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Abstract: The e�ciency of global optimization methods in connection with interval
arithmetic is no more to be demonstrated. They allow to determine the global optimum
and the corresponding optimizers, with certainty and arbitrary accuracy. One of the
main features of these algorithms is to deliver a function enclosure de�ned on a box
(right parallelepiped). The studied method provides a lower bound (or upper bound)
of a function in that box throughout two di�erent strategies. As we shall see, these
algorithms associated with various Branch and Bound methods lead to accelerated
convergence and permit to avoid the cluster problem.
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1 Introduction

In this paper the methods which are proposed, concern the minimization problem
in the context of Branch and Bound algorithms and interval arithmetic [6], [10].
We use a �rst order Taylor's expansion and the mean value theorem to build
a�ne underestimations of the function over the box. The intersection of these
underestimations is easily computed, then a lower bound of the function on the
box follows. This lower bound is often better than those which are issued from
di�erent inclusion functions, in connection with interval arithmetic [9].

First, we shall deal with the building of the a�ne underestimations and the
principle of the algorithm to get the lower bound. Then, its e�ciency will be
shown in section 5, when used within Branch and Bound algorithm, on simple
examples of unconstrained minimization of multivariate functions.

Usually, the minimization problem is described by:

Minimize f(x); subject to x 2 X; with X � IRn: (1)

f is a di�erentiable n-variables function and X is the right parallelepiped in IRn,
de�ned by X = fx = (x1; � � � ; xn);x

L
i � xi � xUi g;8i 2 f1; 2; � � � ; ng.

The principle used here, including the underlying mean value theorem, has
already been studied in the case of univariate polynomial function by Jaumard,
Hansen, and Xiong [5], by Alefeld [1], and by Visweswaran and Floudas [11].
Mladineo gives, for functions that satisfy a Lipchitz condition, a method [8]
based on the building of cones with spherical bases, where a mixed linear non-
linear system must be solved.
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In our method, we get polyhedral cones and we want to solve very simple
linear systems to keep the e�ciency of the algorithms. The unique solution of
each linear system corresponds to the vertex of a polyhedral cone that is meant
for a minimizer of f on a box X . This is reached by two suitable choices of
vertices of the hypercube as explained in sections 3. Convergence and complexity
properties are given in section 4. Numerical experiments and applications to
global optimization follow in section 5.

The following section gives the basic tools for the construction of the poly-
hedral cones.

2 Underestimating a�ne functions

According to Taylor's expansion of a function f , we get some inclusion function
of f in the box X [9]. This inclusion function is called the Taylor form:

8(x; y) 2 X2; f(y) 2 f(x) + (X � x)T g(X);

Where g(X) is an interval vector of the gradient inclusion of f ; g will be auto-
matically calculated by automatic di�erentiation [3], [6].

Let Xi = [xLi ; x
U
i ] and Gi(X) = [gLi (X); gUi (X)] for i = 1; 2; � � � ; n.

So, for every x 2 X;
@f

@xi
(x) 2 Gi(X).

We assume, for the following, that gLi (X):gUi (X) < 0.
Let s = (s1; � � � ; sn) be the coordinates of a vertex S of the box X and

gS(X) = (gS1 (X); � � � ; gSn(X))T

where

gSk (X) =
sk � x

U
k

xLk � x
U
k

gLk (X) +
sk � x

L
k

xUk � x
L
k

gUk (X);8k 2 f1; 2; � � � ; ng (2)

Then, from the following trivial inequalities:

(yi � x
L
i )g

L
i (X) � (yi � x

L
i )� � (yi � x

L
i )g

U
i (X)

and (yi � x
U
i )g

U
i (X) � (yi � x

U
i )� � (yi � x

U
i )g

L
i (X)

for all i = 1; 2; � � � ; n and any given � 2 Gi(X), we can deduce for every vertex
S of the box X , an a�ne underestimation of a function f over X , that is

f(y) � f(s) + (y � s)T gS(X);8y 2 X (3)

So we can obtain 2n a�ne underestimations of the function f for the box
X . Each one of these hyperplanes is a maximum supporting hyperplane at the
vertex S, for the box X .

590 Messine F., Lagouanelle J.L.: Enclosure Methods for Multivariate ...



3 Global minimum enclosure methods

The �rst aim of the following algorithm is to get a lower bound of a function
f on a box X . This will be achieved by the intersection of n + 1 hyperplanes
chosen amongst the 2n hyperplanes that we can build with the properties given
in section 2; but that does not give automatically a lower bound of f on X ;
except in the case of an univariate function [5], [11].

For k = 1; � � � ; 2n let �k be a maximum supporting hyperplane, uk its a�ne
representation and E+

k the restriction to the box X of the associated half-space
de�ned by

E+
k = f(x; z) 2 IRn � IR; z � uk(x);8x 2 Xg

classically we have the

Property 1 If
\
k2K

E+
k is a polyhedral cone with vertex C which contains the

graph of the function f then for jKj = n+1, fCg =
\
k2K

�k exists and is unique.

Remark. The choice of jKj = n+1 is minimal, it is possible to set jKj > n+1with
an analogous convexity property for a polyhedrical set but then the computation
of the lower bound becomes too expensive.

One way to obtain existence and uniqueness of such a point C is given by
the following choice of the hyperplanes �k.

First of all the n + 1 vertices Sk selected are not contained in the same
hyperplane of IRn.

Then each a�ne function uk satis�es the relations

uk(sk) = f(sk) (4)

uk(x) � f(x);8x 2 X (5)

uk(sk) � uk(x);8x 2 X (6)

Conditions (4) and (5) follow directly from the fact that �k is a maximum
supporting hyperplane.
Condition (6) supposes, here, that according to section 2, gLi (X)gUi (X) < 0 for
all i; this is obtained by application of a monotonicity test to f on X .

Let (xc; zc) 2 IR
n � IR the coordinates of the point C and uk(x) = f(sk) +

(x� sk)
T gSk(X), we introduce now the

De�nition 1. A set of n + 1 vertices of X is said admissible if the vertex C
of the polyhedral cone de�ned by n + 1 hyperplanes, built as above, satis�es
zc � f(x);8x 2 X and xc 2 X . For commodity the simplex, convex hull of the
vertices S0S1 � � �Sn is said admissible.

Such a point C gives a lower bound zc of f and xc is destined to be a current
minimizer for problem (1). Let us see on a short example that any arbitrary set
of n+ 1 vertices of a box X in IRn may not be admissible.

591Messine F., Lagouanelle J.L.: Enclosure Methods for Multivariate ...



Example 1.

f : X � IR2 �! IR

(x1; x2) 7�! f(x1; x2) = x21 � 2x1x2 + 3x1 � 5x2

X = [�5; 5]� [�15; 10]

then G(X) = ([�27; 43]; [�15; 5])T

Let s1 = (�5;�15)T ; s2 = (5;�15)T ; s3 = (5; 10)T . For these vertices and
u1; u2; u3 the corresponding hyperplanes

u1(x1; x2) = f(�5;�15)� 27(x1 + 5)� 15(x2 + 15)

u2(x1; x2) = f(5;�15) + 43(x1 � 5)� 15(x2 + 15)

u3(x1; x2) = f(�5; 10)� 27(x1 + 5) + 5(x2 � 10)

we get (xc; zc) = (�3:57;�15;�103:6) but f(5; 10) = �110, hence zc is not a
lower bound; fs1; s2; s3g is not admissible.

In sections 3.1 and 3.2 we deal with two kinds of admissible sets of vertices; in
section 3.2 we show that such sets always exist and can be easily identi�ed.

3.1 Admissible right simplexes

The �rst idea to get straightforward formulae from linear systems is to consider
the n + 1 vertices of a right simplex generated by a reference vertex S0 and by
the n adjacent vertices of a box X .

So doing the linear system is easily solved because from the vertex S0 to one
of the others Sk, only one variable is modi�ed.
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Figure 1: Right Simplex

The following result gives a su�cient condition for a right simplex to be
admissible.
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Theorem2. Let S0 be a vertex of a box X in IRn, let S1; S2; � � � ; Sn be the ver-
tices adjacent to S0. If g

Sk(X) is de�ned by (2) for all k. Then the corresponding
right simplex T0 is admissible if and only if

nX
i=1

gS0i (X)

gSii (X)� gS0i (X)
� �1 (7)

where gSki (X) = gLi (X) if (sk)i = xLi and gSki (X) = gUi (X) if (sk)i = xUi .

Proof. Let sk = (sk1 ; s
k
2 ; � � � ; s

k
n)

T be the coordinates of the vertex Sk for all k
and uk the a�ne function

uk(x) = f(sk) + (x� sk)T gSk(X)

First, note that Sk di�ers from S0 only by one coordinate, supposed to be xk.
Consider the auxiliary problem8<

:
Minimize z

subject to (x; z) 2 E+
k ;8k 2 K

x 2 X
(8)

If x� is a solution of this linear program, then (x�; z�) satis�es property 1; z� is
a lower bound of f on the box X and x� 2 X .

Standard form of (8) is8><
>:
Minimize z

subject to z = ek + f(sk) + (x� sk)T gSk(X);

0 � ek; k = 0; 1; 2; � � � ; n(x; z) 2 E+
k ;8k 2 K

x 2 X

(9)

ek is a slack variable.
The optimal solution of (9) is reached at the unique extremal point C�, vertex

of the polyhedral cone:

C� =

n\
k=0

�k

If x1; x2; � � � ; xn are the \basis" variables and ek = 0; k = 0; 1; � � � ; n, x� =
(x�1; x

�

2; � � � ; x
�

n)
T is solution of the linear system

z = f(sk) + (x� sk)T gSk(X); k = 0; 1; 2; � � � ; n

Moreover Sk is adjacent to S0 for all k and gSk is built following (2). Then by
subtraction of equation (k) from equation (0) one gets directly8<

:x�k =
f(s0)� f(sk)

g
Sk
k (X)� gS0k (X)

+
skkg

Sk
k
(X)� s0kg

S0
k
(X)

g
Sk
k (X)� gS0k (X)

k = 1; 2; � � � ; n

(10)

x� 2 X that is proved using (3) and the eventually optimal value z� for the
problem (8) is

z� = f(s0) + (x� � s0)T gS0(X) (11)
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But this solution is optimal if and only if the marginal costs are non negative.
From the standard form (9) we get

z = z� +

nX
k=0

cmkek

with cm0 = 1 +

nX
k=1

gS0k (X)

gSk
k
(X)� gS0

k
(X)

and cmk = �
gS0
k
(X)

g
Sk
k (X)� gS0k (X)

; k = 1; � � � ; n

but the assumption gLk (X)gUk (X) < 0 induces that cmk > 0 for any k 6= 0 and
optimality of (x�; z�) implies that cm0 > 0.

Let w(Gi(X)) := gUi (X) � gLi (X) and < Gi(X) >:= minfgUi (X); jgLi (X)jg
be respectively the width and the mignitude of the interval Gi(X), for i =
1; 2; � � � ; n.

The following condition of existence of an admissible right simplex is deduced
from the worst case in the previous inequality (7).

Theorem3. For n � 3 admissible right simplex exists on the box X if and only
if

nX
i=1

< Gi(X) >

w(Gi(X))
� 1 (12)

Remark. As it can be seen in Algorithm 1 when no admissible right simplex can
be found on the box, this condition is weakened and a lower bound will be found
again, but with a loss of accuracy.

For univariate or bivariate functions, inequality (12) is always satis�ed and
a right simplex can be found.

This leads to the
Algorithm 1-

{ Application of a monotony test (elimination of components).
{ Choose a right simplex satisfying (12); determination of the set K.
{ For n � 3 if no such simplex exists then apply one of these local strategies :

- relaxation of the gradient; then modify �k until the condition is satis�ed,
- Return the intersection of the polyhedral cone with the unbounded cylin-
der which has for base the box X : return the \lower point" so obtained.

{ Compute x�; z� by (10) and (11).

Proof. { if the optimality condition (7) is satis�ed then a lower bound is di-

rectly obtained by computation of fCg =
\
k2K

�k,

{ Relaxation: one moves some hyperplanes �k until the condition (7) is satis-
�ed,

{ Intersection is equivalent to compute directly the �rst order Taylor inclusion
function [10].
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This algorithm runs only for right simplexes; the aim of the next section is
to answer positively the question : for a given box X 2 IRn, is it always possible
to �nd an admissible set of n+ 1 vertices?

3.2 Construction of admissible simplexes

Let xL = (xL1 ; x
L
2 ; � � � ; x

L
n) and x

U = (xU1 ; x
U
2 ; � � � ; x

U
n ) be the vertices of X with

extremal coordinates. �S is called the opposite of a given vertex S on the box X
when �s = xL + xU � s.

We naturally associate to the box X , the symmetric directed graph con-
structed from its vertices and edges. Then the following result shows that, for
any given vertex S and the opposite one S on the box X , it is always possible
to �nd a path of length n : SSk1 � � �Skn�1S such that the corresponding simplex
is admissible.
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Figure 2: Admissible Simplex

gSi (X) being de�ned by (2), we denote

Ki = �
jgSi (X)j

w(Gi(X))
; i = f1; � � � ; ng

Theorem4. Let S be an arbitrary vertex of the box X, S its opposite. Let the
real numbers Ki be sorted in increasing order so that

�1 < Kk1 � Kk2 � � � � � Kkn < 0

Then the simplex de�ned by vertices SSk1 � � �Skn�1Skn(= S) is admissible when

the path from S to S is de�ned for j = 0; 1; 2; � � � ; n� 1 by(
s
kj+1
i := s

kj
i ; i 2 f1; 2; � � � ; ng n kj+1

s
kj+1
kj+1

:= xLkj+1 + xUkj+1 � s
kj
kj+1

(13)
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where Sk0 = S and Skn = �S.
This path is unique for strict inequalities.

Proof. One proceeds analogously to the previous theorem. The only di�erence
lies on the fact that in this case, two consecutive vertices have n � 1 identical
coordinates. Consequently x� optimal solution of the associated linear program
is obtained directly by subtraction of two consecutive equations; and then, we
get

x�kj =
f(skj�1 )� f(skj ) + g

Skj
kj

(X)s
kj
kj
� g

Skj�1
kj

(X)s
kj�1
kj

g
Skj
kj

(X)� g
Skj�1
kj

(X)
(14)

for kj = 1; 2; � � � ; n

and

z� = f(s) + (x� � s)T gS(X) (15)

one must show that x� 2 X and that z� is a lower bound of f .
x� 2 X is straightforward when one writes xLkj � x�kj � xUkj , for all kj under

the hypothesis gLkjg
U
kj
< 0 and (3).

Otherwise z� is the minimal value of auxiliary problem (8) if and only if the
marginal costs are non-negative because

z = z� + ek0 +

nX
kj=1

ekj�1 � ekj

g
Skj
kj

(X)� g
Skj�1
kj

(X)
g
Sk0
kj

(X)

which implies that

0 < 1 +
g
Sk0
k1

(X)

g
Sk1
k1

(X)� g
Sk0
k1

(X)

and
g
Sk0
kj

(X)

g
Skj
kj

(X)� g
Skj�1
kj

(X)
�

g
Sk0
kj+1

(X)

g
Skj+1
kj+1

(X)� g
Skj
kj+1

(X)

for j = 1; 2; � � � ; n� 1
But considering (13) and (2) we get

g
Skj�1
kj

(X) = g
Skj�2
kj

(X) = � � � = g
Sk0
kj

(X)

and

g
Skj
kj

(X) =
g
Skj�1
kj

(X)� gLkj (X)

gUkj (X)� gLkj (X)
gLkj (X) +

gUkj (X)� g
Skj�1
kj

(X)

gUkj (X)� gLkj (X)
gUkj (X)

for j = 1; 2; � � � ; n. Therefore, in any case,

g
Sk0
kj

(X)

g
Skj
kj

(X)� g
Skj�1
kj

(X)
= �

jg
Sk0
kj

(X)j

w(Gkj (X))
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because gLj (X) < 0 < gUj (X), for j = 1; 2; � � � ; n.
Hence for, any initial vertex S, at least one admissible simplex, can be found

applying the rule given in theorem (4) that gives a path from S to �S.

If the initial vertex is �S instead of S, it is easily seen that one �nds the
same path in reverse order towards S. Then, for a box X , it exists at least 2n�1

admissible simplexes and as much lower bounds for f . We do not study here the
best choice amongst all these possibilities, a choice that must take into account
the values of f and its derivative.

For illustration, we apply this method to example 1

s = (5;�15)T is the initial vertex, gS = (43;�15)T and K1 = �
43

70
, K2 =

�
15

20
which gives

�1 < K2 < K1 < 0

then an admissible path from s = (5;�15)T to �s = (�5; 10)T is obtained by
modifying �rst the coordinate x2 which leads to the vertex (5; 10) and secondly
the coordinate x1 which leads to (�5; 10) the terminal vertex.

One gets with the corresponding hyperplanes x� = (
8

7
;�5) and z� = �

2211

7
' �315:9.

Now we see why the right simplex fs1; s2; s3g was not admissible in this exam-
ple; generally for a bivariate function on a box X , two simplexes are admissible;
which, in this case, coincides with the right ones.

To get a lower bound of a function f from theorem (4), we apply
Algorithm 2-

{ Choose a vertex S; determine gS(X).
{ Application of monotony test (elimination of components).
{ Computation of

Kk = �
jgSk (X)j

gUk (X)� gLk (X)
; k = f1; � � � ; ng

{ Classify the associated numbers Kk in increasing order.
{ Determination of an admissible simplex following theorem (4)
{ Compute fx�; z�g with (14) and (15).

Remark. Several very e�cient improvements may be used to get tighter lower
bounds: Slope matrices will advantageously take place of derivatives when their
computation is possible or narrower intervals for the components of g may also
result from Taylor expansion of E. Hansen [3], where some interval arguments
are replaced by real quantities.

If an upper bound is required instead of a lower bound, Algorithm 2 is mod-
i�ed as follows

For a given vertex S of the box X , let Hi = jKij, for i = 1; 2; � � � ; n.

gSi (X) =
si � x

U
i

xLi � x
U
i

gUi (X) +
si � x

L
i

xUi � x
L
i

gLi (X) (16)
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The real numbers Hi are classi�ed in increasing order

0 < Hin � Hin�1 � � � � � Hi1 < 1 (17)

Then an admissible path from S to �S is found by modifying the coordinates of
S in the order xi1 ; xi2 ; � � � ; xin .

Unfortunately, the paths for a lower bound and an upper bound of a function
f on a box X are distinct excepted in extreme cases for example if gLi (X) = C1

and gUi (X) = C2 for all i.
When inequalities are strict in (17), the two paths are opposite which means

that S and �S are respectively the initial vertices for lower and upper bounds
then �Ski is the opposite vertex of Ski i.e. �ski = xL+ xU � ski for all i, see �gure
(2).

4 Optimization algorithm using these enclosure processes

The methods previously described are integrated, by the mean of Algorithm 1
and Algorithm 2 in interval Branch and Bound algorithms [10] to solve the global
minimization problem (1).

This is the topic of
Algorithm 3-

{ Initial enclosure of the minimum on X , say [FL; FU ]
{ Insert (X;FL) in a list L

{ ~f � +1
{ While the minimizers are not found with a given tolerance
{ Do

- Extract the �rst element from L, write it as follows: (Y; ~y)

- Divide Y into two parts (along its larger edge): we get V (1) and V (2).
- For i = 1; 2
- Do

- Enclosure the global minimum on V (i) = [FL; FU ]

- if FL > ~f then
- Go to the next step

- else
- if FU < ~f then

. ~f � FU

. Remove all the elements of L which lower bound is greater than

the new ~f.
- end if
- Insert (V (i); FL) in L following the increasing order of the FL.

- end if
- end For

{ End While
{ Return ~f and L.

Remark. { The upper bound FU may also be progressively computed in the
algorithm

{ We have three possibilities to enclose the global minimum:
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1. right simplex and, if necessary, intersection with unbounded cylinder
which has for base the box X .

2. right simplex and, if necessary, gradient relaxation.
3. research of an admissible simplex with two opposite vertices of X .

{ When the size of a box X is su�ciently small, it is not necessary to compute
for each sub-box of X the gradient according to inclusion monotonicity but
this induces a slower convergence.

For every admissible simplex de�ned by the vertices Sk0 ; Sk1 ; � � � ; Skn of X ,
the following inequalities hold:

min
j=1;2;���;n

ff(Skj )g � fmin � z� (18)

with fmin = infx2Xff(x)g.

4.1 Complexity and convergence

Each underestimation of f requires

{ an interval inclusion function of grad f
{ n+ 1 point evaluations of the function f

and �nally the computation of fx�; z�g requires O(3n) elementary operations
for a given box X .

This estimate is relative to a single box; but considering, the splitting of a
box into adjacent sub-boxes, , which is done in global optimization problems,
the number of evaluations of f may be perceptibly reduced. Indeed if n vertices
belong to the interface of two sub-boxes, then one more vertex is necessary on
each sub-box.

Moreover changing a single vertex does not a�ect all the coordinates of x�

and brings only a partial contribution in the computation of z�.
Let z�L and z�U be respectively the computed lower and upper bounds.

Let w(X) and w(G) be the width vectors, w(X) = xU � xL and

w(G) = (w(G1(X)); w(G2(X)); � � � ; w(Gn(X)))T

and
jgS(X)j = (jgS1 (X)j; jgS2 (X)j; � � � ; jgSn(X)j)T

where gS(X) is de�ned by (2), then properties of convergence of a�ne estimates
run from

Theorem5. For a di�erentiable function f : X � IRn ! IR; if an admissible
set fSkjgj=0;1;���;n is used to get z�L and the opposite one f �Skjgj=0;1;���;n to get

z�U for z�U on the box X, then, assuming gUk (X)gLk (X) < 0;8k, the following
inequalities are valid:

jz�L � fminj � min
j=0;1;���;n

(w(X); jgSkj (X)j)IRn (19)

z�U � z
�

L � (w(X); w(G))IRn (20)

And the excess width of a�ne estimation is at least of order 2 for a regular
function.
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Proof. The proof is quite straightforward drawn from the arguments :

{ For all j,

jz�L � fminj � jz
�

L � f(skj )j = (x�L � skj )
T g

Skj (X)

and on equivalent inequality for z�U .
{ For any x 2 X ,

@f

@xi
(x) = �gLi (X) + (1��)gUi (X); � 2]0; 1[

{ Finally, EW excess width of a�ne estimate for a function f is given by

EW = (z�U�z
�

L)�(fmax�fmin) = z�U�fmax�(fmin�z
�

L) � (w(X); w(G))IRn

which induces a convergence of order 2 as soon as, for example, the �rst
derivative of f satis�es a Lipschitz condition.

5 Numerical experiments

First we search the global minimum of polynomial functions of 2; 3, or 4 variables
with di�erent degrees and of functions involving trigonometric functions.

f1(x) = 1 + (x21 + 2)x2 + x1x
2
2; with X = [1; 2]� [�10; 10]

f2(x) = 2x21 � 1:05x41 + x22 � x1x2 +
1

6
x62; with X = [�2; 4]2

f3(x) = (x1 � 2x2 � 7)2 + (2x1 + x2 � 5); with X = [�2:5; 3:5]� [�1:5; 4:5]

f4(x) = [1 + (x1 + x2 + 1)2(19� 14x1 + 3x21 � 14x2 + 6x1x2 + 3x22)]

�[30 + (2x1 � 3x2)
2(18� 32x1 + 12x21 + 48x2 � 36x1x2 + 27x22)]

with X = [�2; 2]2

f5(x) = (x1 � 1)(x1 + 2)(x2 + 1)(x2 � 2)x23; with X = [�2; 2]3

f6(x) = 4x21 � 2x1x2 + 4x22 � 2x2x3 + 4x23 � 2x3x4 + 4x24 + 2x1 � x2 + 3x3

+5x4; with X = [�1; 3]� [�10; 10]� [1; 4]� [�1; 5]

f7(x) = x21 + x22 � cos 18x1 + x1 sin 18x2 + x3 cosx3 + x1x2x3

with X = [1; 500]3

Pb f1 f2 f3 f4 �f2
N T(s) C N T(s) C N T(s) C N T(s) C N T(s) C

NE 1550 16,80 286 649 7,73 150 218 1,08 36 - - - 456 4,02 83
T1 114 2,29 9 158 3,76 21 174 1,64 5 5373 356,73 42 331 8,16 26
T1+M 27 0,32 5 18 0,27 6 23 0,23 3 4769 129,4 38 25 0,53 8
RS 64 0,65 8 87 1,33 25 55 0,51 3 3379 84,83 24 131 1,76 32
RS+M 23 0,29 5 18 0,29 6 19 0,16 3 3318 83,5 24 22 0,50 9

. N: Number of iterations,

. T(s): CPU time in seconds,
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. C: Number of elements enclosing the optimizers in the list L,

. -: the algorithm does not give any solution after 15 minutes,

. NE: Classical Ichida Fujii Algorithm [4] using natural inclusion extension,

. T1: Ichida Fujii Algorithm using Taylor inclusion function [10],

. T1+M: Ichida Fujii Algorithm using Taylor inclusion function [10] with elim-
ination of components by monotony,

. RS: Optimization algorithm using the \best" right simplex,

. RS+M: Method RS with elimination of components by monotony.

Pb f5 �f5 f6 f7
N T(s) C N T(s) C N T(s) C N T(s) C

NE 2832 30,99 312 322 1,43 8 - - - - - -
T1 731 17,31 24 421 11,88 8 3959 201,86 216 - - -
T1+M 185 1,81 24 108 1,11 2 468 9,07 77 3058 71,30 22
RS1 329 3,58 24 228 2,36 8 861 19,31 137 6483 351,11 2934
RS2 271 3,00 18 25 0,28 2 564 12,18 101 6370 311,61 2934
AS 319 3,09 22 228 3,05 8 878 22,25 121 10221 601,42 3012
RS1+M 101 1,06 24 210 2,05 8 302 6,73 86 2093 47,50 65
RS2+M 59 0,62 12 25 0,28 2 205 4,48 67 1786 34,16 17
AS+M 110 1,71 22 34 0,72 2 309 10,05 78 2211 48,01 117

. RS1: Optimization algorithm using right simplexes and intersection of the
polyhedral cone with the unbounded cylinder,

. RS2: Optimization algorithm using right simplexes and gradient relaxation,

. AS: Optimization algorithm using the research of an admissible simplex,

. RS1+M: Method RS1 with elimination of components by monotony,

. RS2+M: Method RS2 with elimination of components by monotony,

. AS+M: Method AS with elimination of components by monotony.

(18) is not taken into account, the di�erent methods are compared uniquely
by lower bounds. These examples are su�cient to see the improvement provided
by the algorithms 1, and 2 compared to the classical Branch and Bound algo-
rithm.

Moreover the problem of clusters [2] is strongly reduced.
The three di�erent methods exposed here seem to have quite the same e�-

ciency with perhaps a thin advantage for the algorithm using gradient relaxation.
Admissible simplexes have always the same initial vertex s = (xL1 ; � � � ; x

L
n) which

is surely not the best strategy.
Secondly to test the e�ciency of our enclosure methods, one computes the

bounds of the function f6 with decreasing width

X1 = [�1; 1]� [�1; 1]� [�1; 1]� [�1; 1]

X2 = [0; 1]� [0; 1]� [0; 1]� [�1; 1]

X3 = [0; 1]� [0; 1]� [0; 1]� [0; 1]

X4 = [0; 0:5]� [0; 1]� [0; 1]� [�1; 1]

X5 = [0; 0:5]� [0; 0:5]� [0; 1]� [�1; 1]

X6 = [0:5; 1]� [0:5; 1]� [0:5; 1]� [0; 1]

In this example 0 2 Gi(Xj); i = 1; 2; 3; 4 and j = 1; 2; 4 , in the others cases
0 62 G4(X3), 0 62 G1(X5) and 0 62 Gi(X6); i = 1; 2; 3.
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Boxes X1 X2 X3 X4 X5 X6

Methods

f(Xi) [�3; 29] [�1:6;20] [�0:1;20] [�1:6; 16] [�1:6;16] [4;19]
NE [�17; 33] [�12; 28] [�7;26] [�11; 24] [�9;21] [�1:5;24:5]
T1 [�55; 55] [�24; 32] [�13:5;27:5] [�21; 27] [�19:1; 24:9] [�1:75;22:3]
RS1 [�44; 82] [�7:4; 28:6] [�2;23] [�7:2;24:8] [�6;22] [3:8;19:3]
RS2 [�45:3; 77:4] [�7:4; 28:6] [�2;23] [�7:2;24:8] [�1:6;19] [4;19]
AS [�32:2; 55:7] [�7:8; 28:1] [�2:2;22:8] [�7:6;24:4] [�6;22] [3:8;19:3]

Methods used to compute upper and lower bounds are:

. f(Xi): range of f over Xi; i = 1; � � � ; 6,

. NE: natural inclusion extension function,

. T1: Taylor inclusion function,

. RS1: right simplex and intersection of the polyhedral cone with the un-
bounded cylinder,

. RS2: right simplex and gradient relaxation,

. AS: research of an admissible simplex.

First, we can see that our enclosure methods are not automatically better than
classical natural inclusion extension of the function. However, when the width
of the boxes decreases, our algorithms are more e�cient and in some cases, they
are very accurate and they give the true bounds (method RS2 over box X6).

6 Conclusion

The methods developed in this paper, give a lower bound and/or an upper bound
over a boxX for a di�erentiable multivariate function, and therefore may be used
as an evaluation function, as well as enclosure methods of a global optimum.
For a function de�ned over a box X of IRn, one estimation of a minimum, for
example, requires point evaluations in n+1 vertices of the box X and an interval
evaluation of the partial derivatives.

E�ciency of algorithms is obtained by suitable choices of these vertices.
Numerical results are very satisfactory on unconstrained problems; the �rst

results on optimization problems with constraints are promising.
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