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Abstract: In this paper we perform a rigorous study of the H�enon map. We prove
with computer assistance the existence of symbolic dynamics for h2 and h7 and the
existence of periodic orbits of all periods but 3 and 5.
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1 Introduction

In this paper we consider the H�enon map de�ned by the following equation:

h(x; y) = (1 + y � ax2; bx); (1)

where a = 1:4 and b = 0:3 are the \classical" parameter values. Although the
de�nition of the H�enon map is very simple it displays very complicated dynamics.
A typical trajectory of the map is shown in Fig. 1.

In Section 2 we recall the technique of TS-maps and formulate two theorems
used in the following sections. In Section 3 we prove the existence of symbolic
dynamics for h2 and what follows the existence of periodic points of h for all
even periods.

In [Zgliczy�nski 97b] the dynamics of topological horseshoe was proved for h7.
From this follows the existence of symbolic dynamics for h7 and the existence
of periodic orbits of h of period 7n for all natural n. In Section 4 we repeat
the proof described in [Zgliczy�nski 97b] using interval arithmetic. We show that
using this tool the number of points for which we must check certain conditions
can be signi�cantly reduced. Then checking some more conditions we prove the
existence of periodic points with period 8 and all periods greater or equal to 10.

Finally by means of the interval Newton method we prove that within the
region [�5; 5]� [�5; 5] there exists no periodic point with period 3 or 5 and we
prove that there exist periodic points with period 9.

During all the computer{assisted proofs we use the procedures for interval
computations form BIAS and PROFIL packages [Kn�uppel 93]. Programs were
compiled using gnu C++ compiler (gcc version 2.7.2.1) and run on Sun Ultra
1 computer. The source code of the programs is available at the following www
location: http://fractal.zet.agh.edu.pl/�galias/int.html. Additionally
all the results were checked using the package for interval computations pre-
pared by the author in Turbo-Pascal 7.0 programming environment and run on
Pentium 166MHz.
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Figure 1: A trajectory of the H�enon map. 3000 points of the trajectory starting from
the initial conditions: x = 0, y = 0 after a short transient (100 iterations) are plotted.

2 TS{Maps

One of the tools we use in our study is the technique of TS-maps (topologi-
cal shifts) introduced in [Zgliczy�nski 97a, Zgliczy�nski 97b]. This technique can
be used to prove the existence of an in�nite number of periodic orbits for a
given system. It combines existence results based on the �xed point index the-
ory and computer{assisted computations, necessary to verify assumptions of the
existence theorem.

Here we consider a special case of TS{maps de�ned on two sets N0 and N1.
For the general case see [Zgliczy�nski 97b]. Let the sets N0, N1, E0, E1, E2 be as
depicted in Fig. 2. The important property of this sets is that E0 lies on the left
hand side of the sets N0 and N1, the set E1 lies between N0 and N1 and E2 lies
on the right hand side of N0 and N1. Certain deformations of these sets are also
possible (see [Zgliczy�nski 97b]). Let W = N0 [N1 [E0 [E1 [E2. By intW we
denote the interior of W . We will say that the image of Ni covers horizontally
the set Nj if the image of one of the vertical edges of Ni lies on the right hand
side of Nj while the image of the second vertical edge lies on the left hand side
of Nj . For example image of N0 covers horizontally N1 if f(L(N0)) � E1 and
f(R(N0)) � E2 or f(L(N0)) � E2 and f(R(N0)) � E1, where L(N0) and R(N0)
denote respectively the left and right vertical edges of N0.

Let f be a continuous map de�ned on N0 [N1. In our analysis we consider
two special cases of TS-maps. They are described in detail in [Galias 97]. The
�rst case involves maps with topological horseshoe embedded (compare Fig. 2a).
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Figure 2: Images of sets N0 and N1 for the horseshoe map (a) and the deformed
horseshoe map (b). For the horseshoe map the images of vertical edges of N0 lie one
in E0 and the second in E2 and similarly for N1. For the deformed horseshoe the only
di�erence is that the image of one of the vertical edges of N1 is enclosed in E1 instead
of E2

Theorem1. If f(N0); f(N1) � intW , the image of N0 covers horizontally the
sets N0 and N1 (vertical edges of N0 are mapped by f in such a way that the
image of one of the edges is enclosed in E0, while the second one is enclosed
in E2), and the image of N1 covers horizontally N0 and N1 then for any �nite
sequence a0; a1; : : : ; an�1 2 f0; 1g

n there exists a point x satisfying

f i(x) 2 Nai
for i = 0; : : : ; n� 1 and fn(x) = x:

In this case one can also prove that the full shift on two symbols with the
transition matrix [Robinson 95] �

1 1
1 1

�
(2)

is embedded in the map f . Non-zero element aij of the transition matrix means
that the image of Ni covers horizontally Nj (we can �nd a point x 2 Ni such
that f(x) 2 Nj).

The next theorem is important for maps with the deformed horseshoe em-
bedded (compare Fig. 2b). From the set of n-element sequences with elements
from the set f0; 1g let us choose sequences, which do not contain the subsequence
(1; 1):

Tn = f (a0; : : : ; an�1) 2 f0; 1g
n: (aj ; a(j+1) mod n) 6= (1; 1) for 0 � j < n g: (3)

Theorem2. If f(N0); f(N1) � intW , image of N0 covers horizontally the sets
N0 and N1, image of N1 covers horizontally the sets N0, then for any �nite
sequence a = (a0; a1; : : : ; an�1) 2 Tn there exists a point x satisfying

f i(x) 2 Nai
for i = 0; : : : ; n� 1 and fn(x) = x: (4)

In this case the subshift on two symbols with the transition matrix�
1 1
1 0

�
(5)
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is embedded in f .
If f is one-to-one one has to check only the conditions concerning the edges

of sets Ni. Instead of proving that f(Ni) � intW it is su�cient to prove that
f(bd(Ni)) � intW , where bd(Ni) denotes the border of the set Ni. This is a
conclusion from Jordan's theorem (compare [Galias 97]).

3 Symbolic Dynamics for h2 | Deformed Horseshoe

In this section we show using the technique described previously that the sub-
shift on two symbols with the transition matrix (5) (the deformed topological
horseshoe) is embedded in h2.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

x

y

E
0

N
0 E

1
N

1

E
2

Figure 3: The de�nition of the sets N0 and N1 for the proof of symbolic dynamics for
h2

Let us de�ne the sets Ni as follows: N0 is a quadrangle A1A2A3A4 and N1

is the quadrangle A5A6A7A8, where A1 = (�0:82; 0:29), A2 = (�0:82; 0:39),
A3 = (�0:26; 0:34), A4 = (�0:26; 0:24), A5 = (0; 0:19), A6 = (0:08; 0:29), A7 =
(0:42; 0:2) and A8 = (0:34; 0:1) (compare Fig. 3). We also de�ne sets E0, E1

and E2 lying respectively to the left, between and to the right of the sets N0

and N1. The set E0 is a half{stripe lying on the left hand side of N0 de�ned
by straight lines A2A3, A4A1 and A1A2. E1 is the quadrangle A4A3A6A5. E2

is a half{stripe lying on the right hand side of N1, de�ned similarly as E0. Let
W = N1 [N2 [ E0 [ E1 [ E2.
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Figure 4: (a) the covering of the vertical edges of N0 and N1 with rectangles (notice
that the rectangles covering edges of N0 are very thin as these edges are parallel to the
y axis) and its image under h2, (b) the covering of horizontal edges of N0 and N1 and

its image under h2 obtained in computer assisted proof

With the computer assistance we have proved that the image of N0 covers
horizontally N0 and N1 and the image of N1 covers horizontally N0. This is
formally written in the following lemma.

Lemma 3.

1. h2(A1A2) � E2 and h2(A3A4) � E0,

2. h2(A5A6) � E0 and h2(A7A8) � E1,

3. h2(A1A4), h
2(A2A3), h

2(A5A8), h
2(A6A7) � intW .

Proof. For the proof of 1 and 2 we have covered the vertical edges A1A2, A3A4,
A5A6 and A7A8 by 1, 1, 1 and 3 rectangles respectively. Using interval arithmetic
we have proved that their images under h2 are enclosed in the appropriate sets
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Ei. The covering of vertical edges with rectangles (two-dimensional intervals)
and their images under h2 computed during the proof are shown in Fig. 4a. One
can clearly see that h2(A1A2) lies on the right hand side of N1, h

2(A3A4) and

h2(A5A6) lie on the left hand side of N0 and h
2(A7A8) lies between N0 and N1.

For the proof of 3 we have covered the horizontal edges A1A4, A2A3, A5A8

and A6A7 by 9, 11, 4 and 4 rectangles respectively. The covering of horizontal
edges with rectangles and their images under h2 are shown in Fig. 4b. We have
checked that the images are enclosed within the set intW .

For the whole proof of the existence of symbolic dynamics for h2 it was
su�cient to compute images of 34 rectangles under h2.

From Lemma 3 and Theorem 2 it follows that for every sequence of symbols
a = (a0; a1; : : : ; an�1) 2 Tn there exists a point x such that

h2i(x) 2 Nai
for i = 0; : : : ; n� 1 and h2n(x) = x:

In particular for every positive integer n there exists a periodic point of h2 with
period n. Hence for every even integer n there exists a periodic point of the
H�enon map with period n. In this way we have also proved that the subshift on
two symbols with the transition matrix (5) is embedded in h2.

4 Symbolic Dynamics for h7 | Topological Horseshoe

In [Zgliczy�nski 97b] the author introduced the quadrangles N0 = A1A2A3A4,

N1 = A5A6A7A8 shown in Fig. 5 (notice that they are di�erent to the sets
de�ned in the previous section), where A1 = (0:460; 0:01), A2 = (0:595; 0:28),
A3 = (0:691; 0:28), A4 = (0:556; 0:01), A5 = (0:588; 0:01), A6 = (0:723; 0:28),
A7 = (0:755; 0:28) and A8 = (0:62; 0:01). He also de�ned the set E0 as a part
of the plane lying above the straight line A1A4 and on the left hand side of line
A1A2, E1 = A4A3A6A5 and the set E2 consisting of points lying below line A5A8

or below line A6A7 and one the right hand side of line A7A8. The setW is de�ned
as before as W = N0 [N1 [E0 [E1 [E2. For these sets using the technique of
TS-maps he proved the existence of the topological horseshoe. He proved that
the full shift on two symbols with the transition matrix (2) is embedded within
the map h7. Zgliczy�nski did not use the interval arithmetic. Instead he computed
the 7th iteration of the H�enon map at some points and estimated the position of
nearby points after seven iterations by means of Lipschitz constant of the H�enon
map. The proof required computation of h7 for approximately 60000 points.

Using the same sets Ni and Ei we have repeated the proof. In order to prove
the existence of symbolic dynamics associated with the full shift we have to prove
that the images of N0 and N1 under h

7 cover horizontally the set N0 [N1.

Lemma 4. The image of N0 under h7 covers horizontally N0 and N1, i.e.,

h7(A1A2) � E2 and h7(A3A4) � E0;

h7(A1A4); h
7(A2A3) � intW:

The image of N1 under h7 covers horizontally N0 and N1, i.e.,

h7(A5A6) � E0 and h7(A7A8) � E2;

h7(A5A8); h
7(A6A7) � intW:
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Figure 5: The de�nition of the sets N0 and N1 for the proof of symbolic dynamics for
h7
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Figure 6: (a) the covering of the vertical edges of N0 and N1 with rectangles and their

images under h7, (b) the covering of horizontal edges of N0 and N1 and their images

under h7
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Proof. The proof was carried out using interval arithmetic. The covering of verti-
cal edges with rectangles and their images under h7 are shown in Fig. 6a. Similar
covering of horizontal edges and its image are shown in Fig. 6b. We have checked
that they are enclosed in appropriate sets. For the proof of the existence of topo-
logical horseshoe it was su�cient to compute the images of 131 rectangles under
h7.

Notice that the number of rectangles for which the image is computed is
signi�cantly reduced when compared to the original proof. Probably Zgliczy�nski
overestimated the error (he did not use the interval arithmetic).

5 Periodic Points with Periods n � 7, n 6= 9

Lemma 4 states that the images of sets Ni under h
7 covers horizontally the sets

N0 and N1. It follows that for every natural n there exists a periodic point of
h with period 7n. In order to prove the existence of periodic points with other
periods we have checked the positions of N0 and N1 under h

i, for i = 1; : : : ; 6.

Lemma 5.

1. The set h1(N0) covers N1, i.e.,

h1(A1A2) � E2; h
1(A3A4) � E1 [N0 [E0; (6)

h1(A2A3); h
1(A4A1) � intW: (7)

The set h2(N0) covers N0, i.e.,

h2(A1A2) � E0; h
2(A3A4) � E1 [N1 [E2; (8)

h2(A2A3); h
2(A4A1) � intW: (9)

The set hi(N0) for i = 3; : : : ; 6 covers both of the sets N0 and N1, i.e.,

h3(A1A2); h
4(A3A4); h

5(A1A2); h
6(A3A4) � E2; (10)

h3(A3A4); h
4(A1A2); h

5(A3A4); h
6(A1A2) � E0; (11)

hi(A2A3); h
i(A4A1) � intW for i = 3; : : : ; 6: (12)

2. Images of edges of N1 under hi (for i = 1; : : : ; 6) have empty intersection
with the sets N0 and N1.

h1(L); h3(L); h5(L) � E0 and h2(L); h4(L); h6(L) � E2;

where L is any of the edges A5A6, A6A7, A7A8, A8A5.

Proof. For the proof the edges A1A2, A2A3, A3A4, A4A1, A5A6, A6A7, A7A8

and A8A5 were covered by 19, 11, 42, 11, 35, 7, 16, and 7 rectangles respectively.
The images of these rectangles under hi for i = 1; : : : ; 6 were computed. We have
checked that the conditions (6): : :(12) are ful�lled.

The results proved in lemmas 4 and 5 are summarized in Table 1. Using these
results one can easily prove the existence of periodic points for all periods greater
or equal to 7 with the exception of period 9.
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i hi(N0) h
i(N1)

1 N1 |
2 N0 |
3 N0,N1 |
4 N0,N1 |
5 N0,N1 |
6 N0,N1 |
7 N0,N1 N0,N1

Table 1: Images of N0 and N1 under h
i (i = 1; : : : ; 7). In the second and third columns

the sets which are covered horizontally by hi(N0) and hi(N1) are given

Lemma 6. For every integer n � 7, n 6= 9 there exist periodic point of h with
period n.

Proof. As an example we show how to prove the existence of period-8 orbit. Let
us consider the set N1. As it follows from lemma 4 the image of N1 under h7

covers N0. From lemma 5 it follows that h(N0) covers N1. Hence it is clear that
h8(N1) covers N1. Using similar argument as for the TS-maps one can prove
that there exists a point x within N1 such that h8(x) = x. Now it is su�cient to
prove that 8 is the minimal period of x. But this is clear as hi(N1) has empty
intersection with N1 for i = 1; : : : ; 6.

6 Periodic Points with Periods 1, 3, 5 and 9

So far we have shown that there exist periodic points with all periods but 1, 3,
5 and 9. The existence of a �xed point can be proved analytically. There exist
two such points (x1; bx1) and (x2; bx2) where

x1;2 =
b� 1�

p
(1� b)2 + 4a

2a
:

One of the �xed points is embedded within the numerically observed strange
attractor.

In order to decide the existence of periodic points with periods 3, 5 and 9
within the set M = [�5; 5]� [�5; 5] we have used the interval Newton method
[Alefeld 94, G�otz 94]. This method allows to prove the existence and uniqueness
of �xed points within speci�c interval. It also allows to exclude the existence of
a �xed point within a given interval. The idea is to divide the set M into small
subsets for which assumptions of the interval Newton method can be checked.
Using this technique we have proved the following lemma.

Lemma 7. Let M = [�5; 5]� [�5; 5].

1. There exists no periodic point with period 3 within the set M .
2. There exists no periodic point with period 5 within the set M .
3. There exist 6 period-9 orbits within M .
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Proof. To prove part 1 we have covered the set M by 493 rectangles. Using the
interval Newton method we have proved that there are no period-3 orbits within
any of these rectangles. Similarly using 4241 rectangles for the covering of M we
have proved that there are no period-5 orbits within M . For the proof of part
3 the set M was covered by 2974053 rectangles. We have proved the existence
of exactly 54 periodic points with period 9 within M which correspond to 6
di�erent period-9 orbits.

7 Conclusions

In this paper we have shown rigorously with computer assistance that

A. the subshift on two symbols corresponding to the deformed horseshoe is
embedded in h2,

B. the full shift on two symbols corresponding to the topological horseshoe is
embedded in h7,

C. h has periodic points of all periods but 3 and 5,
D. h has no periodic points with periods 3 and 5 within the set [�5; 5]� [�5; 5].

The symbolic dynamics for h2 and h7 is proved for invariant sets embedded
in the strange attractor observed numerically. Also all the periodic orbits the
existence of which is proved (apart from one of the �xed points) lie in the region
where the strange attractor is observed. This indicates that the dynamics of
the system is very complicated. However the existence of a strange attractor for
classical values of parameters still remains an open problem.

Acknowledgments

This work was sponsored Polish Scienti�c Grant no. 0449/P3/94/06 and by the
University of Mining and Metallurgy, grant no. 10.120.132. The author would
like to acknowledge fruitful discussions with Dr. Piotr Zgliczy�nski.

References

[Alefeld 94] Alefeld, G.; \Inclusion methods for systems of nonlinear equations | the
interval Newton method and modi�cations"; Topics in Validated Computations, J.
Herzberger ed., Elsevier Science 1994, 7{26.

[G�otz 94] G�otz, A.; \Inclusion Methods for Systems of Nonlinear | The Interval
Newton Method and Modi�cations"; in Topics in Validated Computations, ed.
J. Herzberger, 1994, Elsevier Science B.V., 7{26.

[Galias 97] Galias, Z.; \Positive topological entropy of Chua's circuit: a computer as-
sisted proof"; Int. J. Bifurcation and Chaos, 7, 2 (1997), 331{349.

[Galias, Zgliczy�nski 96] Galias, Z., Zgliczy�nski, P.; \Computer assisted proof of chaos
in the Lorenz system", IMUJ preprint 1996/23, accepted for publication in Phys-
ica D.

[Guckenheimer, Holmes 83] Guckenheimer, J., Holmes, P.; \Nonlinear Oscilla-
tions,Dynamical Systems, and Bifurcations of Vector Fields"; Springer{Verlag, 1983.

[H�enon 76] M. H�enon; \A two dimensional map with a strange attractor"; Com-
mun. Math. Phys., 50, 1976, 463.

123Galias Z.: Rigorous Numerical Studies of the Existence ...



[Robinson 95] Robinson, C.; \Dynamical Systems: Stability, Symbolic Dynamics, and
Chaos"; CRC Press, Boca Raton, 1995.

[Kn�uppel 93] Kn�uppel, O.: \PROFIL | programmer's runtime optimized fast interval
library"; Technical University Hamburg-Harburg, July 1993, Bericht 93.4.

[Zgliczy�nski 97a] P. Zgliczy�nski; \Computer assisted proof of the horseshoe dynamics
in the H�enon map"; Random & Computational Dynamics, 5, 1 (1997), 1{19.

[Zgliczy�nski 97b] Zgliczy�nski, P.: \Computer assisted proof of chaos in the R�ossler
equations and in the H�enon map"; Nonlinearity, 10, 1 (1997), 243{252.

124 Galias Z.: Rigorous Numerical Studies of the Existence ...


