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Abstract: The object-oriented design community has recently begun to collect so-
called software design patterns: descriptions of proven solutions common software de-
sign problems, packaged in a description that includes a problem, a context, a solution,
and its properties. Design pattern information can improve the maintainability of soft-
ware, but is often absent in program documentation.
We present a system called Pat for localizing instances of structural design patterns in
existing C++ software. It relies extensively on a commercial CASE tool and a PROLOG
interpreter, resulting in a simple and robust architecture that cannot solve the problem
completely, but is industrial-strength; it avoids much of the brittleness that many
reverse engineering tools exhibit when applied to realistic software. The contribution
of our work is not so much in the engineering value represented by this concrete system,
but in its methodological approach.
To evaluate Pat, we quantify its performance in terms of precision and recall. We ex-
amine four applications, including the popular class libraries zApp and LEDA. Within
Pat's restrictions all pattern instances are found, the precision is about 40 percent,
and manual �ltering of the false positives is relatively easy. Therefore, we consider Pat
a good compromise: modest functionality, but high practical stability for recovering
design information.

CR classi�cation: D2.2 CASE, D.2.6, D.2.7 documentation, D.2.10 represen-
tation, I.5.5

General terms: Algorithms, Design, Measurement.
Keywords: design patterns, design templates, reverse engineering, search.

1 Design patterns for program understanding

The general problem of automatically recovering design intentions from program
source code cannot be solved at all. Even partial solutions are extremely di�-
cult. Not only is there an enormous number of possible design intentions and
not only can each of them be realized in an enormous number of di�erent ways,
but also is any single hint that is available in the source program very small,
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ambiguous, and unreliable. However, object-oriented programming and in par-
ticular software design patterns reduce the task, as they make much more design
structure explicit in the source code.

Software design patterns, as introduced by Gamma et al. [GHJV95],
Buschmann et al. [BMR+96] and others, are packaged descriptions of a common
software design problem, its context, appropriate terminology, one or several
solutions, and their advantages, constraints, and other properties. A design pat-
tern packages expert knowledge and can be reused frequently and easily. Each
pattern is a microarchitecture on a higher abstraction level than classes.

Design patterns are a rewarding target for reverse engineering: According
to [BCC+96; GHJV95], design patterns improve communication, both between
designers and from designers to maintainers, by de�ning a common design ter-
minology. Hence, it is useful to recognize instances of design patterns in designs
where they were not used explicitly or where their use is not documented. Rec-
ognizing them could presumably improve the maintainability of software, be-
cause larger chunks could be understood as a whole. In fact we have found in
a controlled experiment [Pre97; PUPT98] that maintainers equipped with de-
sign pattern information solved maintenance tasks quicker or with fewer errors
than a control group of maintainers having only detailed \normal" source code
comments. This also indicates that it is not trivial for people to detect design
patterns in software. Thus, a tool for automatic design pattern recovery would
be useful.

Automatically �nding all instances of all design patterns is still an impossible
task, but design patterns open, for the �rst time, the possibility of a reasonable,
yet low-complexity partial solution to design recovery. This is the purpose of
the present work: to explore the low end of design recovery. How simple can
the architecture of a tool be that still produces useful output? Can we realize a
reasonable part of the possible functionality for a tiny fraction of the usual cost?

The advantage of this approach is practicality. Such a tool will be much more
robust than a more complicated one. It can be made industrial-strength | able
to dependably process realistic software | with modest e�ort.

Our contributions are threefold:

1. We present an approach of high simplicity for �nding instances of structural
design patterns in existing software (C++ in our example) and a tool, the
Pat system.

2. We empirically show that despite its simplicity the approach solves a non-
negligible part of the design pattern recovery problem for real-world software.

3. Pat serves as a case study of a methodological approach that does not strive
for the best possible solution but for a good e�ort to result ratio.

Throughout most of this article we will use the term pattern to refer only
to the solution used in a particular design pattern instance. More precisely this
solution should be called an instantiation of a design template for the design
pattern, but for simplicity we will usually stick to the term pattern or pattern
instance.

We describe the general approach taken, the representation we used for pat-
terns and software, and a quantitative evaluation of the system. Afterwards we
discuss alternative approaches to the problem and related work.
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2 Approach

2.1 Fundamental design decisions

The following central design decisions underlie our work:

{ D1: Rely on existing tools as much as possible, in particular for processing
the source code.

{ D2: Prefer restricting the tool's functionality over making it fragile.
{ D3: Within its fundamental restrictions, make the tool freely extensible.

The consequence of D1 is using a commercial object-oriented CASE tool as a
front-end and Prolog as a search machine. The consequence of D2 is searching
for structured design patterns only (i.e., patterns that hardly rely on speci�c
behavior of methods, but are largely determined by the static structure of the
classes instead) and limiting the search to only one implementation variant of
each pattern. The consequence of D3 is encoding the pattern descriptions mod-
ularly.

2.2 The basic idea: How the Pat system works

We will use an example to explain how Pat works.

Client Target

Request ()

Adaptee

Speci�cRequest ()

Adapter

Request () adaptee ! Speci�cRequest ()

-

��TT

-

adaptee

Figure 1: OMT diagram of the design pattern \Adapter"

See the description of an Adapter (more precisely: Object Adapter) in the
OMT class diagram [Rum91] of Figure 1. The purpose of an Adapter is to provide
an additional interface to an adapted class (called the adaptee), so that the
adapter class can adhere to the calling conventions of a client but the interface
of the adaptee need not be changed. The Adapter pattern requires that there are
four classes Client, Target, Adapter, and Adaptee. Adapter must be a subclass
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Figure 2: Architecture of the Pat system

of Target and must delegate Client calls to a method Request of the Target class
to a method Speci�cRequest (with di�erent interface) of the Adaptee class. An
Adapter instance needs an association (e.g. a pointer) to an Adaptee instance.

When looking for the Adapter pattern, search the C++ �les of an existing
software system for triples of Target, Adapter, and Adaptee that have methods
corresponding to Request and Speci�cRequest and have the association and
delegation mentioned above. Any such constellation may represent an instance
of the Adapter pattern to be found and should hence be output.

2.3 The Pat architecture

The fundamental design idea of Pat is to represent both patterns and designs
in Prolog and let the Prolog engine do the actual search. The basic design
information itself is extracted from source code by the structural analysis mech-
anism of a commercial CASE tool: Paradigm Plus [Pro94] is an object-oriented
CASE tool that supports several methods and notations, one of them OMT.
Modeling information is stored in an object repository and accessed by textual
and graphical editors and an internal programming language. Paradigm Plus
provides a structural analysis facility called \import" that extracts information
about classes directly from C++ header �les.

More concretely we proceed as follows (see also Figure 2):

1. Each pattern is represented as a static OMT class diagram (see Figure 1).
These diagrams constitute the repository P (for \patterns").

2. A straightforward program P2prolog converts P into Prolog rules. The
generated form is one rule for each pattern, representing design properties
that are necessary but not su�cient to diagnose the pattern; see Section 3.2.

3. The structural analysis mechanism of Paradigm Plus extracts design infor-
mation from C++ header �les and stores it in the repository in OMT form.
The resulting part of the repository is called D (for \design").

4. Another straightforward program D2prolog converts D into Prolog facts;
see Section 3.1.

5. A Prolog query Q detects all instances of design patterns from P in the
examined design D. Duplicates of design patterns that often occur in the
Prolog output are removed. Manual postprocessing removes false positives;
see Section 4.

Note that this approach searches for speci�c implementation forms of patterns,
which are sometimes called design templates . Most design patterns can be im-
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plemented by several di�erent design templates. Pat as presented in this article
uses only one template per pattern, but alternatives whose occurrence is ex-
pected could be added at will.

2.4 Implementation details

For the implementation we used Paradigm Plus 2.01 [Pro94] and Visual Prolog
4.0 Beta (Professional Version) [Pro96].

The programs P2prolog and D2prolog are written in the BASIC dialect
provided by Paradigm Plus and are executed directly by Paradigm Plus with
direct access to its repository.

The resultingProlog program performs the search and generates one output
line per pattern instance found. Each line has the form of a LATEX macro call
such as
\adapter{Target}{Adapter}{Adaptee}

The pattern instance list is then �ltered for duplicates. Suitable LATEX macros
convert the resulting instances into graphical OMT form as shown above to
provide a basis for a reverse-engineered design document.

3 Prolog representation

3.1 Source code to Prolog mapping

We represent the relevant information of C++ header �les by Prolog facts.
Implementation �les need not be consulted. As an example, the class declaration

class zPane:public zChildWin {
zDisplay* curDisp;
/* ... */

public:
virtual void show(int=SW_SHOWNORMAL);
/* ... */

};

would result in these Prolog facts:

class(concrete, zPane).
inheritance (zChildWin, zPane).
association (zPane, zDisplay).
operation(virtual, zPane, show).

The following rules are applied for generating such facts:
Any class declaration of the form class C { declarations } results in a fact

class(ca, C). ca has the value concrete if there is at least one public construc-
tor among the declarations and abstract otherwise. Any class declaration of the
form class C : B { declarations } results in the same fact plus another fact
inheritance(B, C), or multiple such facts if multiple base classes are given.
Paradigm Plus always treats inheritance as public.

A method declaration of the form virtual Resulttype Method-
name(parameterlist) in the public part of the class C results in a fact of the
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form operation(virtual, C, Methodname). If the virtual modi�er is miss-
ing, normal is used instead of virtual. Abstract functions (called \pure virtual"
in C++) are also treated as virtual. If the static modi�er is used, no fact is
generated at all. Other method modi�ers are ignored.

A pointer or reference data member declaration of the form Typename
*Membername or Typename &Membername for any named type Typename in
any part of the class C results in a fact of the form association(C, Type-
name). The same is true for pointers to pointers and so on.

A non-reference data member declaration of the form Typename Member-
name for any named type Typename in any part of the class C results in a
fact of the form aggregation(C, Typename, exactlyone). If the member
explicitly is an array, i.e., the declaration has the form Typename Member-
name[] or Typename Membername[constexpression], it results in a fact of the
form aggregation(C, Typename, many). The same is true for multidimen-
sional arrays. Paradigm Plus cannot detect associations or aggregations that are
implemented by other than the above means, for instance by container classes
or temporarily by method parameters.

All other header �le content is ignored.

3.2 Patterns to Prolog mapping

The Prolog rule for each pattern gathers the facts required to diagnose a
pattern instance. As an example, see again the Adapter pattern in Figure 1.
P2prolog converts this OMT class diagram into the following Prolog rule:

adapter(Target,Adapter,Adaptee):-
class(_,Target),
class(concrete,Adapter),
class(concrete,Adaptee),
operation(virtual,Target,Request),
operation(_,Adapter,Request),
operation(_,Adaptee, SpecificRequest),
inheritance(Target,Adapter),
association(Adapter,Adaptee).

The underscore matches anything. This Prolog rule describes necessary
but not su�cient properties of classes for forming one kind of Adapter pattern
instance. In addition, there may be multiple alternative rules for diagnosing
di�erent design templates representing the pattern.

The derivation of the Prolog rules is straightforward, except for the follow-
ing cases: First, classes that are abstract in the pattern are allowed to be either
abstract or concrete in the software. Methods that are abstract in the pattern
are required to be virtual, but not necessarily abstract (\pure virtual" in C++).
Methods that are concrete in the pattern are allowed to be either virtual or
normal.

Second, call delegation is not modeled at all, as Paradigm Plus does not de-
tect it. For instance the Adapter pattern demands that there exists a delegation
from a method Adapter::Request to Adaptee::SpecificRequest. However,
because Paradigm Plus cannot extract delegations, the delegation must not be
modeled in our Prolog rule or else the rule could never be matched.
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Third, the client is not modeled because an Adapter is still an Adapter if it
occurs stand-alone without any actual client, e.g. in a library. Similar consider-
ations apply for the Prolog rules of the other design patterns.

Fourth, in patterns where there may be an arbitrary number of subclasses
of a particular kind, only one such class is modeled in the rule, because that
is su�cient to detect the pattern. See the Bridge, Composite, and Decorator
patterns as examples.

Fifth, the actual names of classes, attributes, and methods are ignored.
Technically, the actual Prolog rules used in Pat have two additions over the

ones shown here. First, they contain local cuts (getbacktrack/cutbacktrack
pairs) to restrict the rules to match one method per operation clause and
ignore the rest. Second, classes are checked for inequality with clauses like
Adapter <> Adaptee etc. to avoid senseless matches and combinatorial explo-
sion.

Here are the Prolog representations of the other four structural design
patterns. If you are not familiar with these patterns, you may �rst want to read
the short description of their purpose at the end of section 5.

A Bridge consists of at least four classes: the abstract Abstraction super-
class, one or several Re�ned Abstraction subclasses, the abstract Implementor
superclass, and one or several Concrete Implementor subclasses. Bridges can
often be re-interpreted as instances of the Strategy pattern and vice versa.

Abstraction

op ()

Re�nedAbstr

Impl

opImpl ()

ConcreteImpl

opImpl ()

��TT ��TT

��HHH
H��

-

imp

Figure 3: OMT diagram of the design pattern \Bridge"

bridge(Abstraction,RefinedAbstr,Impl,ConcreteImpl):-
class(_,Abstraction),
class(concrete,RefinedAbstr),
class(_,Impl),
class(concrete,ConcreteImpl),
operation(_,Abstraction,Op),
operation(virtual,Impl,OpImpl),
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operation(_,ConcreteImpl,OpImpl),
inheritance(Abstraction,RefinedAbstr),
inheritance(Impl,ConcreteImpl),
aggregation(Abstraction,Impl,exactlyone).

This rule does not model the delegation from Abstraction::Op to
Impl::OpImpl.

A Composite consists of at least three classes: the abstract Component su-
perclass, one or several Leaf subclasses, and one or several Composite subclasses.

Client Component

op()
add(Composite)
remove(Composite)
getChild(int)

-

Leaf

op()

Composite

op()
add(Composite)
remove(Composite)
getChild(int)

forall g in children
g.op();

��TT

��HHH
H��

u�

children

Figure 4: OMT diagram of the design pattern \Composite"

composite(Component,Leaf,Composite):-
class(_,Component),
class(concrete,Leaf),
class(concrete,Composite),
operation(virtual,Component,Op),
operation(_,Leaf,Op),
operation(_,Composite,Op),
operation(virtual,Component,Add),
operation(virtual,Component,Remove),
operation(virtual,Component,GetChild),
operation(_,Composite,Add),
operation(_,Composite,Remove),
operation(_,Composite,GetChild),
inheritance(Component,Leaf),
inheritance(Component,Composite),
aggregation(Composite,Component,many).
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This rule ignores the fact that Composite::Op must have a loop of Op calls
for all children. The semantics of add, remove and getChild are also ignored,
because no such information is available. If several of the classes have many
operations, the combinatorial explosion in the operation clauses of this rule
makes the rule impractical. We then actually drop all operation clauses from
the rule. As the method semantics are not checked anyway, this omission makes
rarely any di�erence.

A Decorator consists of at least four classes: the abstract Component top
class with a Concrete Component subclass and an abstract Decorator subclass;
the latter has one or several further subclasses called Concrete Decorators.

op ()

ConcreteDeco

Decorator :: op (); . . .

op ()

ConcreteComp

op ()

Decorator

op ()

Component

comp ! op ()

��TT

��TT

��HHH
H��

�

comp

Figure 5: OMT diagram of the design pattern \Decorator"

decorator(Component,ConcreteComp,Decorator,ConcreteDeco):-
class(_,Component),
class(concrete,ConcreteComp),
class(_,Decorator),
class(concrete,ConcreteDeco),
operation(virtual,Component,Op),
operation(_,ConcreteComp,Op),
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operation(virtual,Decorator,Op),
operation(_,ConcreteDeco,Op),
inheritance(Component,ConcreteComp),
inheritance(Component,Decorator),
inheritance(Decorator,ConcreteDeco),
aggregation(Decorator,Component,exactlyone).

This rule ignores the delegations from Decorator::Op to Op of the decorator's
aggregated component and the implementation of ConcreteDeco::Op as a call
to Decorator::Op plus some decorator behavior.

A Proxy consists of three classes: a Real Subject class, its Proxy class and
their abstract Subject superclass.

op ()

RealSubject

op ()

Proxy

op ()

Subject

realSubj ! op ();
. . .

��TT

� realSubj

Figure 6: OMT diagram of the design pattern \Proxy"

proxy(Subject,RealSubject,Proxy):-
class(_,Subject),
class(concrete,RealSubject),
class(concrete,Proxy),
operation(virtual,Subject,Op),
operation(_,RealSubject,Op),
operation(_,Proxy,Op),
inheritance(Subject,RealSubject),
inheritance(Subject,Proxy),
association(Proxy,RealSubject).

This rule ignores the implementation of Proxy::Op as a delegation to
RealSubject::Op plus some proxy behavior.

4 Evaluation

Three questions arise, given a design recovery system such as Pat:
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1. What fraction of pattern instances is found?
2. What fraction of the output consists of false positives (spurious instances)?
3. How useful is the output for actual program understanding and maintenance

tasks?

We cannot answer the third question at this time, as it requires a rather costly
empirical study; a �rst experiment is described in Section 6, however.

We use the information retrieval measures called precision and recall [Hea78]
to answer the �rst two questions.

Assume that Pat outputs P distinct pattern instance candidates. Assume
further that the design analyzed actually contains T true pattern instances that
are implemented by one of the design templates we search for and that F of
these T are found by Pat. Then precision := F=P and recall := F=T . Note that
these numbers ignore pattern instances using design templates not in our rule
set. We also measured the execution time needed for the automatic search and
the time needed for human �ltering of the results to remove false positives.

4.1 The benchmarks

Four di�erent sets of classes were examined: Network Management Environ-
ment Browser (NME), Library of E�cient Datatypes and Algorithms (LEDA
3.0, [N�92]), the zApp class library (zApp, [Inm94]), and Automatic Call Dis-
tribution (ACD). NME and ACD are telecommunication software developed at
Computec1, the other two are widely used class libraries.

None of these four benchmarks included explicit design information; all data
was extracted from C++ header �les as described above. Table 1 characterizes
the size of the benchmark applications as found by the structural analysis step
and as obtained from the D2prolog conversion. Except for NME, the size of the
benchmarks is considerable.

classes attrib. operat. aggr. assoc. inherit. kByte facts
NME 9 34 131 0 10 6 13
LEDA 150 501 4084 91 151 67 243
zApp 240 1176 3590 143 155 145 205
ACD 343 1506 2879 457 461 191 204

Table 1: Number of classes, attributes, operations, aggregations, associations, and
inheritances found by Paradigm Plus in each of the applications and size of the
generated Prolog facts �le in kByte.

4.2 Evaluation procedure and results

Each of the four resulting Prolog facts �les was used in a separate pattern
search run. The results are summarized in Table 2. For each application and for
each design pattern the table gives the number of pattern instances found by

1 the former employer of the second author
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the search mechanism (\found") and the number of these that were not spurious
(\true"). Below are total recall and precision values over all patterns and the
runtime in seconds taken by the Prolog program. As for the runtimes, the
structural analysis and D2prolog steps take up to two hours, i.e., much longer
than the actual pattern search.

NME LEDA zApp ACD
found true found true found true found true

Adapter 2 1 1 0 20 �12 150 �69
Bridge 0 0 59 �10 7 0 0 0
Composite 0 0 6 0 0 0 0 0
Decorator 0 0 3 0 0 0 0 0
Proxy 0 0 1 0 1 0 17 0
Recall 100% �100%? 100% �100%?
Precision 50% �14% �43% �41%
Prec. w. deleg. 100% �53% 100% 100%
Runtime 1 sec 2 sec 3 sec 36 sec

Table 2: Number of pattern instances found by Pat and approximate number of true
instances, resulting recall, precision, and Prolog runtimes measured on a PCI-Bus
PC with Pentium P133 and 32 MByte RAM under Windows 95.

Recall: Obviously, when computing recall, structurally di�erent alternative
implementations of the patterns have to be taken out of account, as Pat cannot
possibly �nd them in the given setup, but would �nd them with appropriate
additional rules. Given this restriction, how high is Pat's recall? Except for NME,
we had no de�nitive information about the set of patterns actually used in the
programs. However, for NME we know and for zApp we believe, judging from
the documentation, that Pat achieved full recall. In LEDA and ACD recall is
unknown, because Pat may have missed some patterns for the following reason.

The recognition of a pattern may fail (only) due to an undetected aggregation.
An aggregation will go undetected if either (1) it looks like an association or (2) it
is completely hidden due to the use of a container type for its implementation,
such as a Vector or Bag class. We have checked2 that case (1) does not lead
to any undetected pattern, but case (2) may have occurred. Even so, case (2)
is probably relevant only for the Composite pattern, as it is the only one that
requires an aggregation of multiple objects. Thus, recall is most probably close
to 100 percent even for LEDA and ACD.

Precision: Because our pattern rules do not represent su�cient conditions
for pattern instances, precision is not perfect. Some constructions will lack re-
quired (but unchecked) properties, yet be returned, incorrectly, as pattern in-
stances.

How does one decide what is such a false positive and what is a true pattern
instance? We took the following approach: (1) In many cases false positives are
obvious when the class and method names clearly indicate unrelated classes.

2 The check was made by re-running all four experiments with an additional rule that
allowed to interpret any association as an aggregation. This led to more than twice
as much output, none of which contained any additional pattern instances.
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(2) In other cases correct pattern instances are obvious via class and method
names indicating the semantics required by the pattern. In the remaining cases,
the pattern instance has to be checked by manually consulting (3) available
documentation or (4) source code. It turns out that plausibility checks of pattern
instance candidates can often be done quite rapidly using only methods (1)
through (3). We applied methods (1) and (2) for all projects and also method (3)
for LEDA and zApp. We did not check source code at all.

Our evaluation approach implies that the precision values in Table 2 are ap-
proximations. The line labeled `precision' in Table 2 gives the precision values
that result directly from dividing `true' by `found'. The line labeled `prec. deleg.'
shows precision values that would result if Paradigm Plus were able to detect all
simple call delegations and our pattern rules contained checks for them, mak-
ing most of the false positives disappear | all spurious Adapters and Bridges
lack the correct delegations. The following sections discuss additional aspects of
interest for each of the four benchmarks.

NME: The original designer of the software con�rmed that Pat found one
true and one spurious Adapter. The spurious Adapter would have been rejected
had delegations been checked.

LEDA: We decided which of the pattern instances to consider correct
by consulting the LEDA manual. This work took about one hour for a pro-
grammer without prior knowledge of LEDA. 56 of the 59 Bridges occur be-
cause each of the 8 classes circle, line, p dictionary, point, polygon,
real, segment, string (all subclasses of handle base) seems to form a Bridge
with each of the 7 classes circle rep, line rep, point rep, polygon rep,
rrep, segment rep, and string rep (all subclasses of handle rep). If Pat
could check for the correct delegations, only the correct 7 of these 56 pairs
should remain. The 6 false Composites were found by a relaxed rule (without
operation clauses) as described in Section 3.2.

zApp: The evaluation of the output for zApp was also done with the manual.
This work took one hour. All of the false positives could have been suppressed by
checking for correct delegations in the Adapter candidates. Surprisingly, there is
neither a Composite nor a Decorator in zApp, although it is a GUI library. But
zApp does indeed not use the Composite concept of handling containers and
basic components in the same way nor the Decorator concept of transparently
attaching additional functionality to an object.

ACD is a large project and created so much output that we were unable to
check correctness completely. Instead, we relied on conservative common sense
judgement from the class names combined with another plausibility check: In
the case of the Adapters we assumed that exactly those are correct where the
name of Request is similar to the name of SpecificRequest. In the case of
proxies we drew conclusions from the class names alone; no Proxy seems to be
in ACD. Evaluating the solutions for ACD in this manner took 30 minutes.

5 Design alternatives

While Pat performs quite well, there are other ways of recovering design patterns
from code. In this section, we discuss and relate the fundamentally di�erent
approaches. Basically, there are three kinds of information to identify design
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pattern instances.
First, information on declarations and the \uses"-relation can be extracted

using basic compiler techniques (scanning, parsing, name resolution). This is
the approach used by the Pat system and allows to rely on CASE tool func-
tionality. For languages o�ering built-in reection, such as Java, it can even be
implemented easily without the help of any tool. Such information can be used
for �nding structural matches. Structural comparison is insu�cient for �nding
those design patterns that rely on particular behavior of methods (behavioral
patterns). It is su�cient, however, for design patterns that rely mostly on static
aspects of software composition (structural patterns).

Second, the semantics of the program can be partially analyzed using ad-
vanced compiler and program analysis techniques (interprocedural data depen-
dence and data ow analysis, alias analysis etc.). In principle, semantic informa-
tion could identify instances of behavioral patterns, not only structural patterns,
and could sort out false positives of structural patterns. However, there are two
problems. (1) As program semantics and pragmatics are in general not com-
putable, the analysis techniques will consist of complex heuristics that make the
search program di�cult to create and extend, make it dependent on program-
ming style, and make its performance unpredictable. (2) Some of the concepts
underlying design patterns are vague (for instance \call delegation"). Therefore,
whichever heuristic formalization is used, counterintuitive results may occur.
Furthermore, C++ is notoriously di�cult to analyze, due to its terse syntax,
complex semantics, and the preprocessor. This approach exhibits more of the
complexity of general program understanding and may produce less leverage
from the speci�city of design patterns.

Third, the names of classes, methods, and attributes expected in a particular
design pattern could be matched against software using a heuristic abbreviation
recognizer and thesaurus etc. For some programs, names may provide a useful
shortcut to program semantics so that heuristic name analysis could be a useful
complement to the above techniques. In particular, name analysis would work
best for behavioral aspects of the program. However, name analysis is inher-
ently unreliable and extremely sensitive to the naming conventions used, if any.
Therefore, it might make performance even more unpredictable.

We chose to use only the �rst approach, which achieves the maximum ratio of
performance to construction e�ort. It results in a simple, e�cient, and relatively
robust system. In particular, we can use commercially available building blocks
for the analysis and deduction parts, thus further reducing the complexity and
increasing the quality of the implementation. This architecture limits the covered
set of design patterns to structural patterns; behavioral patterns cannot be found
this way.

However, such a reduced search space is still useful. From a reverse engi-
neering point of view, �nding instances of these patterns yields the following
information. Adapter instances signal where classes are used in multiple con-
texts, requiring di�erent interfaces. Bridge instances show where the interface
and the implementation of a module are encapsulated in separate classes, so
that both can be changed independently; Bridges indicate reuse or places where
much change is expected. Bridges may also indicate instances of the closely re-
lated Strategy pattern, which allows changing the implementation of an operation
at run time. Composite and Decorator instances signal easily extensible areas
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of a program where collections of components or extended versions of compo-
nents are handled like basic components alone. Proxy instances indicate where
a surrogate of a (very large?) object was used instead of the object itself or
where functionality was added to an object transparently, for example �rewall,
encryption, or caching functionality.

Nevertheless from the reverse engineering point of view, it is clearly desir-
able to extend the scope of the pattern search. Semantic information and name
analysis may both be viable and useful means for recovering behavioral design
patterns and should be pursued in further work.

6 Related work

As discussed above, Pat does not strive for detailed program understanding
or general design recovery as some other advanced work in reverse engineer-
ing does, for instance that of Biggersta�, Mitbander, and Webster [Big89;
BMW94] or the classical work of Rich and Waters [RW90]. In those cases, a
wide gap has to be closed from the syntactic representation of the program
(and maybe other artifacts) to the understanding of semantics and pragmat-
ics. When searching for structural design patterns, this gap is much smaller for
three reasons. First, the rich syntax of object-oriented languages contains much
information about architectural features of design patterns, such as inheritance
relations, associations and aggregations. We do not attempt to analyze software
in non-oo languages. Second, the semantics of a structural design pattern are
closely coupled to its syntactic representation and therefore easy to recognize
(except for the problem of false positives, see Section 4). Third, a small set of
possible pragmatic intentions is packaged in the description of a design pattern.
Therefore, structural design patterns allow for inferring program pragmatics
from syntactic source code features with simple machine deduction and a mod-
est amount of additional interpretation by the user. In particular, design pattern
search, at least for structural patterns, does not call for automatic concept as-
signment and the output is useful without a domain model. For these reasons
we �nd it worthwhile to investigate the leverage that can be gained from design
patterns in program understanding, using much simpler program analysis tech-
niques than were required previously; searching for structural design patterns
has a good price/performance ratio.

Design patterns are a young �eld and currently they are mostly used for
understanding and communicating during the invention of designs. Work is also
beginning towards creating tool support for handling design pattern instances
as explicit design and program entities. Such tools can be focused on patterns
[BFVY96] or incorporate patterns within a broader perspective [FMvW97]. In
the far future, programs constructed with such tools may make design pattern
recovery much easier, because they can reliably document pattern instances cre-
ated in the code. The tool of [FMvW97] also supports semi-automatic reverse en-
gineering of non-documented pattern instances. Forward engineering using pat-
terns is particularly popular in the context of component architectures [NM95].

Several pattern practitioners [BCC+96] agree that one of the largest bene�ts
of design patterns is their use as a means of communication and understanding.
This observation suggests that �nding patterns in existing designs should make
understanding these designs easier.
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The conservative, controlled experiment mentioned above has recently cor-
roborated this assumption [Pre97; PUPT98]. Two groups of subjects received
the same program and were asked to outline how they would make a certain
program change. The program for one of the groups had its design patterns
documented in addition to thorough, conventional program documentation. For
the other group, the pattern documentation was missing. The experiment was
repeated with two di�erent programs in a counterbalanced design. For one pro-
gram, the solutions of both groups were of similar quality, but the group with
pattern documentation �nished signi�cantly faster. For the other program, the
group with pattern documentation produced a completely correct solution twice
as often as the group without pattern documentation.

7 Conclusion

Automated search for instances of structural design patterns can be implemented
by a rather simple software architecture, exempli�ed by our system Pat. The key
to this simpli�cation is building on structural analysis capabilities of a commer-
cial ooCASE tool and the search capabilities of Prolog, thereby making the
implementation small, reliable, and e�cient. The approach restricts the search
capabilities to structural (as opposed to behavioral) design patterns, but exhibits
an extremely good e�ort to performance ratio. As a methodological contribution,
we consider Pat a case study and suggest that a similar type of approach may
be viable and useful in many other software contexts as well. Further research
should investigate where such approaches can be applied and with which results.

In our case, the resulting performance can be summarized as follows. Often
all design pattern instances within Pat's search space are recovered from the C++

source code. In addition, the Pat output contains a number of false positives.
In our four benchmark applications, detection precision is between 14 and 50
percent. Overall, this precision is acceptable. The remaining false positives can
be sorted out with a modest amount of manual work (typically a few minutes per
resulting pattern instance). We conclude that our approach is a fast and simple
partial solution to recovering design pattern information from source code.

Automatic detection of design pattern instances is probably a useful aid for
maintenance purposes | for quickly �nding places where extensions and changes
are most easily applied. How useful automatic pattern �nding is should be the
subject of further study.

Further work should also explore how name analysis and/or semantic anal-
ysis can be employed to detect behavioral patterns in addition to structural
ones. We are currently building a software exploration tool covering parts of all
three techniques, plus software metrics, and will possibly perform an empirical
investigation of its usefulness in a controlled experiment with human subjects.
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