
/PEN�3TANDARDS�"EYOND�*AVA�
/N�THE�&UTURE�OF�-OBILE�#ODE�FOR�THE�)NTERNET�

-ICHAEL�&RANZ
(Department of Information and Computer Science,

University of California at Irvine, USA
franz@uci.edu)

!BSTRACT� At first sight, Java’s position as the de-facto standard for portable software
distributed across the Internet seems virtually unassailable. Interestingly enough, however, it is
surprisingly simple to provide alternatives to the Java platform, using the plug-in mechanism
supported by the major commercial World Wide Web browsers.

We are currently developing a comprehensive infrastructure for mobile software
components. This is a long-term research activity whose primary objectives are not directly
related to today’s World Wide Web, but which targets future high-performance component-
software systems. However, purely as a technology demonstration, we have recently started a
small spin-off project called “Juice” with the intent of extending our experimental mobile-code
platform into the realm of the commercial Internet.

Juice is implemented in the form of a browser plug-in that generates native code on-the-
fly. Although our software distribution format and run-time architecture are fundamentally
different from Java’s, and arguably more advanced, once that the appropriate Juice plug-in has
been installed on a Windows PC or a Macintosh computer, end-users can no longer distinguish
between applets that are based on Java and those that are based on Juice. The two kinds of
applets can even coexist on the same Web-page.

This, however, means that Java can in principle be complemented by alternative
technologies (or even gradually be displaced by something better) with far fewer complications
than most people seem to assume. As dynamic code generation technology matures further, it
will become less important which code-distribution format has the largest “market share”; many
such formats can be supported concurrently. Future executable-content developers may well be
able to choose from a wide range of platforms, probably including several dialects of Java
itself. Hence, a pattern of “open standards” for mobile code is likely to eventually emerge, in
spite of Java’s current dominance.

+EY�7ORDS� Open standards, mobile code technologies, alternatives to Java, plug-in browser
extensions, on-the-fly code generation, Java, Juice, Oberon.

���)NTRODUCTION

One of the most beneficial aspects of the rapid expansion of the Internet is that it is
driving the deployment of “open” software standards. We are currently witnessing the
introduction of a first suite of interoperability standards that is already having far-
reaching influences on software architecture, as it simultaneously also marks the

[1] This is an extended version of a paper presented at WebNet’97. The paper was judged as

outstanding and has received a “Best Paper Award”.

Journal of Universal Computer Science, vol. 4, no. 5 (1998), 522-533
submitted: 14/11/97, accepted: 8/1/98, appeared: 28/5/98 Springer Pub. Co.

transition to a COMPONENT�MODEL of software. The new standards, such as #/2"!
(Object Management Group), #/-�/,% (Microsoft), and 3/-�/PEN$OC (Apple
Computer, IBM, Novell), enable software components to inter-operate seamlessly,
even when they run on different hardware platforms and have been implemented by
different manufacturers. Over time, the monolithic application programs of the past
will be supplanted by societies of inter-operating, but autonomous, components.

It is only logical that the next development step will lead to even further “open-
ness”, not only freeing components from all dependence upon particular hardware
architectures, but also giving them the autonomy to migrate among machines. Instead
of executing complex transactions with a distant server by “remote control” over slow
communication links, software systems will then be able to send to a server self-
contained mobile agents that complete the transactions autonomously on the user’s
behalf. The inclusion of EXECUTABLE�CONTENT into electronic documents on the World
Wide Web already gives us a preview of how powerful the concept of mobile code is,
despite the fact that so far only a unidirectional flow of mobile programs from server
to client is supported. Distributed systems that are based on freely-moving agents will
be even more powerful.

In order to transfer a mobile program between computers based on different
processor architectures, some translation of its representation has to occur at some
point, unless the mobile program exists in multiple execution formats simultaneously.
Although the latter approach seems feasible in the current context of software
distribution via CD-ROM, its limits will soon become apparent when low-bandwidth
wireless connectivity becomes pervasive. Hence, a UNIVERSAL representation for
mobile code is required. The search for such a universal representation is the subject
of much current research [Engler 1996, Inferno, Lindholm and Yellin 1996], including
recent work of the author [Franz & Kistler 1997, Kistler & Franz 1997].

In the short time since its launch, Sun Microsystems’s *AVA technology has
become almost synonymous with portable software that can be distributed across the
Internet. Java’s pre-eminent position is reinforced by the fact that built-in support for
its distribution format, the *AVA� 6IRTUAL -ACHINE (JVM), is now not only part of
practically every World Wide Web browser, but is starting to appear even within
operating systems. Yet in spite of the de-facto adoption of Java by most of the
Internet community as the standard platform for encoding executable content (at least
for the time being), it remains surprisingly simple to provide alternatives to this
platform, even within the context of commercial browser software.

We have created such an alternative to the Java platform and named it “Juice”.
Juice is an extension of the first author’s earlier research on portable code and on-the-
fly code generation [Franz & Ludwig 1991, Franz 1994a, Franz 1994b]2. Our current
work is significant on two accounts: First, Juice’s portability scheme is technologically
more advanced than Java’s and may lead the way to future mobile-code architectures.
Second, the mere existence of Juice demonstrates that Java can be complemented by
alternative technologies with far less effort than most people seem to assume. In fact,
once that Juice has been installed on a machine, end-users need not be concerned at all

[2] Note that this earlier work on mobile code predates Java by several years

523Franz M.: Open Standards Beyond Java ...

whether the portable software they are using is based on Juice or on Java. In light of
this, we are surprised by the widespread belief in the myth that, in order to be
portable, all executable content must necessarily be encoded in Java. In the short
term, this myth may lead to some ill-founded technology decisions.

Just as with Java, there are three major components to the Juice technology: 1) a
source language and an API in which Juice applets are programmed, 2) an
architecture-neutral distribution format, and 3) an environment for executing Juice
applets, which in the current implementation of Juice is supplied in the form of a
browser plug-in that GENERATES� NATIVE� CODE� ONTHEFLY. On all three accounts, Juice
differs considerably from Java, yet from the Web-browsing end-user’s perspective,
there is no obvious difference between Java and Juice applets.

In the following sections, we will introduce the three components of the Juice
platform: source language, distribution format, and dynamic-compilation environment,
which not only provides on-the-fly code generation, but also dynamic code re-
optimization in the background. We will conclude by presenting examples of Juice
and Java source-code side-by-side, arguing that the choice of a particular mobile-code
solution may simply be a matter of personal taste, rather than a technological
necessity. Luckily, it is the applet developer that needs to make this choice; the end
user need not know any of it as multiple mobile-code technologies, such as Java and
Juice, can happily coexist, even on the same Web page [Fig. 1].

&IGURE�����*AVA�!PPLET��LEFT	�VS���*UICE�!PPLET��RIGHT	

524 Franz M.: Open Standards Beyond Java ...

���4HE�3OURCE�,ANGUAGE�OF�THE�*UICE�0LATFORM�IS�/BERON

Juice applets are programmed in the language /BERON [Wirth 1988], a direct
successor of Pascal and Modula-2 that was defined by Niklaus Wirth (Pascal’s
original creator) in 1988. Oberon is surprisingly close to Java in spirit; like Java,
Oberon is based on the principles of simplicity and safety. Oberon enforces type-
safety by mandating array-bounds checking and prohibiting pointer arithmetic, it
automates memory management through the provision of garbage collection, and
provides source-level modularization facilities along with dynamic loading.
Superficially, but not entirely untrue, one might argue that Oberon is a subset of Java
with Pascal syntax, except that Oberon was defined several years before Java.

Oberon is a much smaller language than Java, having been designed almost as the
“essence of a programming language”. For example, Oberon provides no language-
level support for concurrency. While we agree with Ted Lewis [Lewis 1997] that
Java’s concurrency scheme falls disappointingly short of the existing state-of-the-art
ante, Oberon offers no built-in support for concurrency at all. For the project
described here, we have not attempted to change the Oberon language and have
therefore only studied applets that can be constructed from the set of language features
in the intersection of Oberon and Java. However, we note that this is only an
incidental effect of our choice of Oberon as a source language and in no way limits
our claim about Java’s substitutability in principle. Moreover, we note that some
current optimizing translators for Java also exclude the concurrency capabilities of the
Java language [Muller et al. 1997], because support of threads has a performance
penalty associated with it [Proebsting et al. 1997].

A Juice-applet development tool-kit is now a standard part of the Oberon
software distribution [Oberon] from ETH Zurich and UC Irvine for Apple Macintosh
and Microsoft Windows. Besides providing a full implementation of /BERON
3YSTEM�� [Wirth & Gutknecht 1989, Wirth & Gutknecht 1992, Gutknecht 1994], it
supplies a set of Juice-specific APIs along with a compatibility-box recreating the
environment of a browser plug-in within the Oberon environment. Hence, Juice
applets under construction can be tested interactively without having to exit the
development environment.

���*UICE�!PPLETS�ARE�$ISTRIBUTED�AS�3LIM�"INARIES

Juice’s mobile-code architecture is based on a software distribution format called SLIM
BINARIES [Franz & Kistler 1997] that constitutes a radical departure from traditional
software-portability solutions. Unlike the usual approach of representing mobile
programs as instruction sequences for a virtual machine, an approach taken both with
p-code [Nori et al. 1976] as well as with Java byte-code [Lindholm and Yellin 1996],
the slim binary format is instead based on ADAPTIVE�COMPRESSION�OF�SYNTAX�TREES [Franz
1994a]. When compiling a source program into a slim binary, it is first translated into
a tree-shaped intermediate data structure in memory that abstractly describes the
semantic actions of the program (e.g., “add result of left sub-tree to result of right sub-
tree”). This data structure is then compressed by identifying and merging isomorphic

525Franz M.: Open Standards Beyond Java ...

sub-trees, turning the tree into a directed acyclic graph with shared sub-trees (for
example, all occurrences of “x + y” in the program could be mapped onto a single
sub-tree that represents the sum of “x” and “y”). The linearized form of this graph
constitutes the slim binary format.

In the actual implementation, tree compression and linearization are performed
concurrently, using a variant of the classic LZW data-compression algorithm [Welch
1984]. Unlike the general-purpose compression technique described by Welch,
however, our algorithm is able to exploit domain knowledge about the internal
structure of the syntax tree being compressed. Consequently, it is able to achieve
much higher information densities [Fig. 2]. We know of no conventional data-
compression algorithm, regardless of whether applied to source code or to object code
(for any architecture, including the Java virtual machine), that can yield a program
representation as dense as the slim binary format.

665%

344%

284%

242%

277%

219%

172%

156%

100%

Source Code

PPC601 Binary

i386 Binary

Java Byte-Codes

LZSS Compressed Source Code

LZSS Compressed PPC601 Binary

LZSS Compressed Java Byte-Codes

LZSS Compressed i386 Binary

Slim Binary

&IGURE�����2ELATIVE�3IZE�OF�A�2EPRESENTATIVE�0ROGRAM�3UITE�IN�6ARIOUS�&ORMATS

The compactness of the slim binary format may soon become a major advantage, as
many network connections in the near future will be wireless and consequently be
restricted to small bandwidths. In such wireless networks, raw throughput rather than
network latency again becomes the main bottleneck. We also note that one could
abandon native object code altogether in favor of a machine-independent code format
if the portable code would not only RUN as fast as native code, but also START�UP just as
quickly (implying that there would be no discernible delay for native-code
translation). As the author has shown in previous work, this becomes possible if the
portable software distribution format is so dense that the additional computational
effort required for just-in-time code generation can be compensated entirely by
reduced I/O overhead due to much smaller “object files” [Franz 1994a, Franz 1994b,
Franz 1997a].

Compactness does come at a small price: since isomorphic sub-trees have been
merged during encoding, a program represented in the slim binary format cannot
simply be interpreted byte-by-byte. While representations such as p-Code and Java
byte-codes permit random access, i.e. one can jump 20 instructions forward in the
code and resume interpretation, this is not possible with slim binaries. Each symbol in
a slim-binary-encoded program can be interpreted only in the context of all the
symbols that precede it. Because of this characteristic, our implementations have

526 Franz M.: Open Standards Beyond Java ...

eschewed interpretation of the intermediate form from the very beginning and have
incorporated on-the-fly code generators.

On the other hand, reading a slim binary in our system re-creates the original tree
data-structure, which is an almost ideal input for an optimizing code-generator. The
slim binary format preserves structural information such as control flow and variable
scope that is lost in the transition to linear representations such as Java byte-codes. In
order to perform code generation with advanced optimizations from a byte-code
representation, a time-consuming pre-processing step is needed to rediscover the lost
structural information. This is not necessary with slim binaries. This argument
applies not only with respect to code optimization, but also for CODE� VERIFICATION:
analyzing a mobile program for violation of type and scoping rules is much simpler
when the program has a tree-based representation than it is with a linear byte-code
sequence.

Our present implementation of slim binaries is in so far restrictive as it supports
exactly one source language, Oberon. In this respect, our system presently doesn’t do
much better than abstract-machine-based portability schemes in which the instruction
set of the virtual machine is explicitly crafted to support a particular source language.
While we do not foresee any difficulties in encoding syntax trees for other languages,
possibly even using the identical format, the suitability for other languages has yet to
be established by an actual implementation. We have therefore recently started a
follow-up project with the aim of constructing a compiler that takes Java as its input,
but generates slim binaries instead of Java byte-codes as its output. This tool will not
only enable a more direct comparison of our code representation and our dynamic
compilation architecture with their respective Java counterparts, but it will also aid the
wider discussion of platform-independent mobile-code solutions by disengaging the
question of source languages from the separate issue of finding suitable distribution
formats.

���*UICE�!PPLETS�ARE�#OMPILED�/N4HE&LY�BY�A�"ROWSER�0LUG)N

The only part of Juice that is visible to end-users is a set of platform-specific plug-ins
for .ETSCAPE�.AVIGATOR and -ICROSOFT�)NTERNET�%XPLORER. Once the appropriate Juice
plug-in has been installed on a user’s machine, the user can then view and execute
Juice content in the same manner as Java applets. Hence, after installation of the plug-
in, users can no longer distinguish between Java and Juice applets, other than by
disabling either format manually.

The Juice plug-in contains a dynamic code-generator that translates from the slim
binary representation into the native code of the respective target machine (PowerPC
or Intel 80x86). This translation occurs before the applet is started, but is fast enough
not to be noticed under normal circumstances. In contrast, most just-in-time compilers
for Java translate individual methods as they are called rather than the whole applet at
once. To Juice’s advantage, translating the whole applet at once usually results in
better code quality since it permits inter-procedural optimizations to be exploited.

Due to the greater compactness of slim binaries in comparison to Java byte-codes,
less time has to be spent on the transmission of Juice applets. The time saved can then

527Franz M.: Open Standards Beyond Java ...

be used to offset the cost of code generation. As the speed of processors is rising
faster than the speed of I/O, hardware technology is actually evolving in favor of
denser code-representation formats, even if more work is required to “unpack” their
contents.

The main thrust of our continuing research is focused on improving code quality.
Our implementations so far are all based on a well-established family of compiler
back-ends originating at ETH Zurich that produce high quality code comparable to
that of straightforward commercial compilers [Brandis et al. 1995]. On some newer
RISC architectures, however, these back-ends cannot fully compete with highly
optimizing compilers. Of further concern to our particular application of load-time
code generation is the fact that optimizers for certain RISC architectures may have
vastly different run-time characteristics than the compilers we have been using so far.

Consequently, we are now pursuing a two-tier strategy of code generation. Rather
than compiling every module exactly once when it is loaded and then leaving it alone,
we use a background process executing only during idle cycles that keeps compiling
the already loaded modules over and over [Kistler 1997, Franz 1997b]. Since this is
strictly a re-compilation of already functioning modules, and since it occurs
completely in the background, this process can be as slow as it needs to be, allowing
the use of far more aggressive, albeit slower, optimization techniques than would be
tolerable in an “interactive” context. When background code-generation has
completed, the code-images of the re-generated modules are substituted for their older
counterparts in situ, without disrupting the ongoing program execution.

Periodic re-optimization of already executing code allows to fine-tune the code-
generator's output beyond the level commonly achievable by static compilation. Not
only does it enable run-time profiling data from the current execution to drive the next
iteration of code optimization, but it also makes it possible to cross-optimize
application programs and their dynamically loaded extensions and libraries. We are
currently experimenting with global optimization techniques that were pioneered by
incremental compilers and link-time optimizers. Among them are register allocation
and code inlining across module boundaries, global instruction scheduling, and global
cache optimization. Run-time extensible systems present new challenges to these old
problems, since no closed analysis is possible due to the fact that further modules can
be dynamically linked to the already executing system at any time.

���!�$IRECT�#OMPARISON�OF�*UICE�AND�*AVA�0ROGRAMMING

The easiest way of demonstrating the different “flavors” of programming in Juice vs.
programming in Java is by presenting actual source texts. In [Fig. 3] we present, side
by side, the source of a simple applet displaying the current time in analog form (as
shown in [Fig. 1]), encoded using Java (left) and Juice (right). These sources and the
resulting executable applets can also be found on our World Wide Web site.

528 Franz M.: Open Standards Beyond Java ...

import java.awt.*;
import java.util.*;

public class JavaClock
extends java.applet.Applet
implements Runnable

{
Thread timer = null;

public void run()
{

while (timer!=null) {
repaint();
try {Thread.sleep(1000);}
catch(InterruptedException e) {return;}

}
}

public void start()
{

if (timer == null) {
timer = new Thread(this);
timer.start();

}
}

public void stop()
{

timer = null;
}

public int min(int a, int b)
{

if (a < b) return a;
else return b;

}

public void arcline(Graphics g, int angle, int x, int y, int r1, int r2, boolean dot)
{

int x1, y1, x2, y2; double s, c, a;

angle = (angle - 15) % 60;
a = 2*Math.PI / 60 * angle;
s = Math.sin(a); c = Math.cos(a);
x1 = (int)(r1*c + 0.5);
y1 = (int)(r1*s + 0.5);
x2 = (int)(r2*c + 0.5);
y2 = (int)(r2*s + 0.5);
g.drawLine(x+x1, y+y1, x+x2, y+y2);
if (dot) g.fillOval(x+x2-5, y+y2-5, 10, 10);

}

public void paint(Graphics g)
{

int r, r0, rs, rm, rh, x, y, i;

r = min(size().width, size().height) / 2; r0 = 10*r / 11;
rs = 8*r /11; rm = 9*r/11; rh = 7*r/11; x = r; y = r;
g.setColor(Color.white);
g.fillRect(0, 0, size().width, size().height);
g.setColor(Color.black);
g.drawOval(0, 0, 2*r, 2*r);
for (i=0; i<60; i+=5) arcline(g, i, x, y, r0, r, false);

Date now = new Date();
arcline(g, now.getMinutes(), x, y, 0, rm, false);
arcline(g, now.getHours()*5+now.getMinutes()/12, x, y, 0, rh, false);
g.setColor(Color.red);
arcline(g, now.getSeconds(), x, y, 0, rs, true);

}

public void update(Graphics g)
{

paint(g);
}

}

MODULE JuiceClock;

IMPORT
Math := JuiceMath, Applets := JuiceApplets,
Devices := JuiceDevices, Misc := JuiceMisc;

TYPE
Applet = POINTER TO AppletDesc;
AppletDesc = RECORD (Applets.AppletDesc)

hour, min, sec: INTEGER
END;

PROCEDURE Min(a, b: INTEGER): INTEGER;
BEGIN

IF a < b THEN RETURN a ELSE RETURN b END
END Min;

PROCEDURE ArcLine(angle, x, y, r1, r2: INTEGER; dot: BOOLEAN);
VAR x1, y1, x2, y2: INTEGER; s,c,a : REAL;

BEGIN angle := (angle-15) MOD 60;
a := 2 * Math.pi / 60 * angle;
s := Math.Sin(a); c := Math.Cos(a);
x1 := SHORT(ENTIER(r1*c + 0.5));
y1 := SHORT(ENTIER(r1*s + 0.5));
x2 := SHORT(ENTIER(r2*c + 0.5));
y2 := SHORT(ENTIER(r2*s + 0.5));
Devices.Line(x+x1, y+y1, x+x2, y+y2);
IF dot THEN Devices.FillOval(x+x2-5, y+y2-5, 10, 10) END

END ArcLine;

PROCEDURE Update (me: Applet);
VAR r, r0, rs, rm, rh, x, y, i: INTEGER;

BEGIN Devices.Setup(me.device);
r := Min(me.device.w, me.device.h) DIV 2; r0 := 10*r DIV 11;
rs := 8*r DIV 11; rm := 9*r DIV 11; rh := 7*r DIV 11; x := r; y := r;
Devices.SetForeColor(Devices.white);
Devices.FillRect(0, 0, me.device.w, me.device.h);
Devices.SetForeColor(Devices.black);
Devices.FrameOval(0, 0, 2*r, 2*r);
i := 0; WHILE i < 60 DO ArcLine(i, x, y, r0, r, FALSE); INC(i, 5) END;

Misc.GetTime(me.hour, me.min, me.sec);
ArcLine(me.min, x, y, 0, rm, FALSE);
ArcLine(me.hour * 5 + me.min DIV 12, x, y, 0, rh, FALSE);
Devices.SetForeColor(Devices.red);
ArcLine(me.sec, x, y, 0, rs, TRUE);
Devices.Restore(me.device)

END Update;

PROCEDURE AppletHandler (me: Applets.Applet; VAR M: Applets.AppletMsg);
VAR hour, min, sec: INTEGER;

BEGIN
WITH me: Applet DO

WITH M: Applets.DisplayMsg DO
IF M.id = Applets.update THEN Update(me)
ELSE Applets.AppletHandler(me, M)
END

| M: Applets.IdleMsg DO Misc.GetTime(hour, min, sec);
IF (hour # me.hour) OR (min # me.min) OR (sec # me.sec) THEN

Update(me)
END

ELSE Applets.AppletHandler(me, M)
END

END
END AppletHandler;

PROCEDURE NewApplet*;
VAR a: Applet;

BEGIN NEW(a); a.handle := AppletHandler; Applets.newApplet := a
END NewApplet;

END JuiceClock.

&IGURE�����*AVA�3OURCE�#ODE��LEFT	�VS���*UICE�3OURCE�#ODE��RIGHT	

529Franz M.: Open Standards Beyond Java ...

���3ECURITY�)SSUES

From the very beginning, the question of security has played a large role in the
discussion surrounding executable content for the World Wide Web. In particular, a
number of security flaws were discovered in early implementations of Java that
received a lot of publicity [Dean et al. 1996]. Needless to say that these errors were
corrected as soon as they were discovered.

In principle, the topic of mobile-code security is independent of the choice of
programming language that a mobile program is written in, and also independent of
the representation that is used in transporting applets to target machines. A minimum
requirement is only that TYPESAFETY is maintained. Both Java and Oberon are fully
type-safe languages, and hence both are equally suitable for applet-programming.

However, absolute type-safety requires more than just compile-time checking
because an attacker could hand-craft a malicious applet directly in the mobile code
representation without passing it through a compiler, thereby circumventing the type-
safety of the source language. As a consequence, mobile code needs to be scanned
and VERIFIED prior to execution even if it is based on a “safe” language [Yellin 1995].

Most implementations of Java today provide such a verifier for incoming mobile
code, while Juice currently does not. This is simply a restriction of the current
implementation of the Juice system, and does not mean that Juice’s intermediate
representation is less well suited for verification than Java’s. In fact, it is highly likely
that Juice’s slim binary format will turn out to provide faster verification than Java’s
virtual machine instructions.

This is because the verifier needs to perform an exhaustive data-flow analysis of
the executable code. For each machine instruction, it must examine all possible paths
leading to the instruction to ensure that registers hold values of the appropriate type.
This analysis requires structural information about the program that is not immediately
available in a sequential virtual-machine instruction stream. Extracting the required
structural information from such a “flat” representation is a time-consuming task
whose complexity grows faster than linear program size.

The slim binary representation, on the other hand, is tree-shaped and hence would
not require this additional structural analysis phase. Since the time available for just-
in-time code generation is usually limited by the patience of an interactive user,
eliminating this time-consuming analysis is likely to result in faster-running native
code because more effort can be devoted to other phases of code generation, such as
instruction scheduling.

���#ONCLUSION�AND�/UTLOOK

Portable, executable content need not necessarily be tied to Java technology. In this
paper, we have presented various aspects of a mobile-code infrastructure that differs
from Java on several key accounts. Not only is our implementation a test-bed for
novel code-representation and dynamic-compilation techniques, but it also confirms
the suitability of the existing browser plug-in mechanism for supporting alternative
software portability solutions.

530 Franz M.: Open Standards Beyond Java ...

As our “Juice” system demonstrates, the plug-in mechanism can even be utilized
to provide on-the-fly native-code generation, enabling alternative portability schemes
to compete head-on with Java in terms of execution speed. Our implementation also
shows that alternative mobile code solutions can remain completely transparent to
end-users once that an appropriate plug-in has been installed. Hence, the eventual
migration path from Java to a successor standard at the end of Java’s life-cycle will
probably be much less painful than most people anticipate now.

In fact, the plug-in mechanism opens the door for potentially many different Java
alternatives that could be introduced over time, GRADUALLY reducing Java’s pre-
eminence. Besides the Juice solution described here, a strong initial candidate to win
market share from Java might be Lucent’s)NFERNO [Inferno] (assuming that Inferno
could be packaged as a plug-in), but other contenders will surely appear. Note that
each plug-in itself can be distributed across the Internet, authenticated by a code-
signing mechanism, simplifying the logistics of supporting several competing code-
formats concurrently.

It is also possible, and even probable, that the Java standard itself will fragment
into several dialects. For example, Microsoft is incorporating an API into its version
of Java and its)NTERNET�%XPLORER browser that differs from the developments at Sun
Microsystems, Java’s original creator. There may come a point at which the
differences between the various sets of libraries become irreconcilable, leading to
mutually incompatible versions of Java. This difference could be hidden from end-
users using the same approach that we have taken with Juice.

We believe that dynamic code generation technology is reaching a level of
maturity that it will soon diminish the relative importance of “market share” of any
particular code distribution format. In order to be commercially successful,
distribution formats will have to mimic Java in providing architecture neutrality and
safety, but further considerations such as code density will surely gain in importance.
For example, some future distribution formats may be targeted towards particular
application domains. On the other hand, Microsoft’s ActiveX technology, which is
based on a particular machine architecture, may still yet become a “universal”
software standard, since dynamic code translation will soon be available to enable
execution on incompatible hardware platforms. In this larger context, the current
enthusiasm surrounding Java may soon appear to have been somewhat overblown.

!CKNOWLEDGEMENT

The author gratefully acknowledges Thomas Kistler as the co-author of the Juice system. Part
of this work is being funded by the National Science Foundation under grant CCR-9701400.

2EFERENCES

[Brandis et al. 1995] M. Brandis, R. Crelier, M. Franz, and J. Templ (1995); “The Oberon
System Family”; 3OFTWARE0RACTICE�AND�%XPERIENCE, 25:12, 1331-1366.

[Dean et al. 1996] D. Dean, E. W. Felten, and D. S. Wallach (1996); “Java Security: From
HotJava to Netscape and Beyond”; 0ROCEEDINGS�OF�THE������)%%%�3YMPOSIUM�ON�3ECURITY�AND
0RIVACY, Oakland, California, 190-200.

531Franz M.: Open Standards Beyond Java ...

[Engler 1996] D. R. Engler (1996); “Vcode: A Retargetable, Extensible, Very Fast Dynamic
Code Generation System”; 0ROCEEDINGS�OF�THE�!#-�3IGPLAN� ���#ONFERENCE�ON�0ROGRAMMING
,ANGUAGE�$ESIGN�AND�)MPLEMENTATION, published as !#-�3IGPLAN�.OTICES, 31:5, 160-170.

[Franz 1994a] M. Franz (1994); #ODE'ENERATION�/NTHE&LY��!�+EY� TO�0ORTABLE�3OFTWARE;
Doctoral Dissertation No. 10497, ETH Zürich, published in book form by Verlag der
Fachvereine, Zürich, ISBN 3-7281-2115-0.

[Franz 1994b] M. Franz (1994); “Technological Steps toward a Software Component
Industry”; in J. Gutknecht (Ed.), 0ROGRAMMING�,ANGUAGES�AND�3YSTEM�!RCHITECTURES, Springer
Lecture Notes in Computer Science, No. 782, 259-281.

[Franz 1997a] M. Franz (1997); “Dynamic Linking of Software Components”;)%%%
#OMPUTER, 30:3, 74-81.

[Franz 1997b] M. Franz (1997); “Run-Time Code Generation as a Central System Service”; in
4HE�3IXTH�7ORKSHOP�ON�(OT�4OPICS�IN�/PERATING�3YSTEMS��(OT/36)	, IEEE Computer Society
Press, ISBN 0-8186-7834-8, 112-117.

[Franz & Kistler 1997] M. Franz and T. Kistler (1997); “Slim Binaries”; #OMMUNICATIONS�OF
THE�!#-, 40:12, 87-94.

[Franz & Ludwig 1991] M. Franz and S. Ludwig (1991); “Portability Redefined”; in
0ROCEEDINGS�OF�THE�3ECOND�)NTERNATIONAL�-ODULA��#ONFERENCE, Loughborough, England.

[Gutknecht 1994] J. Gutknecht (1994), “Oberon System 3: Vision of a Future Software
Technology”; 3OFTWARE #ONCEPTS�AND�4OOLS, 15:1, 26-33.

[Inferno] Lucent Technologies Inc.;)NFERNO; http://plan9.bell-labs.com/inferno/.

[Juice] M. Franz and T. Kistler; *UICE; http://www.ics.uci.edu/~juice.

[Kistler 1997] T. Kistler (1997); “Dynamic Runtime Optimization”; in H. Mössenböck (Ed.),
-ODULAR�0ROGRAMMING�,ANGUAGES��0ROCEEDINGS�OF�THE�*OINT�-ODULAR�,ANGUAGES�#ONFERENCE
�*-,# ��	, Springer Lecture Notes in Computer Science No. 1204, 53-66.

[Kistler & Franz 1997] T. Kistler and M. Franz (1997); “A Tree-Based Alternative to Java
Byte-Codes”; 0ROCEEDINGS�OF�THE�)NTERNATIONAL�7ORKSHOP�ON�3ECURITY�AND�%FFICIENCY�!SPECTS�OF
*AVA, Eilat, Israel.

[Lewis 1997] T. Lewis (1997); “If Java is the Answer, What Was the Question?”;)%%%
#OMPUTER, 30:3, 136&133-135.

[Lindholm and Yellin 1996] T. Lindholm and F. Yellin (1996); 4HE� *AVA� 6IRTUAL�-ACHINE
3PECIFICATION; Addison-Wesley.

[Muller et al. 1997] G. Muller, B. Moura, F. Bellard, and Ch. Consel (1997); “Harissa: A
Flexible and Efficient Java Environment Mixing Bytecode and Compiled Code”; 0ROCEEDINGS
OF� THE� 4HIRD� #ONFERENCE� ON�/BJECT/RIENTED� 4ECHNOLOGIES� AND� 3YSTEMS� �#//43	, USENIX
Association Press, 1-20.

[Nori et al. 1976] K. V. Nori, U. Amman, K. Jensen, H. H. Nägeli and Ch. Jacobi (1976);
“Pascal-P Implementation Notes”; in D.W. Barron (Ed.); 0ASCAL�� 4HE� ,ANGUAGE� AND� ITS
)MPLEMENTATION; Wiley, Chichester.

[Oberon] Department of Information and Computer Science, University of California at Irvine;
/BERON�3OFTWARE�$ISTRIBUTION; http://www.ics.uci.edu/~oberon.

[Proebsting et al. 1997] T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T.
Newsham, and S. A. Watterson (1997); “Toba: Java For Applications – A Way Ahead of Time
(WAT) Compiler”; 0ROCEEDINGS�OF�THE�4HIRD�#ONFERENCE�ON�/BJECT/RIENTED�4ECHNOLOGIES�AND
3YSTEMS��#//43	, USENIX Association Press, 41-53.

532 Franz M.: Open Standards Beyond Java ...

[Welch 1984] T. A. Welch (1984); “A Technique for High-Performance Data Compression”;
)%%%�#OMPUTER, 17:6, 8-19.

[Wirth & Gutknecht 1989] N. Wirth and J. Gutknecht (1989); “The Oberon System”;
3OFTWARE0RACTICE�AND�%XPERIENCE, 19:9, 857-893.

[Wirth & Gutknecht 1992] N. Wirth and J. Gutknecht (1992); 0ROJECT�/BERON��4HE�$ESIGN�OF
AN�/PERATING�3YSTEM�AND�#OMPILER; Addison-Wesley.

[Wirth 1988] N. Wirth (1988); “The Programming Language Oberon”; 3OFTWARE0RACTICE�AND
%XPERIENCE, 18:7, 671-690.

[Yellin 1995] F. Yellin (1995); “Low Level Security in Java”; Fourth International World
Wide Web Conference, Boston, Massachusetts; World Wide Web Consortium;
http://www.w3.org/pub/Conferences/WWW4/Papers/197.

533Franz M.: Open Standards Beyond Java ...

