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Abstract: This paper discusses the processing of non-linear polynomial systems using
a branch and prune algorithm within the framework of constraint programming. We
propose a formalism for a kind of branch and prune algorithm implementing symbolic
and numerical methods to reduce the systems with respect to a relation de�ned from
both inclusion of variable domains and inclusion of sets of constraints. The second
part of the paper presents an instantiation of this general scheme. The pruning step is
implemented as a cooperation of factorizations, substitutions and partial computations
of Gr�obner bases to simplify the systems, and interval Newton methods address the
numerical, approximate solving. The branching step creates a partition of domains
or generates disjunctive constraints from equations in factorized form. Experimental
results from a prototype show that interval methods generally bene�t from the symbolic
processing of the initial constraints.

Key Words: Branch and prune algorithm, non-linear constraint solving, cooperative
constraint solvers, symbolic simpli�cation, interval Newton methods, Gr�obner basis,
polynomial system.

1 Introduction

Simpli�cation methods are foundations of computer algebra, used to normalize
formulae or to preprocess it before applying an appropriate resolution algorithm.
Among others, Gr�obner bases computations [10] reduce sets of non-linear poly-
nomials by deriving a particular basis of the ideal de�ned by the initial poly-
nomials, and cylindrical algebraic decomposition [11, 12] simpli�es quanti�ed
formulae over the reals.

Interval analysis was introduced in the early sixties by Moore [32] to han-
dle round-o� errors of numerical computations using machine numbers, and to
quantify precisely the accuracy of the results. The key idea is to extend each real
operation on intervals taking rounding of the bounds into account, and to eval-
uate real functions on intervals. Doing so, the range of a real function is ensured
to be included in its interval evaluation, which guarantees correctness of com-
putations. Based on interval arithmetic, various methods for solving systems of
non-linear equations were de�ned in the interval community [32, 2, 19, 27, 35].
Most of these are derived from Taylor series approximations, the best known
being the interval version of Newton's method, whose purpose is to search zeros
of univariate interval functions. Being intrinsically incomplete, these methods
have to be combined with enumeration techniques for deriving each solution,
which de�nes a branch and prune algorithm. It iterates a pruning step which re-
duces the search space of the initial system and a branching step which generally
consists in splitting the search space.
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Moore [32] showed that interval computations strongly depend on the forms
of real functions and bad expressions of functions may lead to very ine�cient
interval evaluations. For example, the interval evaluation of f(x) = x � x over
[0; 1] is [�1; 1] while its range is [0; 0]. This comes from a weakness of interval op-
erations computing with bounds of intervals1 and then the two occurrences of x
are considered as di�erent variables. To handle such situations arising when solv-
ing systems of equations over intervals, various methods were proposed. Among
others, centered forms [32, 37, 36, 3] and preconditionning [26] using diagonally
dominant Jacobian matrices guarantee good convergences of interval solving.

Recently, the cooperation of constraint solvers was discussed in the cc frame-
work [38] and in the CLP context [20, 4, 31]. In particular, several works [29, 6]
propose to combine symbolic and interval methods for solving systems of non-
linear equations. Essentially, symbolic methods generate redundancies speeding-
up interval methods. However, more work can be done during the symbolic
process. Let us consider the system of equations fxy�x = 0; x25+2xy+1 = 0g.
The factorization of xy � x = 0 allows to instantiate the second equation with
either x = 0 or y = 1. This generates the disjunction fx = 0; 1 = 0g [ fy =
1; x25+2x+1 = 0g. Both systems can be easily solved using numerical methods.
Moreover, factorization followed by generation of disjunctive equations reduces
the dependency between variables, which is pointed out by Moore as a main
problem for interval methods.

This led us to extend the heterogeneous constraint solving model described
in [4] and classical branch and prune algorithms to take into account the gener-
ation of disjunctive constraint systems during the symbolic process. Constraint
systems are viewed as conjunctions of disjunctions of real constraints and are
processed by iterating two steps: the application of closure operators, called
constraint narrowing operators, reduces the variable domains or adds some re-
dundancies; enumeration is implemented by constraint branching operators to
split the variable domains or the equations having a factorized form. The sec-
ond part of the paper is devoted to an instantiation of this general framework.
We propose an algorithm for solving non-linear polynomial equations over the
reals, combining partial computations of Gr�obner bases [6], factorizations and
substitutions over rational equations, and interval Newton methods over arbi-
trary equations. Algebraic methods are used to reduce the dependency between
variables for speeding-up interval computations. Experimental results from a
prototype are given and show that symbolic transformations of systems greatly
improve the computational behaviour of interval methods for most of the pre-
sented benchmarks.

With respect to the related papers mentioned above, we believe that this pa-
per proposes a novel cooperation of methods from computer algebra and numeri-
cal analysis for solving non-linear polynomial equations. An important collection
of benchmarks from various domains are tested with a prototype, and show sig-
ni�cant speed-ups due to the symbolic transformations of constraints. Then, we
identify di�erent behaviours of the software for di�erent constraint systems, in
particular when the cooperation involves a slow down. A discussion ends the
section relating the experimental results and focuses on the needs for developing
tight cooperation strategies between solvers together with parallelism.

The rest of the paper is organized as follows. Section 2 recalls the basics

1 [a; b]� [c; d] is [a� d; b� c] with outward rounding of the bounds.
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of approximations, interval arithmetic and Gr�obner bases. The motivations of
symbolic transformations of real constraints for improving interval computations
are introduced in section 3. We de�ne a generic branch and prune algorithm in
section 4 for solving real constraints. Section 5 describes an instantiation of this
algorithm for solving polynomial systems. Section 6 presents the experimental
results and we conclude in section 7.

2 General framework

Let � be a structure < IR;O;R > where IR is the set of real numbers, called
the universe, O a set of function symbols and R a set of relation symbols. Let
V = fx1; : : : ; xng be a set of variables taking their values over IR. This set is
assumed to be large enough to built the constraints described here. Terms in
the constraint language are syntactic expressions built in the usual way from
constants, variables and operations. Constraints are syntactic expressions rep-
resenting relations made from terms and relation symbols. In this paper, terms
are multivariate polynomials and constraints are polynomial equations over IR.
The power set of IR is denoted 2IR.

In the following, a constraint and the relation it represents are denoted by
the same symbol.

2.1 Approximations

Solving real constraints being an intractable problem when using machine num-
bers, approximations of the set of solutions are computed over approximate do-
mains.

De�nition 1 (Approximate domain) An approximate domain A over IR is
a subset of 2IR, closed under intersection, such that IR 2 A and for which the
inclusion is a well-founded ordering.

Given an approximate domain A, the approximation over A of a unary re-
lation �, denoted apx

A
(�), is de�ned as the intersection of all the elements of

A containing �. The approximation of an n-ary relation � = (�1; : : : ; �n) is the
Cartesian product of the approximations of each of its projections apx

A
(�1) �

� � ��apx
A
(�n). A tuple ~X = (X1; : : : ; Xn) of elements of A, called a box, denotes

the Cartesian product X1 � � � � � Xn (see [7] for a complete discussion about
approximations).

2.2 Interval arithmetic

Interval computations restore correctness of numerical computations, enclosing
solutions with intervals being bounded compact sets of reals. Termination is ob-
tained by taking a �nite number of possible values for the bounds of intervals (in
practice the oating point numbers), together with some convergence properties.
Correctness is addressed providing a mechanism of outward rounding of compu-
tations at bounds of intervals. We recall in this section the essentials which can
be found in [32, 2].
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De�nition 2 (Interval) Let R be a �nite subset of IR and l; r be two reals such
that l 2 R [ f�1g and r 2 R [ f+1g. An interval I = [l; r] is the compact set
of reals fx 2 IR j l � x � rg. In particular [�1;+1] corresponds to IR, [�1; r]
represents fx 2 IR j x � rg and [l;+1] denotes fx 2 IR j l � xg. All the intervals
[l; r] such that l > r are mapped to the empty interval ;.
The set of all the intervals over R is denoted II(R).
An interval in II(R) is said to be canonical if it contains at most two elements
of R (then ; is canonical).

II(R) is an approximate domain with respect to the set inclusion ordering. A real
r is approximated by the smallest interval containing r. More generally, a relation
� over IR is approximated by the smallest interval containing all the elements in
�, using the approximation function over II(R). To simplify the notations, II(R)
is denoted II considering the implicit existence of a set R; in practice, it is the
set of oating point numbers in double precision [23], in which case an element
of II is said to be a oating point interval.

Interval arithmetic operations are set extensions of real operations. Given � a
real operation, two intervals I; J , and � the interval operation corresponding to
�, I�J is apx

II
(fx = y �z j y 2 I; z 2 Jg). An n-ary interval function is a mapping

IIn ! II involving interval constants, interval operations and interval variables.
Van Hentenryck et als. [40] introduced various forms of interval extensions to
approximate over intervals a real function. They are de�ned as interval functions
obtained from its by a syntactic operation. In particular, two di�erent expressions
of a same real function may lead to di�erent interval extensions. Our de�nition
of interval extension corresponds to the natural interval extension of [40].

De�nition 3 (Interval extension) Let f be an n-ary real function. The in-
terval extension of f is a mapping IIn ! II obtained from f by replacing in the
expression of f each constant r by apx

II
(frg), each operation by its corresponding

interval operation and each variable by an interval variable.

Interval extensions are correct, i.e. enclosing the range of variation of real func-
tions, and monotonic. We recall the property of subdistributivity of interval arith-
metic.

Property 1 (Subdistributivity) Let I; J;K 2 II. Then
I 
 (J �K) � (I 
 J)� (I 
K).

2.3 Gr�obner bases

The theory of Gr�obner bases can be found in [10, 13]. A polynomial is a sum of
monomials which are ordered using a monomial ordering. A monomial ordering
is a total, well-founded ordering on monomials which is compatible with the
multiplication on monomials. In what follows, we �x the monomial ordering and
consider that all the polynomials are ordered with respect to this ordering. For
every polynomial p, the leading term of p, denoted LT (p), is the monomial of p
which is maximal with respect to the monomial ordering.

Example 1 (Lexicographic ordering) Let x1; : : : ; xn be n variables alpha-

betically ordered (x1 > : : : > xn). A monomial xd11 : : : xdnn is greater than a
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monomial x
d0

1

1 : : : x
d0

n
n

2 i� it exists i such that di > d0i and for all j smaller than
i, dj = d0j .

A S-polynomial is a combination of two polynomials producing the cancella-
tion of their leading terms.

De�nition 4 (S-polynomial) Let p and q be two nonzero polynomials and x

denotes the least common multiple of the power products appearing in LT (p) and
LT (q). The S-polynomial of p and q is the polynomial

S(p; q) =
x

LT (p)
p�

x

LT (q)
q

Example 2 Let p = xy2 � x+ y + 1 and q = 3x2y + 3x+ 2 be two polynomials
ordered by the lexicographic ordering. LT (p) = xy2, LT (q) = 3x2y and x =
x2y2. The S-polynomial of p and q is 3x:p� y:q = �3x2 � 2y + 1.

Given a nonzero polynomial p and S = fp1; : : : ; png a set of polynomials, p
can be written as p =

Pn

i=1 aipi + r such that either r is the zero polynomial
or r is a linear combination of monomials such that none of them is divisible by
any of LT (p1); : : : ; LT (pn). The polynomial r is obtained as the remainder of
the division of p with respect to S. It is called the reduction of p with respect to
S and is denoted pS .

Example 3 Let S be the set fp1 = xy� 2; p2 = 2x+1g and p = 4x2y2 + x2y�
y2 +1. Then, p = (4xy+ x+8)p1+ p2 � y2+16. The remainder of the division
of p with respect to S is �y2 + 16.

The following de�nition for Gr�obner bases gives their algorithmic character-
ization and is due to Buchberger [10]:

De�nition 5 (Gr�obner basis) Let S = fp1; : : : ; png be a set of polynomials.
S is a Gr�obner basis i� for all pairs (i; j) 2 f1; : : : ; ng the reduction with respect
to S of the S-polynomial S(pi; pj) is equal to 0.

The basic algorithm computing Gr�obner bases consists in successive compu-
tations of reduced S-polynomials over the initial set of polynomials augmented
by the computed S-polynomials di�erent from zero. The algorithm stops, after a
�nite number of steps, when no S-polynomial di�erent from 0 can be computed.
The resulting set of polynomials is a Gr�obner basis and is denoted GB(S).

3 Dependency between variables and constraints

It is well known that the e�ciency of numerical methods for enclosing zeros
of real functions is strongly inuenced by their syntactic forms. In particular,
interval computations are as e�cient as the constraints contain few variables
or occurrences of a same variable. This is known as the dependency problem
[32]. Thus, it is important to simplify the constraints before the interval solving

2 The degrees can take the 0 value.
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process. For this purpose, we identify di�erent methods from computer algebra
which are local to a constraint or global to a system of constraints. Since the
inclusion of interval functions generally depends on the variable domains, some
simpli�cations may have a heuristics nature. However, interval computations are
necessarily more precise if the simpli�ed constraints are added as redundancies.

As shown by Moore, interval arithmetic considers occurrences of a same
variable as di�erent variables, which widens widths of computed intervals. The
following example also illustrates the needs for factorizing real functions.

Example 4 Let f(x) = x2 � x and g(x) = x(x � 1) represent two di�erent
expressions of the same real function and F (X) = X2 	X, G(X) = X 
 (X 	
[1; 1]) be their interval extensions. Then,

ff(x) j x 2 [0; 1]g = fg(x) j x 2 [0; 1]g = [�0:25; 0]
� G([0; 1]) = [�1; 0]
� F ([0; 1]) = [�1; 1]

In this example, G gives a more precise interval than F , while it does not
approximate exactly the range of the real function. Then, it can be asked if
the evaluation of G is included in the evaluation of F for every interval, in
which case G could always replace F . And second, are di�erent interval exten-
sions of a same real function always comparable ? The answer is no, noticing
that G([0; 1]) = [�1; 0] � F ([0; 1]) = [�1; 1] while F ([�1; 0:5]) = [�0:25; 2] �
G([�1; 0:5]) = [�1; 2]. However, it can be remarked that the interval evaluation
of x(x�1) is always included in the interval evaluation of x�x�x, which is due
to the subdistributivity property of interval arithmetic. The di�erence between
x�x and x2 appears in the removal of the negative part when evaluating x2 over
intervals.

The generation of redundancies may reduce the dependency between vari-
ables in the constraints. It is a global method since redundancies are inferred
from other, existing, constraints.

Example 5 (Redundancy) Let S = fx2 + y2 � 5 = 0; x2 � y2 � 3 = 0g be
a set of real constraints. The equation x2 � 4 = 0 is a redundant constraint
which can be obtained as a simple linear combination of the constraints in S.
The dependency is reduced because the variable x is not dependent on y in this
constraint.

The following example illustrates the substitution of terms by less dependent
terms in expressions.

Example 6 (Substitution) Let S = fxy = 1; x+xy = 0g be a set of real con-
straints. From S, the equations x+1 = 0 and y+1 = 0 are obtained successively
by applying some trivial substitutions.

The main problem remains to prove that less dependent terms give tighter in-
tervals, which is not always the case. Consider for example two variables, x with
domain [�0:5; 0:5] and y with domain [�1; 1]. Though y is less dependent than
x � y, the evaluation of y, being [�1; 1], is larger than the evaluation of x � y,
being [�0:5; 0:5]. As a consequence, the comparison between terms also depends
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on the variables domains. However, if the resulting constraints are added as re-
dundancies, the computed intervals are always tighter, while this may slow down
the whole process due to an amount of computations for these constraints.

Classically, branching is done by partitioning the domains of variables. More-
over, it can be applied on constraints, which reduces the dependency.

Example 7 (Disjunction) Let S = fxy = 0; x2 = yg be a set of real con-
straints. From S, it can be generated the disjunction of S0 = fx = 0; x2 = yg
and S00 = fy = 0; x2 = yg. The resolution of S is not immediate, which is due to
the weak reductions computed with x � y = 0, while solving S0 and S00 is trivial.

Each presented method seems to be useful for reducing the dependency be-
tween variables. However, as seen in the experimental results, they cannot always
be applied on the initial constraints. Actually, we think that what makes pow-
erful the symbolic transformations of constraints is the combination of these
methods. A particularly e�cient strategy is to factorize the redundancies3, ob-
tained for example by Gr�obner bases computations, and to generate disjunctions
of constraints from factorized equations.

4 Modelling branch and prune algorithms

Branch and prune algorithms aim at searching solutions of sets of formulae.
They are described as an iteration of two steps: from a set of formulae, a prun-
ing step enforces some reductions of the variable domains using local methods,
i.e. restricted to a subset of the formulae; these local methods generally being
incomplete, a branching step enumerates the domains of variables. In the case
of �nite domains, the problem in the worst case is NP-hard (when the pruning
does not remove any value from the domains, each element of the search space
has to be enumerated).

We describe now a generic branch and prune algorithm for processing real
constraint systems in terms of constraint narrowing operators and constraint
branching operators. Intuitively, pruning is applying closure operators on con-
straint systems and branching is generating disjunctions of constraint systems.

Due to practical considerations, i.e. the handling of disjunctive constraints
(see section 5), a constraint system is viewed as a conjunction of disjunctions of
constraints.

De�nition 6 (Constraint system) Let A be an approximate domain over IR.

A constraint system over A is a pair (C; ~X) where C is the conjunction C1; : : : ;

Cm and each Ci is the disjunction of real constraints ci;1[ : : :[ci;li . ~X is a �nite
Cartesian product over A denoting the domains of the variables appearing in C.

Given an approximate domain A over IR, C(�;A) denotes the set of all the con-
straint systems made from � and A. The set of solutions of a constraint system

S = (fc1;1 [ : : : [ c1;l1 ; : : : ; cm;1 [ : : : [ cm;lmg; ~X), denoted S?, is obtained by
making the union of the relations in each disjunction and intersecting the results

for all the disjunctions, that is \mi=1 [
li
j=1 ci;j .

3 When it is possible.
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Constraint systems are generally ordered with respect to the inclusion of
domains. However, we claim that it is important to take the constraint part
into account, considering that numerical methods are dependent on the forms of
constraints. For example, adding a redundant constraint to a constraint system
reduces the search space. We de�ne the relation � over C(�;A) to order constraint

systems, as an extension of the relation proposed in [4]. Intuitively, c and c0 being
two relations, c \ c0 is included in c (or c0) while c [ c0 contains c (or c0). More
formally,

(fC1; : : : ; Cmg; ~X) � (fC 0

1; : : : ; C
0

pg;
~X 0) ()

~X � ~X 0 ^ 8i 2 f1; : : : ;mg 9j 2 f1; : : : ; pg
(8k 2 f(j; 1); : : : ; (j; lj)g 9h 2 f(i; 1); : : : ; (i; li)g) ck = ch

The partially ordered set (C(�;A);�) is a complete lattice. Given two constraint

systems S = (C; ~X) and S0 = (C 0; ~X 0) over the approximate domain A, the meet

of S and S0 is (C [ C 0; ~X \ ~X 0) and the join is (C \ C 0; apx
A
( ~X [ ~X 0).

A pruning operation is modeled by constraint narrowing operators, which are
closure operators over (C(�;A);�). A branching step is modeled by constraint
branching operators which aim at generating disjunctions of constraint systems.

De�nition 7 (Constraint narrowing / branching operators) Given a
structure � and an approximate domain A over IR, a constraint narrowing op-
erator is a mapping N : C(�;A) ! C(�;A) such that

8S 2 C(�;A) : N(S) � S (Contractance)
8S; S0 2 C(�;A) : S � S0 ) N(S) � N(S0) (Monotonicity)
8S 2 C(�;A) : N(S)? = S? (Correctness)

A constraint branching operator is a mapping B : C(�;A) ! 2C(�;A) such that for

every S, B(S) = fS1; : : : ; Sng, the following properties hold:

8i 2 f1; : : : ; ng : Si � S (Contractance)
[ni=1S

?
i = S? (Correctness)

In this model, the resolution of constraint systems is de�ned as an iteration
of applications of constraint narrowing operators and constraint branching op-
erators, until none domain of the generated constraint systems can be further
reduced. The result is a union of irreducible domains representing the solutions
of the initial constraint system. The implemented methods generally being in-
complete, the real solutions are guaranteed to be included in the computed do-
mains while a computed non empty domain may contain no solution. However,
the consideration of constraints in the de�nition of the relation � disables the
termination of classical algorithms. Then, this problem has to be handled for
each practical application. For example, constraint narrowing operators adding
an in�nity of redundant constraints without ever reducing the domains must be
excluded.

A constraint narrowing operator is an abstract description of a constraint
solver. Furthermore, a combination of constraint narrowing operators over dif-
ferent approximate domains over IR is still a constraint narrowing operator over
the union of the approximate domains (see [4] for more details). This allows to
describe constraint solving systems in which several solvers cooperate.
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5 Solving polynomial systems

We propose to combine partial Gr�obner bases (section 5.2), factorizations and
substitutions (section 5.5), constructive disjunction (section 5.4), branching over
domains and constraints (section 5.3) and interval Newton methods (section 5.1)
for solving systems of polynomial equations over the reals, embedded in a branch
and prune algorithm described in section 5.6.

Since the domains of computations are di�erent, rationals vs. intervals, we
need to merge these domains. Let ID be the set fIR; ;; q1; q2; : : :g where the qi's
are the rationals. An immediate result is that ID is an approximate domain. It
follows that ID [ II is an approximate domain which will be the computational
domain of the cooperative system. The inclusion and intersection over ID[ II are
the set operations over IR.

5.1 Interval Newton methods

Interval Newton methods [32, 2, 35, 7, 14, 18, 39, 22, 27] are numerical algorithms
enclosing zeros of functions by intervals. We present here the methods combined
in Newton [39]. They are embedded in an iterative algorithm derived from AC-3
[28, 5], computing an approximation over intervals of arc-consistency which is a
local consistency notion from Arti�cial Intelligence. It stops when the domains
cannot be further reduced, when they are canonical or smaller than the desired
precision.

The �rst one is based on an extension over intervals of the well-known Newton
root �nding method over the real numbers. This method has been extended to
interval functions (see [32, 19, 2, 18, 27, 35]). Let f be a real function. Let X
be an interval and suppose that F is the natural interval extension of f , F 0 the
natural interval extension of f 0, and m(X) the approximation of the center of
X . The Newton interval function is the function:

N(X) = m(X)	 (F (m(X))� F
0

(X))

From this de�nition, one can design an interval Newton method enclosing roots
of interval functions. Given an initial interval X0 and an interval function F , a
sequence of intervalsX1; X2; : : : ; Xn is computed using the iteration step Xi+1 =
N(Xi) \ Xi. Xn is either empty, which means that X0 contains no zero of F ,
or is a �xed point of N . If the function f contains several variables then this
method is applied on each projection (by replacing each variable except the one
considered by its domain) of F and F 0.

The second method is derived from the mean value form [32] where the
function is approximated using a Taylor expansion of order 1 around the center
of the domains of the variables. Given f(x1; � � � ; xn) a real function, F (X1; � � � ;
Xn) its natural interval extension, J a set of intervals fJ1; � � � ; Jng forX1; � � � ; Xn

and mi(J) the projection on i of m(J), the following equality holds:

F (m(J)) �
nX
i=1

@F

@xi
(J)
 (Xi 	mi(J)) = 0
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If it is projected on the variable xi, then the interval for the variable can be
expressed as:

Xi = mi(J)	
1
@F
@xi

[F (m(J)) �
nX

k=1;k 6=i

@F

@xk
(J)
 (Jk 	mk(J))]

This expression gives a method to narrow down the interval for xi using the
Taylor narrowing operator, computing a new interval for xi as Ji \Xi.

5.2 Partial Gr�obner bases

Gr�obner bases computations [10] are successive computations of S-polynomials
(see section 2.3). Benhamou et als [6] proposed to preprocess constraint systems
using Gr�obner bases to reduce the dependency between variables. They intro-
duced a notion of hierarchy between S-polynomials based on the notion of depth
of a S-polynomial.

De�nition 8 Let S be an ordered set of polynomials. The S-sets of S are ordered
sets of S-polynomials computed from S, and de�ned as follows:(

S0 = S

Si = Si�1 [ fS(p; q)
S0

6= 0 j p; q 2 Si�1g; i � 1

where S(p; q)
S0

is the S-polynomial of p and q reduced with respect to S0. S0 is
the set of all the polynomials appearing in Si before S(p; q). Si is called the S-set
of S of depth i.

The computation of S-sets stops when two consecutive S-sets are equals,
i.e. none nonzero S-polynomial can be computed, which is guaranteed by the
classical termination proofs of Gr�obner bases computations using the idea that
only a �nite number of nonzero S-polynomials can be computed. If S is a set of
polynomials and n is a natural such that Sn+1 = Sn, then Sn is a Gr�obner basis
for S.

We give now a basic example of Gr�obner bases computations structured by
S-sets.

Example 8 Let S = fx3 � 2xy; x2y � 2y2 + xg be a set of polynomials. The
S-sets of S are computed using the reverse lexicographic ordering:

S0 = fx3 � 2xy; x2y � 2y2 + xg
S1 = S0 [ fx2g
S2 = S1 [ f2xy; 2y2 � xg

S2 is a Gr�obner basis for S. The computation of S1 adds the trivial equation
x2 = 0. Then, it is not useful to compute the whole Gr�obner basis.

Notations: if fq1; : : : ; qmg is a S-set of fp1; : : : ; png, fq1 = 0; : : : ; qm = 0g is also
called a S-set of fp1 = 0; : : : ; pn = 0g.

Since the reduction of the dependency between variables does not guarantee
more precise interval computations (this is a heuristic), the S-polynomials are
added as redundancies in the constraint system.
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5.3 Branching

We propose to split the constraint systems over domains and constraints. Given

j 2 f1; : : : ; ng, the constraint system (C = fC1; : : : ; Cmg; ~X) where Ci = ci;1 [
: : : [ ci;li and Xj = [l; r]:

{ Branching over constraints:
If li > 1, Ci is splitted, which generates for all k 2 f1; : : : ; lig the disjunction

of constraint systems (fC1; : : : ; Ci�1; fci;kg; Ci+1; : : : ; Cmg; ~X).
{ Branching over domains:
Let x0; x1; : : : ; xp be an ordered sequence of oating point numbers where
x0 = l and xp = r and let X 0

1 = [x0; x1]; : : : ; X
0

p = [xp�1; xp]. Given k 2
f1; : : : ; pg, the disjunction of constraint systems
[k(C; (X1; : : : ; Xj�1; X

0

k; Xj+1; : : : ; Xn)) is created.

During the resolution, a step of branching over domains always splits the
domain of greatest width (the width of a rational is 0 and the width of an
interval is the di�erence of the bounds). In general, the chosen domain, being
necessarily an interval, is splitted in two or three equal parts4.

5.4 Constructive disjunction

Constructive disjunction was studied in the CLP community [24, 41] to e�-
ciently handle disjunctive constraints. The main idea is to infer informations
from disjunctive constraints, i.e. reducing the domains of variables, rather than
creating a Prolog choice point.

We use a similar idea to handle disjunctive constraints to be processed by
interval Newton methods. Given a disjunctive constraint c1 [ : : :[ cm and a box
~X, a new box ~Xi is computed from ci and ~X , for all i in f1; : : : ;mg. The �nal

computed domain is apx
II
( ~X1 [ : : : [ ~Xm).

The motivation is to generate from a constraint f � g = 0 in factorized form
the disjunction ff = 0g[fg = 0g. Intuitively, f and g being less dependent than
f �g, the computed domains from f = 0 and g = 0 are included in the computed
domain from f � g = 0, and so does the approximation of both domains.

5.5 Factorization and substitution

Substitutions replace expressions in constraints by smaller expressions, in the
sense that the interval evaluations become tighter. Our (very basic) approach
is to transform constraints in the form f(x1; : : : ; xn) = q where q is a ra-
tional, and to replace f by q in other constraints. This guarantees that the
transformed constraints lead to smaller computed intervals. More formally, let

(fff(x1; : : : ; xn) = qg; C2 : : : ; Cmg; ~X) be a constraint system. Then, f is re-
placed by q in all disjunctions of constraints from C2; : : : ; Cm containing f . In
practice, some other cases are tested. For example, from a constraint x = y2,
x is replaced by y2 in the other constraints sharing x and y. This allows to

4 Due to an heterogeneous repartition of the oating point numbers, it should be
better to split the domains considering the number of the oating point numbers
they contain.
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decrease the number of variables. We proved in another paper [17] that such
transformations reduce the width of the computed intervals.

Factorization is implemented following the subdistributivity property of in-
terval arithmetic which ensures that factorized expressions give more precise
interval evaluations. Moreover, even if a constraint cannot be fully factorized,
it remains useful to factorize some sub-expressions. It is connected with the
concept of constructive disjunction and the generation of disjunctions of con-
straint systems by splitting the constraints. Actually, a disjunctive constraint is
created when a constraint is factorized and is processed by constructive disjunc-
tion during interval computations. It is only during a branching step that the
disjunctive constraints are splitted for generating several constraint systems. In
the implementation, factorizations are computed using the Maple [1] primitive
factor.

The following example illustrates these ideas. Let S be the constraint system

(fx3 + xy2 +2y2 + x2 � x = 1; x2 + y2 = 1g; ~X). The substitution of x2 + y2 by
1 in the �rst equation gives x3 + xy2 + y2 � x = 0 which can be factorized in
(x� 1)(x2 + y2 + x) = 0. From this last equation is generated the disjunction of

two constraint systems S0 = (fx = 1; x2+y2 = 1g; ~X) and S00 = (fx2+y2+x =

0; x2 + y2 = 1g; ~X). The substitution of x by 1 in S0 gives y2 = 1. Then, the
solutions of S0 are derived immediately. The substitution of x2 + y2 by 1 in S00

gives x = �1. The substitution of x by �1 in the second equation gives y2 = 0.
Then, the solution of S00 is trivially computed.

5.6 Cooperative algorithm

We implement a branch and prune algorithm for solving systems of polyno-
mial equations. The branching step is essentially described in the section 5.3. A
branching over constraints is always preferred. The pruning step is achieved by
a cooperation of the techniques presented in the precedent sections. We describe
the strategy which guides the pruning step.

Let S0 = (C0; ~X) be a constraint system. The pruning of S0 is implemented
by the next �fth steps, in the following order:

1. S0 is simpli�ed as much as possible applying substitutions. This generates

the new system S1 = (C1; ~X).
2. Let d be a �xed integer and E be the set of equations from S1 not appearing

in a disjunction. The S-set E0 of depth d of E is computed. This creates the

new system S2 = (C2 = C1 [E0; ~X).
3. The trivial equations of the form xi = q not appearing in disjunctions are

removed after setting the domain of xi to Xi \ q. If a domain is empty then

the process stops, otherwise the system S3 = (C3; ~X 0) is derived.
4. Factorizations are enforced. From each constraint c of C3 being factorized in

p1 � � � � � pn = 0, the disjunction fp1 = 0g [ : : : [ fpn = 0g is created. This

generates the system S4 = (C4; ~X 0).
5. Interval Newton methods combined with constructive disjunction process

each disjunctive constraint in C4, until reaching a stable state.

The algorithm stops when the domains of each generated constraint systems
cannot be further reduced or are smaller than the desired precision.

136 Granvilliers L.: A Symbolic-Numerical Branch and Prune Algorithm ... 



Parameters Branching Computation time
n v s Cstr Int tS tI tS + tI tI�S gain

parabola 2 2 2 2 0 0.01 0 0.01 0.10 10
Morgan 4 4 2 1 1 0.04 0.17 0.21 7.80 37
Griewank 2 2 1 1 0 0.02 0 0.02 3.84 192
cubic 2 2 3 0 2 0.01 0.05 0.06 0.12 2

chemistry 4 4 1 0 0 0.34 0.25 0.59 0.95 1.6
kinematics 8 8 16 1 14 0.02 4.10 4.12 13.72 3
high� deg 3 3 12 6 8 0.36 0.42 0.78 10.40 13
Powell 4 4 1 1 0 0.02 0 0.02 0.33 16
Brown 5 5 2 0 1 0.04 0.19 0.23 1 %
Eiger 4 4 2 0 1 0.02 0.15 0.17 0.34 2

Kearfott 9 9 2 2 0 0.02 0.17 0.19 0.42 2
geometric 2 2 2 0 1 0.06 0.23 0.29 0.50 2
cyclohexane 3 3 16 0 15 0.55 2.94 3.49 8.35 2.4

cyclic3 3 3 2 0 1 0.01 0.10 0.11 1 %
cyclic4 4 4 4 0 7 0.16 0.97 1.13 1 %
Cox 3 3 5 2 8 0.02 0.24 0.26 1 %

Geisow 2 2 3 2 1 0.09 0.30 0.39 1.70 4
piano 9 9 1 1 0 0.01 0.51 0.52 0.68 1.3
Czapor 3 3 2 0 3 0.13 0.40 0.53 5.44 10
Winkler 3 3 2 0 1 0.09 0.44 0.53 2.51 5
eco4 4 4 1 1 1 0.02 0.05 0.07 1.10 15
eco5 5 5 4 1 9 0.75 0.88 1.65 1 %

neuro1 6 6 8 8 0 0.15 0 0.15 1 %
neuro2 6 6 8 0 13 0.47 1.36 1.83 1 %

combustion 10 10 4 2 92 0.02 9.88 9.90 5.74 0.6
interval1 10 10 1 0 0 4.26 1.02 5.28 0.66 0.1
bifurcation 3 3 4 0 88 10.35 1.32 11.67 1.09 0.1

Table 1: Experimental results.

6 Experimental results

We have implemented in the C language a prototype for solving non-linear poly-
nomial equations, called Cosinus. The library Gnu-Multi-Precision [16] im-
plements the computations over the rational numbers. Maple [1] implements
the factorizations. The solver is tested on various examples extracted from
[21, 34, 25, 42, 8, 13, 9, 33, 30, 43, 39] (see appendix A for their descriptions).

6.1 Computational results

The table 1 presents the computational results of Cosinus on the benchmarks.
For each benchmark named in the �rst column, the labels of the other columns
mean: n is the number of constraints in the system { v the number of variables {
s the number of solutions { Cstr the number of branching over constraints { Int
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the number of branching over domains { tS the computation time of symbolic
methods { tI the computation time of interval methods { tS+tI the sum of tS and
tI { tI�S the computation time when symbolic transformations are disconnected
{ gain the ratio between tI�S and tS + tI .

The tests were done on a Sun Sparc 4 (110 Mhz) and the precision is 10�12

(the width of the computed intervals must be less than 10�12). The branching
over domains splits the greatest domain in two equal parts with respect to the
Haussdorf metric. A \1" in a cell of the table indicates that the computation
time takes more than one hour. A \%" means that the ratio between tI�S and
tS + tI is rather large when tI�S =1.

6.2 Positive examples of problem solving

In this section, we describe the solving processes for some benchmarks which
take advantage of symbolically transforming the initial constraints.

6.2.1 Factorizations and disjunctions

Let S = (f1:8125z31 � 2z1z2 = 0; z2 = z21g;
~X) be a constraint system where

~X = ([�103;+103]; [�103;+103]) (referred as Griewank in the table 1). The
variable z1 is factorized in the �rst equation. A branching step on constraints
generates the disjunction:

S0 = (fz1 = 0; z2 = z21g; ~X) [ S00 = (f1:8125z21 � 2z2 = 0; z2 = z21g; ~X)

In the second equation of S0, z1 is replaced by 0 which gives z2 = 0. In the �rst
equation of S00, z2 is replaced by z21 which gives �0:1875z21 = 0 and then z1 = 0.
The second equation is then transformed in z2 = 0. Finally, the solution (0; 0) is
symbolically derived in 0:02s.

Actually, the solution is singular and interval Newton methods are very in-
e�cient for this kind of problem, and thus must operate on another expression
of the system.

6.2.2 Gr�obner bases

Let S be the constraint system (referred as neuro2 in the table 1):

S =

8>>>>>>><
>>>>>>>:

x5x
3
3 + x6x

3
4 = 3

x5x
3
1 + x6x

3
2 = 2

x21 + x23 = 1
x22 + x24 = 1
x5x1x

2
3 + x6x

2
4x2 = 1

x5x
2
1x3 + x6x

2
2x4 = �1

xi 2 [�108;+108]

P =

8><
>:
x41 �

2183
2738

x21 +
37
2738

= 0

x5x
3
1 �

16
17
x5x1 +

7
17

= 0
x5x

2
2x1 � x5x

3
1 � 3x22 + 2 = 0

x6x2 + x5 � x1 � 3 = 0

S-set computations allow to generate the set of polynomial equations P in tri-
angular form. Interval Newton methods are particularly e�cient on S [ P . In
fact, the solutions for x1 are computed �rst using the redundant equation over
x1, then the solutions for x2 : : :
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6.2.3 Gr�obner bases, factorizations and disjunctions

The initial equations cannot often be factorized. However, this is not the case
for some redundancies from Gr�obner bases if they have some rational roots. We
describe the resolution of the Cox benchmark containing the equations:8<

:
x+ y + z2 = 1
x+ y2 + z = 1
x2 + y + z = 1

The computed S-set contains the two polynomial equations:�
z6 � 4z4 + 4z3 � z2 = 0
y2 � y � z2 + z = 0

The �rst one is factorized in z2(z4� 4z2+4z� 1) and the following disjunction
is generated:

S1 =

8>>><
>>>:

x+ y + z2 = 1
x+ y2 + z = 1
x2 + y + z = 1
y2 � y � z2 + z = 0
z = 0

[
S2 =

8><
>:
x+ y + z2 = 1
x+ y2 + z = 1
x2 + y + z = 1y2 � y � z2 + z = 0
z4 � 4z2 + 4z = 1

In S1, the domain of z becomes 0 and then z is replaced in the constraints by
0. The equation y2� y = 0 is factorized in y(y� 1) = 0. This allows to generate
the disjunction:

S01 =

8><
>:
x+ y = 1
x+ y2 = 1
x2 + y = 1y = 0
z = 0

[
S02 =

8><
>:
x+ y = 1
x+ y2 = 1
x2 + y = 1y = 1
z = 0

The same operations on S01 and S02 lead to symbolically compute the solutions
(1; 0; 0) from S01 and (0; 1; 0) from S02. Finally, S2 is solved by interval Newton
methods which compute the approximations of the other three solutions (�1�p
2;�1�

p
2;�1�

p
2); (�1+

p
2;�1+

p
2;�1+

p
2); (0; 0; 1) (the boxes containing

these solutions).

6.3 Negative examples

In this section, we present some examples for which the symbolic transformations
slow down the whole process.

6.3.1 High convergence of interval methods

The benchmark interval1 is composed of a set of ten non-linear equations over
ten variables, and have a complex syntax. However, interval Newton methods
e�ciently operate on them and the only solution is computed in about half a
second. Then, even if some good redundancies are computed in Gr�obner bases
(this is not the case), the whole computation time would not be greatly improved.
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6.3.2 Slow convergence of symbolic methods

The benchmark bifurcation consists in three equations over three variables and
is solved by interval methods in 1:09s. The Gr�obner basis of the three polynomi-
als with respect to the lexicographic ordering contains an univariate polynomial
�8z

8+�7z
7+�6z

6+�5z
5+�4z

4+�3z
3+�2z

2+�1z+�0 over which interval
Newton is very e�cient. However, the computation of the Gr�obner basis takes
more than 1:09s and then is useless. Actually, the rational coe�cients of the S-
polynomials become very large and their handling slows down the computation.
For example:

�3 =
41121004731883258983258747921732678836438053791641108480

103568706741101039995381188457060198437134092773759

6.3.3 Complexity of redundancies

The benchmark combustion is a chemistry problem described by a set of non-
linear equations. It is immediate to obtain an univariate equation in x4 from
x4+2x7 = 10�5 and 0:7816278:10�15x7 = x24 by replacing x7 by (10

�5�x4)=2 in
the second one. Then, this equation is factorized and a disjunction of two systems
is generated, each one containing two solutions. Such a (simple) transformation
leads to an improvement of the computation time (about 1:2s instead of 5:74s).
However, the implemented strategy of the cooperative algorithm imposes to
compute a S-set of �xed (by hand) depth. Unfortunately, none simple (in the
sense it is e�ciently handled by interval methods) redundancy is computed and
the total computation time becomes 9:90s.

6.4 Discussion

We identify several reasons which make the cooperation of symbolic and nu-
merical algorithms ine�cient. The redundant equations from S-sets may not
improve the convergence of interval methods, due to a fast convergence with
initial systems or to the S-polynomials complexity (great number of variables or
occurrences of variables : : :). Furthermore, it may be hard to compute some inter-
esting S-polynomials and the computation time of S-sets may become too large
with respect to the computation time of interval methods. Finally, the strategy
in the cooperative algorithm is not exible enough. The combustion problem
needs for the application of factorizations and disjunctions while Gr�obner bases
slow down the process.

To remedy to such problems, we plan to study a data-parallel approach of
our algorithm together with some exible, dynamic, cooperation strategies. An
immediate, trivial strategy will be to process interval and symbolic methods over
two di�erent processors. In this framework, the symbolic algorithm will stop the
interval solving process when some \interesting" redundancies are computed. For
this purpose, some criteria to decide if a constraint is \interesting" need to be
de�ned. Then, a synchronisation will operate and the constraints to be processed
by interval methods will be modi�ed with respect to the added redundancies.
Finally, what is needed is some criteria to stop the computations during a pruning
step, before applying a branching.
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Another approach is to treat conjunctions (and-parallelism in the literature)
and disjunctions (or-parallelism) in data-parallel mode. We will study the dy-
namic interaction between the amount of parallelism generated in this manner
and the cost of the load-balancing required to maintain proportional speedups.
Particular attention will be given to the BSP (bulk-synchronous parallel) cost-
prediction formulas as dynamic indicators for steering data-parallel solver coop-
eration.

7 Conclusion and future work

We have presented a branch and prune algorithm for solving polynomial systems,
implementing symbolic and numerical pruning and branching. In particular, fac-
torizations, substitutions and partial Gr�obner bases enforce simpli�cations of
systems while interval Newton methods reduce the domains of variables. Exper-
imental results show that interval Newton methods generally bene�t from the
symbolic transformations of constraint systems.

Except what we argue in the above discussion, our future work will take other
directions. Interval Newton methods are particularly e�cient when Jacobian ma-
trices are diagonally dominant. However, matrices become non square due to the
computation of redundancies, which disables preconditionning algorithms that
we are aware of. This problem has to be studied. Our Gr�obner bases algorithm
can be improved by implementing other computation strategies (for example the
sugar cube [15] strategy). Another approach is to compute Gr�obner bases dealing
with uncertain data and one may explore Gr�obner bases computations for sys-
tems of polynomials having interval coe�cients. The theory of singularity from
computer algebra constantly deals with systems leading to troubles of classical
methods. It can inspire another way to simplify polynomial systems. Finally,
we plan to experiment some strategies of branching over continuous domains,
referred as heuristics on variable ordering for �nite domains from the Arti�cial
Intelligence community.
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A Appendix: Benchmarks

parabola [21]: geometric
intersection problem8<

:
x2 + y2 = 1
x2 = y
x; y 2 [�108;+108]

Morgan [21]: kinematics
problem8>>><
>>>:

x1 + x2 + x3 + x4 = 1
x1 + x2 � x3 + x4 = 3
x21 + x22 + x23 + x24 = 4
x21 + x22 + x23 + x24 � 2x1 = 3
xi 2 [�103;+103]

Griewank [34]: Griewank and
Osborne's system8<

:
1:8125z31 � 2z1z2 = 0
z2 = z21
zi 2 [�103;+103]

cubic [25]: intersection
cubic-parabola8<

:
4x31 � 3x1 � x2 = 0
x21 = x2
xi 2 [�2;+3]

chemistry [25]: combustion
chemistry problem8>>>>>>>>><
>>>>>>>>>:

�1:697:107x2x4 + 2:177:107x2
+0:55x1x4 + 0:45x1 � x4 = 0

1:585:1014x2x4 + 4:126:107x1x3
�8:285:106x1x4 + 2:284:107x3x4
�1:918:107x3 + 48:4x4 = 27:73

x21 = x2
x24 = x3
xi 2 [0; 1]

kinematics [25]: robot
kinematics problem8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

0:004731x1x3 � 0:3578x2x3
�0:1238x1 � 0:001637x2
�0:9338x4 + x7 = 0:3571

0:2238x1x3 + 0:7623x2x3
+0:2638x1 � 0:07745x2
�0:6734x4 � 0:6022 = 0

x6x8 + 0:3578x1 + 0:004731x2 = 0
0:2238x2 � 0:7623x1 + 0:3461 = 0
x21 + x22 = 1
x23 + x24 = 1
x25 + x26 = 1
x27 + x28 = 1
xi 2 [�1;+1]

high � deg [25]: high-degree
polynomial system8>>><
>>>:

2x21x
3
2 � 2x61x2 + 2x2x3 = 0

x21 + x22 � 0:265625 = 0
5x91 � 6x51x

2
2 + x42x1 + 2x1x3 = 0

x1; x2 2 [�0:6;+0:6]
x3 2 [�5;+5]

Powell [25]: Powell's singular
function8>>><

>>>:

x1 + 10x2 = 0
x3 � x4 = 0
x22 � 4x2x3 + 4x23 = 0
x21 � 2x1x4 + x24 = 0
xi 2 [�2;+2]

Brown [25]: Brown's almost
linear system8>>>>><
>>>>>:

x1 + x1 + x2 + x3 + x4 + x5 = 6
x2 + x1 + x2 + x3 + x4 + x5 = 6
x3 + x1 + x2 + x3 + x4 + x5 = 6
x4 + x1 + x2 + x3 + x4 + x5 = 6
x1x2x3x4x5 = 1
xi 2 [�2;+2]
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Eiger [42]: extended
Eiger-Sikorski-Stenger function8>>><

>>>:

x21 � 0:2x1 + x2 = 0:09
x22 � 0:2x2 + x3 = 0:09
x23 � 0:2x3 + x4 = 0:09
x24 � 0:2x4 + x1 = 0:09
xi 2 [�102;+102]

Kearfott [42]: extended function8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

x21 = x2
x22 = x3
x23 = x4
x24 = x5
x25 = x6
x26 = x7
x27 = x8
x28 = x9
x29 = x1
xi 2 [�103;+103]

geometric [33]: geometric
intersection problem8>>><
>>>:

978000z22 � 0:00098z21 � 9:8z1z2
�235z1 + 88900z2 = 1

0:00987z1 � 0:984z22 � 0:01z21
�29:7z1z2 � 0:124z2 = 0:25

zi 2 [�108;+108]

cyclohexane [8]: 3-dimensional
structure of the molecule8><
>:
13 + y2 + z2 � 24yz + y2z2 = 0
13 + z2 + x2 � 24xz + z2x2 = 0
13 + x2 + y2 � 24xy + x2y2 = 0
x; y; z 2 [�102;+102]

cyclic3 [8]: variant of Cyclic
n-roots [3]8><

>:
x1 + x2 + x3 = 0
x1x2 + x2x3 � x3x1 = 0
x1x2x3 = 1
xi 2 [�105;+105]

cyclic4 [8]: variant of Cyclic
n-roots [4]8>>>>><
>>>>>:

x1 + x2 + x3 + x4 = 0
x1x2 + x2x3 + x3x4 � x4x1 = 0
x1x2x3 + x2x3x4 + x4x1x2
+x3x4x1 = 0

x1x2x3x4 = 1
xi 2 [�105;+105]

Cox [13]: test for Gr�obner bases8><
>:
x+ y + z2 = 1
x+ y2 + z = 1
x2 + y + z = 1
y 2 [�108;+108]

Geisow [9]: Geisow's multiple
crunode equation8>>><
>>>:

36x2 � 24x3 � 38x� 12xy2

+11y2 = 0
22xy � 12x2y + 6y � 16y3 = 0
x 2 [�1;+3]
y 2 [�2;+2]

piano [30]: restriction of the
piano mover's problem8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

x� l � t3 � L � w = 0
y � L � t� l � w3 = 0
L� 1 = 0
l � 2 = 0
x� a = 0
2 � a� 3 = 0
y � b = 0
b� r � t = 0
w2 � 1 + t2 = 0
x; y; l; t; L; b; r; a 2 [�105;+105]
w 2 [0;+105]

Czapor [30]8><
>:
zx2 � 0:5x� y2 = 0
zy2 + 2x+ 0:5 = 0
z � 16x2 � 4xy2 � 1 = 0
x; y; z 2 [�108;+108]
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Winkler [43]: test for Gr�obner
bases8><
>:
4xz � 4xy2 � 16x2 � 1 = 0
2y2z + 4x+ 1 = 0
2x2z + 2y2 + x = 0
x; y; z 2 [�105;+105]

eco4 [39]: economics problem8>>><
>>>:

x1x4 + x1x2x4 = 0:35
x2x4 + x1x3x4 = 1:086
x1 + x2 + x3 + 1 = 0
x3x4 = 2:05
xi 2 [�108;+108]

eco5 [39]: economics problem8>>>>>>><
>>>>>>>:

x1x5 + x1x2x5 + x2x3x5
+x3x4x5 = 3:55

x2x5 + x1x3x5 + x2x4x5 = 0:35
x3x5 + x1x4x5 = 1:086
x4x5 = 1
x1 + x2 + x3 + x4 + 1 = 0
xi 2 [�108;+108]

neuro1 [39]: neurophysiologic
problem8>>>>>>><

>>>>>>>:

x5x
3
3 + x6x

3
4 = 3

x5x
3
1 + x6x

3
2 = 2

x21 + x23 = 1
x22 + x24 = 1
x5x1x

2
3 + x6x

2
4x2 = 0

x5x
2
1x3 + x6x

2
2x4 = 0

xi 2 [�108;+108]

neuro2 [39]: neurophysiologic
problem8>>>>>>><

>>>>>>>:

x5x
3
3 + x6x

3
4 = 3

x5x
3
1 + x6x

3
2 = 2

x21 + x23 = 1
x22 + x24 = 1
x5x1x

2
3 + x6x

2
4x2 = 1

x5x
2
1x3 + x6x

2
2x4 = �1

xi 2 [�108;+108]

combustion [39]: combustion
problem for a temperature of
3000�8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

x2 + 2x6 + x9 + 2x10 = 10�5

x3 + x8 = 3:10�5

x1 + x3 + 2x5 + 2x8 + x9
+x10 = 5:10�5

x4 + 2x7 = 10�5

0:5140437:10�7x5 = x21
0:1006932:10�6x6 = 2x22
0:7816278:10�15x7 = x24
0:1496236:10�6x8 = x1x3
0:6194411:10�7x9 = x1x2
0:2089296:10�14x10 = x1x

2
2

xi 2 [�108;+108]

interval1 [39]: classical interval
benchmark8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

x1 � 0:18324757x4x3x9
= 0:25428722

x2 � 0:16275449x1x10x6
= 0:37842197

x3 � 0:16955071x1x2x10
= 0:27162577

x4 � 0:15585316x7x1x6
= 0:19807914

x5 � 0:19950920x7x6x3
= 0:44166728

x6 � 0:18922793x8x5x10
= 0:14654113

x7 � 0:21180486x2x5x8
= 0:42937161

x8 � 0:17081208x1x7x6
= 0:07056438

x9 � 0:19612740x10x6x8
= 0:34504906

x10 � 0:21466544x4x8x1
= 0:42651102

xi 2 [�2;+2]

bifurcation [8]8><
>:
x2 + y2 � 0:265625 = 0
5x8 � 6x4y + y4 + 2z = 0
2x2y2 � 2x6 + 2z = 0
x; y; z 2 [�10;+10]
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