kind of synchrony.
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Figure 1: Function of a processor in moving threads based computation.

In this paper, we concentrate on the simulation of PRAM models. However,
the moving threads framework applies for other approaches to general purpose
parallelism as well. For example, if we aim to implement the sequential memory
consistency model [Mosberger 1993], then we are done. To implement stronger
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atomic consistency models requires that we have a method to keep two consec-
utive (PRAM) steps separated. One possibility would be to use ghost packets
[Ranade 1991] in the processors and routing machinery nodes in the form of
synchronization wave technique [Leppanen 1996]. Observe that in the moving
threads framework, we only need one routing phase (no replies) per simulated
step. On the other hand, the packets (threads) are now larger.

Certain similarities between the moving threads framework and other re-
cently proposed approaches to parallelism can be found. In the active messages
communication mechanism [Saavedra-Barrera et al. 1990, von Eicken et al. 1992],
each message contains a reference to a user-level handler that is executed on the
message arrival (to the destination processor) with the message as an argument.
In the moving threads framework, there is only one �xed handler. The active
messages approach is designed for current message passing multiprocessors, and
it aims to improve the e�ciency of message handling and to minimize com-
munication overhead. Another approach to balance the workload of processors
is work stealing [Blumofe, Leiserson 1994, Blumofe, Papadopoulos 1998], where
processors needing work steal threads from other processors. Stealing requires
ownership { in the moving threads approach processors do not own threads.
In the MuSE (Multithreaded Scheduling Environment) runtime environment
[Leberecht 1996] the idea of moving threads (tokens of dataow graphs) also
appears. Another recent approach similar to the moving threads is the theoreti-
cal model of computation spatial machine [Feldman, Shapiro 1992]. The spatial
machine is essentially a 3-dimensional grid of cells, where processors can move
to adjacent cells and change the contents of cells.

The moving threads approach is new and the feasibility of it is open. Un-
derstandably, current parallel machines are not directly suitable for the moving
threads approach. The feasibility and implementation issues are discussed in
[Leppanen 1996].

2.2 De�nition of DMMs

Next, we give a de�nition for OCPC [Goldberg et al. 1993] (an optical variant of
the complete graph [Leighton 1992]), 2-dimensional mesh of trees [Leighton 1992,
Leppanen 1995], and d-dimensional coated meshes [Leppanen, Penttonen 1995].

2.2.1 OCPC

The processors of a p-processor completely connected Optical Communication
Parallel Computer, OCPC(p), can send a packet to any other processor, but a
prerequisite of successful receiving is that only one processor tries to send to the
receiving processor at a given step. If several messages are sent to a processor at
a given step, the processor will receive none of them. The underlying topology
of OCPC is the complete graph. Each processor has a local memory module.

2.2.2 Mesh of trees

A 2-dimensional p-processorMesh of TreesMT (p) [see Fig. 2] is based on a p�p
mesh of nodes (without grid edges). To the i'th row (and to the j'th column) is
attached a complete binary tree, row tree RTi (respectively column tree CTj),
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whose leaves are the nodes on the i'th row (respectively on the j'th column).
The edges of complete binary trees are bidirectional. The MT contains no other
edges. The degree of MT is 3, the diameter is 4 log p, and the number of nodes is
3p2 � 2p. We assume (as in [Luccio et al. 1988]) that the roots of row tree RTi
and column tree CTi are merged for all i.

P = processor (+ memory module)

= node of underlying grid

3P

2P

1P

1P

0P

0P 2P 3P

= intermediate node

Figure 2: A 2-dimensional 4-sided mesh of trees.

2.2.3 Coated mesh

A d-dimensional p-processor coated mesh CM(p; d) [Leppanen, Penttonen 1995]

consists of a regular d-dimensional n = d�1

p
p=2d-sided mesh-connected rout-

ing machinery, which is coated from all sides with nd�1 processors [see Fig. 3].
The degree of routing machinery nodes is 2d, and the diameter is d(n � 1). All
connections between nodes and processor&memory pairs are bidirectional.

3 Arbitrary spawning on various DMMs

Next, we prove that an OCPC and a 2-dimensional mesh of trees as well as 2-
dimensional and 3-dimensional coated meshes can deterministically implement
arbitrary spawning of new threads.
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Figure 3: A 2-dimensional coated mesh with 20 processors.

In the following, we consider only implementing the spawn operations. For
simplicity, we implicitly make the naive assumption that the threads issuing
other than a spawn operation are executed (trivially) �rst and the spawn op-
erations are then solved collectively. We believe that in practice this kind of
separation can and should be avoided [Leppanen 1996].

3.1 Deterministic spawning algorithm

Consider a situation, where each of the Nold existing threads can issue an arbi-
trary spawn operation. Assume that the total number of new threads created is
Nnew, and originally each of the p real processors has O(Nold=p+log p) threads in
its custody. We do the spawning deterministically with the following algorithm.

Algorithm 1 (Deterministic spawning of new threads.)

Let processor Pi have ai threads T
0
i ; : : : ; T

ai�1
i in its custody. Assume that T j

i

issues spawn operation spawn(bi;j ; idi;j ; loci;j) at the current step. If T j
i creates

no threads, set bi;j = 0.
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1. Pi calculates Si =
Pai

j=0 bi;j .

2. Calculate pre�x sums over the Si-values, and broadcast Nnew =
Pp�1

i=0 Si to
all processors.

3. Spread the new spawn operations.
4. Pi creates its (at most dNnew=pe) new threads.

In each case, the processors �rst calculate, how many new threads their
current threads spawn. This is done deterministically in time maxfaij0 � i <
pg = O(Nold=p + log p). Then, the processors calculate pre�x sums over the
number of new threads to be spawn, and broadcast the total number to each
processor. Using that information the task of spawning can be evenly distributed.
Finally, the new tasks are created in time O(Nnew=p).

On a p-processor OCPC and mesh of trees, the pre�x sums and broadcasting
can be done in O(log p) routing steps, although on the mesh of trees some of
the nodes are required to do certain elementary operations besides redirecting
incoming packets. On a 2-dimensional p-processor coated mesh, the same can be
done in O(p) routing steps, and on a 3-dimensional coated mesh in O(

p
p) routing

steps [Leppanen, Penttonen 1995]. All these results are based on embedding a
binary tree (with processors as leaves) to the underlying graph.

All that remains to be shown, is how to e�ciently inform each real processor,
what threads it should create { we call this spreading of new threads. In the
following (Lemmas 3 { 6), we prove that it can be done deterministically in
O(Nold=p +Nnew=p +D + log p) routing steps, where D is the graph-theoretic
diameter of the underlying routing machinery. (The additive term \logP" might
seem odd. It is needed, since the OCPC has constant diameter and achieving
time-processor optimal EREW simulation (by using only one hash function) on it
requires parallel slackness 
(log p).) Consequently, we have Theorem 2. Observe

that if Nold+Nnew

p
= 
(D + log p), then implementing the spawn operations

requires constant work per thread.

Theorem2. Distributed memory machines OCPC(p), MT (p), CM(p; 2), and
CM(p; 3) having O(Nold=p + log p) threads per processor can execute arbitrary
spawning of Nnew new threads in O(Nold=p+Nnew=p+D+ log p) routing steps
so that each processor will receive bNnew=pc or dNnew=pe of the new threads. D
is the graph-theoretic diameter of the underlying routing machinery.

3.2 Spreading new threads

By the pre�x computation, we assign to each spawn(bi;j; idi;j ; loci;j) operation
an interval xi;j ; : : : ; xi;j + bi;j � 1. Using the values of Nnew and p, we get an
interval Pk; : : : ;Pl (k � l) of processors that collectively receive the bi;j new
threads. Notice that the above information can be used to de�ne exactly how
many new threads each of the l � k + 1 destination processors receive. In the
following, when we discuss spreading and splitting spawn operations, we assume
that proper information is always attached to the spawn operations. We call
spreading problem, the above problem, where the spawn operations are split
and distributed so that each of the processors receives instructions to create
bNnew=pc or dNnew=pe new threads.
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3.2.1 OCPC

First we consider the OCPC, where each processor can receive at most one packet
per step (from an arbitrary source). Notice that some processor can spawn all the
Nnew new threads, and therefore we must delegate the work of spreading the new
threads. The spawn operations we send can contain instructions to create several
threads, and those threads can be targeted to several processors. However, our
packets are always of �xed size.

Lemma3. An OCPC(p) solves the spreading problem in time O(Nold

p
+ Nnew

p
+

log p).

Proof. After the pre�x sum calculation, the processors can decide whom to
send the spawn operations. The pre�x sums also give us a collision free sending
schedule. In general, the processor Pi needs to spread its spawn operations to
processors Pk; : : : ;Pl (0 � k � l � p � 1). Each of the processors eventually
receives at most dNnew=pe spawn operations. Clearly, Pi can deliver all its spawn
operations (or their subsets) destined to Pk in time O(Nold=p+log p)+Nnew=p, if
no collisions take place. Collisions can be avoided by sending a spawn operation
that creates threads s1; : : : ; s2 (of the at most dNnew=pe threads) to Pk at time
T + sx, where T is the global beginning time of sending and s1 � sx � s2. Simi-
larly, Pi can deliver the spawn operations to Pl (on steps T +dNnew=pe; : : : ; T +
2dNnew=pe�1). On steps T+2dNnew=pe; : : : ; T+2dNnew=pe+O(Nold=p+log p),
the processor Pi simply forwards rest of the spawn operations to the processor
in the middle of the destination area of each spawn operation. Those spawn
operations that are destined to several processors are then split to two spawn
operations (using information about Nnew, p, and the destination area), which
are sent to the middle of their destination area. This pipelined recursive decom-
position process ends in time O(log p), and can clearly be made without collisions
in packet receiving. ut

3.2.2 Mesh of trees

The mesh of trees case is easier. Again, after the pre�x sums stage each processor
knows, where their spawn operations or continuous subsets of those should be
delivered.

Lemma4. An MT (p) solves the spreading problem in time O(Nold

p
+ Nnew

p
+

log p).

Proof. The path from a processor to another down along a row tree and up
along a column tree is unique. Therefore, it is straightforward for the processors
and the row tree nodes to split arriving spawn requests (if the proper information
is included) and forward them to their left and right subtrees. Once, a spawn
request has arrived to a leaf of a row tree, it is simply forward up along the
column tree to the destination processor. All requests arrive to their destinations
in time O(Nold=p+ log p+Nnew=p), since none of the requests is delayed in the
row trees (if the queues at the column tree edges are su�ciently large), and any
request is delayed at most bNnew=pc times while traversing up along a column
tree. ut
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3.2.3 Coated mesh

To solve the spreading problem on coated meshes, we need to solve a certain
partial h-h routing problem in a d-dimensional mesh based routing machinery.
In the partial h-h routing problem each processor initially and �nally has at
most h packets. Lemma 5 states Kunde's partial routing results [Kunde 1993] in
asymptotic form.

Lemma5. [Kunde 1993] A d-dimensional n-sided mesh can solve partial h-h
routing problem deterministically in time O(hn).

Lemma6. Coated meshes CM(p; 2) and CM(p; 3) solve the spreading problem

in time O(Nold

p
+ Nnew

p
+ p) and O(Nold

p
+ Nnew

p
+
p
p), respectively.

Proof. First, consider the 2-dimensional case. By the pre�x calculation, we can
assign a destination processor P�(i;j) for spawn operation spawn(bi;j; idi;j ; loci;j).
The processor P�(i;j) is in the middle of (an array of consecutively numbered)
processors for which the spawn operation creates the new threads. We solve the
spreading problem by �rst injecting spawn(bi;j; idi;j ; loci;j) to the closer half of
the pile of routing machinery nodes that the processor Pi is connected. Then,
we route each spawn operation via a certain node on the closer half of the pile
of routing machinery nodes, attached to the destination processor, to the desti-
nation processor. Finally, we �x the result by splitting large spawn operations
and by forwarding appropriate parts to neighboring processors.

Let n = p=4. The processor Pi can inject its ai = O(Nold=p + log p) spawn
operations evenly to the closer half of the pile of routing machinery nodes in
time O(ai + n=2). Each routing machinery node clearly has at most

h1 = 2� dmaxfakj0 � k < pg
n=2

e = O(1 +Nold=p
2)

spawn operations. If an operation spawn(bi;j; idi;j ; loci;j), producing the new
threads si;j;�(i;j), : : : ; ei;j;�(i;j) for P�(i;j), is routed via the (si;j;�(i;j) mod n=2)'th
node of an n=2 size destination area, then each routing machinery node is an
intermediate target of at most

h2 = 2� dNnew=p

n=2
e = O(1 +Nnew=p

2)

spawn operation. I.e., we have a partial max(h1; h2)-max(h1; h2) routing prob-
lem that by Lemma 5 can be solved in time O(Nold=p +Nnew=p + p). Clearly,
all the spawn operations can be delivered from their intermediate target to the
target processor in time O(Nnew=p+ n=2).

Observe that because of the pre�x computation, each processor has at most
two spawn operations that it has to split, and at most one to deliver both for
the next higher and lower numbered neighboring processors. The processors and
nodes on the surface of the 2-dimensional routing machinery form a ring, where
all the large spawn operations can clearly be split and spread in time O(p).

The 3-dimensional case is proved similarly. After the injection phase, we have

a partial h-h routing problem, where h = O(1+Nold=p
3

2 +Nnew=p
3

2 ). By Lemma
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5, it is solved in time O(Nold=p + Nnew=p +
p
p). The injection and removal

phases are done in time O(Nold=p +
p
p) and O(Nnew=p +

p
p), respectively.

Finally, it is straightforward to show that splitting and spreading all the large
spawn operations can be done in time O(

p
p). ut

4 Automatically balanced EREW simulations

Simply using a greedy routing on a DAG based routing machinery with a syn-
chronization technique is not enough to keep the work load of processors in
balance with high probability in all cases. If the executed EREW program is
such that after referring to a shared memory location x, each thread (simulat-
ing an EREW processor) makes only local arithmetic operations with register
values, then all the threads end up to the real processor on whose custody is
the location x. Sending each thread that makes no shared memory reference at
the current step to a randomly chosen processor obviously solves the problem.
Typically, routing results using congestion analysis techniques assume that there
are no dependencies between the sources and destinations when the paths are
chosen. Unfortunately, in the moving threads approach the simulated EREW
program can cause such dependences.

To prove our main result, Theorem 9, we choose to \worsen" the situa-
tion a little. We simply use Valiant's idea [Valiant 1982] to choose an inter-
mediate target for each thread and to split the original routing problem to
two separate routing problems. Proving Theorem 9 requires that we have a
result concerning simulation of one EREW step on various DMMs, when the
distribution of simulated EREW processors is not known to be even. Results,
where the simulated EREW processors are evenly distributed, are proved in
e.g. [Leppanen 1995, Leppanen 1996, Leppanen, Penttonen 1995, Valiant 1990].
Those results assume that the simulated processors are evenly distributed among
the simulating processors. However, it is straightforward to extend those results
to uneven simulated processor distributions, and express them in the form of
Lemma 7. The results are based on distributing the shared memory into the
local memories of the DMM by randomly choosing a hash function from the
family

H�
m;p =

n
h
���h(x) = (

X
0�i<�

aix
i mod q) mod p; 0 < ai < q; p � q = O(m)

o
;

where shared memory locations f0; : : : ;m�1g are the domain of h, f0; : : : p�1g
is the range, q is a prime, and � = 
(log p).

Lemma7. [Leppanen 1996, Leppanen, Penttonen 1995, Valiant 1990] Assume
that the EREW processors are randomly distributed to the simulating processors.
For each constant � > 0, there exist constants  and � such that one step of an
N-processor EREW can be simulated in time �max+�D

0 on OCPC(p), MT (p),
CM(p; 2), and CM(p; 3) with probability at least 1 � p��, where �max is the
maximum number of PRAM processors some DMM processor is simulating, and

D0 =

8><
>:
log p for OCPC(p);
log p for MT (p);p
p for CM(p; 3); and

p for CM(p; 2):
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The constant � in Lemma 7 a�ects the simulation cost (through  and �), but
can be chosen arbitrarily. To prove Theorem 9, we also need Lemma 8, which

says that when N keys are hashed with h 2 H
(log p)
m;p , none of the memory

modules receives more than O(N=p+ log p) keys with high probability.

Lemma8. [Dietzfelbinger et al. 1994] If a randomly chosen h 2 H�
m;p is used

for hashing a set S of unique memory locations into p modules, then for jSj = n
and for all i (0 � i < p):

Pr(bi � u) �
�
e � n
u � p

�min(u;�)

;

where bi = jfx 2 S j h(x) = igj.

Next, consider an arbitrary PRAM computation C that with some number
of PRAM processors requires time T and total workW . By high probability, we
mean probability of the form 1� p��, where constant � > 1.

Theorem9. An arbitrary EREW PRAM computation C solving problem A in
time T with work W using arbitrary number of EREW PRAM processors, can be
simulated work-optimally on OCPC(p), MT (p), CM(p; 2), and CM(p; 3) with
high probability, if T = O(p�) for some constant � > 0 and W = 
(p � T �D0),
where

D0 =

8><
>:
log p for OCPC(p);
log p for MT (p);p
p for CM(p; 3); and

p for CM(p; 2):

No matter how the PRAM processors are allocated and released during the com-
putation.

Proof. Denote the number of active EREW processors at step � with N� , and
represent each EREW processor as a light-weight thread. Since we are simulating
an EREW PRAM, we assume that the unique PIDs of active PRAM processors

are between 0 and m�1. We use a randomly chosen h 2 H� log p
2m;p to distribute the

shared memory locations to the local memory modules of the DMM. If we move
threads that make no memory reference at step � to processor Ph(m+x), where
x is the PID of the thread, then by Lemma 8 each memory module receives no
more than O(N�=p+ log p) threads with high probability. By properly choosing
� and the constant factors in O(N�=p+ log p), the probability of failing can be
made smaller than p���� for any constant � > 1.

Assume that routing the threads to their new target is done in two phases:
(1) First route all the threads to a randomly chosen processor, and (2) then
route the threads to their target. By Lemma 7, the �rst phase can be done in
time O(N�=p + D0) and the second phase in time O(N�+1=p + D0), with high
probability. By applying Theorem 2, we can conclude that at step � the new
threads can be spawned deterministically in time O(N�=p+N�+1=p+D0). The
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total work done by the simulation is thus

W 0 = p�
TX
�=1

O(N�=p+D0) +O(N�+1=p+D0) +O(N�=p+N�+1=p+D0)

= p�
TX
�=1

O(N�=p+D0) = O(W ) +O(p � T �D0):

If W = 
(p � T � D0), the total work W 0 done by the simulating processors is
O(W ) { i.e., the execution of computation C is work-optimal. ut

Theorem 9 basically says that if the computation C on average has paral-
lel slackness proportional to the maximum of the diameter and expected mod-
ule congestion, then the simulations on those DMMs utilize a constant fraction
of the peak performance throughout the computation C. In asymptotic sense,
this means that the Brent's theorem is valid for certain time-processor optimal
EREW PRAM simulations.

5 Discussion

The moving threads approach is based on two assumptions: Fast exchange of
messages between neighboring nodes, and fast hardware-supported multithread-
ing (context switching). Neither is inherently problematic, but both are (some-
what) insu�ciently supported by current parallel computers. However, the rapid
development of optical communication and the huge potential bandwidth of it
makes the moving threads approach interesting despite of the fast & high band-
width communication assumptions.

Our main result in this paper is that the moving threads framework can be
used to achieve a work-optimal implementation for EREW algorithms on certain
distributed memory machines, if the EREW algorithms contain enough parallel
slackness on average. The required amount of parallel slackness is the same
as is previously proved for time-processor optimal simulations based on �xed
number of EREW processors and one hash function. What is signi�cant in our
result is that nothing is assumed about how the number of PRAM processors
{ participating the computation { varies throughout the computation. Notice
that the parallel slackness can come from several simultaneously running PRAM
algorithms.

We dealt with the OCPC, mesh of trees, and coated meshes because of the
deterministic spawning results shown for those architectures. We expect that
such a result { or a corresponding randomized spawning result { can be shown
for several other architectures, e.g., the P -direct buttery, fat mesh, coated fat
mesh, hypercube and mesh of optical buses. For the P -direct buttery this might
be done by solving the spreading problem as a sequence of maxfakj0 � k < Pg
monotone routing problems; see [Leighton 1992, Section 3.4.3].

We would like to believe that in practice it is not necessary to move those
threads that make no shared memory reference during the current step. We
also believe that using the two-phase routing strategy in moving the threads to
their new target is not necessary { as a consequence of the randomized hash-
ing technique the source and destinations of memory references (and therefore
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the threads) should be random enough. Likewise, our deterministic spawning
method is too expensive in practice, and a heuristic method is likely to be
more practical. Moreover, we believe that one should route the spawn opera-
tions with the threads, and use some heuristic method to split the spawn op-
erations evenly while they are being routed greedily towards heuristically cho-
sen targets. It would be interesting to study the actual routing cost of con-
tinuous moving threads based PRAM simulation on an architecture, where a
directed acyclic graph is embedded into the routing machinery, and consec-
utive PRAM steps are kept separate by the synchronization wave technique
[Leppanen 1996, Ranade 1991].

Finally, one should notice that balancing the workload of processors is a
problem that has been studied not only in the context of the PRAM approach
to parallelism. It might be advantageous to apply the moving threads framework
(together with the shared memory hashing techniques) to those approaches, too.
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