
Java for Scienti�c Computing, Pros and Cons

J�urgen Wol� v. Gudenberg
(Institut f�ur Informatik, Universit�at W�urzburg

wol�@informatik.uni-wuerzburg.de)

Abstract: In this article we brie
y discuss the advantages and disadvantages of the
language Java for scienti�c computing. We concentrate on Java's type system, investi-
gate its support for hierarchical and generic programming and then discuss the features
of its 
oating-point arithmetic. Having found the weak points of the language we pro-
pose workarounds using Java itself as long as possible.

1 Type System

Java distinguishes between primitive and reference types. Whereas this distinc-
tion seems to be very natural and helpful { so the primitives which comprise all
standard numerical data types have the usual value semantics and expression
concept, and the reference semantics of the others allows to avoid pointers at
all{ it also causes some problems. For the reference types, i.e. arrays, classes and
interfaces no operators are available or may be de�ned and expressions can only
be built by method calls. Several variables may simultaneously denote the same
object. This is certainly strange in a numerical setting, but not to avoid, since
classes have to be used to introduce higher data types.

On the other hand, the simple hierarchy of classes with the root Object

clearly belongs to the advantages of the language. It is also used to introduce
further concepts like exception handling, which thus is fully integrated in the
object oriented 
avor of the language and as extendeble as all other classes.

Multidimensional arrays in Java have to be handled as arrays of arrays. This
means that there is no guarantee that a matrix is allocated in contiguous space.
Certainly most numerical algorithms will su�er from that fact.

In a polymorphic environment it often is helpful to get information about
the current speci�c type of an object at runtime. This can be achieved by the
method getClasswhich returns the type as a constant object of the class Class.
In that class methods to get more information about the interface or name of
the type are provided.

1.1 Workaround: Operator Overloading

Especially the lack of operator overloading is annoying. It can be overcome by
a precompiler which maps the operator to method calls. Since methods may
return arbitrary classes this precompiler only has to change the notation of each
expression locally. So the correspondence between the original source and the
generated Java program is quite obvious. Using such a precompiler we can also
allow for the de�nition of user de�ned operator names or symbols including the
determination of its precedence.

Journal of Universal Computer Science, vol. 4, no. 1 (1998), 11-15
submitted: 25/9/97, accepted: 1/11/97, appeared: 28/1/98  Springer Pub. Co.



2 Hierarchical Programming

The paradigm of hierarchical programming means the classi�cation of the data
using inheritance. Base class composition or programming abstract data types
are alternate names. We recommend to separate between interfaces and imple-
mentations of classes as well as to collect common behavior in general abstract
superclasses which then can be extended for the speci�c application. This design
leads to reusable, easily extendable classes.

The separation of interfaces and classes and the use of packages in Java
provide a good support for clearly structured programs.

Since there is only one hierarchy of classes, we always can cast or convert an
object of a type to its supertype. This is the usual \is-a" relation in object ori-
ented inheritance structures. A conversion in the other direction from supertype
to subtype is also possible. Hence, if we know the speci�c type of an object, we
can make use of its particular features. These downcasts are obtained by writing
the name of the destination class in front of the object. In a similar way upward
and downward casting of primitive types is possible, where we now have the
following subtype relation.

int � long � float � double

Note that this relation only indicates the upward direction for casts and does
not mean that there is no information lost, when you convert an int or long to
a float.

Methods are bound dynamically by default. The modi�er final, however,
which can be attached either to a method meaning that this method can not
be rede�ned, or to a whole class which then prohibits the inheritance from this
class, opens possibilities for optimization.

3 Generic Programming

The paradigm of generic programming in general deals with homogeneous con-
tainers, i.e. data structures composed of elements of the same type. These con-
tainers de�ne one or several iterators to access all or some of their elements in
a speci�ed order. These iterators then link generally de�ned algorithms to the
container. In the package java.util a simple iterator interface is provided which
can easily be extended to the user's needs.

This style of programming yields a high degree of reuse, since the same
structure is preserved. The data structures generally are parameterised by the
element types. The algorithms are further generic with respect to the iterators.
This kind of parametrization is usually provided by templates, a feature which
unfortunatedly is lacking in Java.

3.1 Workaround: Templates

In the language manuals it is suggested to use containers of the type Object

instead and perform appropriate type casts. This does not work well, since prim-
itive types are no objects, so we can not �ll a container with primitive types.
To cope with this situation wrapper classes are included in the language, which
simply wrap a constant value of the corresponding primitive type. Since they are
objects, no operations are available for wrapper classes, not even an assignment

12 v. Gudenberg J.W.: Java for Scientific Computing, Pros and Cons



of a new value is possible. Hence, if we want to write generic code for primitive
data, we have to explicitly check the current type and cast. This kind of code {
a large conditional satement depending on type of the current object{ has not
much to do with object orientation, even if it is encapsulated in a helper class,
like NumberHelper [8]. This class provides methods for arithmetic operations
for the wrapper classes which use the prede�ned primitive operations. So this
approach only helps for the limited number of wrapper classes.

We can provide a similar helper class for higher arithmetic data types. The
main disadvantage of this approach is that it is not extendable. If we add a new
type with the same interface, we have to edit the helper class and to add a new
branch in the conditional statement.

We might try to overcome the di�culty by using the runtime information
to get the name of the class of the elements and then cast to it. This, however,
can not be compiled, since the syntax requires an identi�er and not a string
as a typename. Therefore, we write a factory class which produces a helper
class for each element type. The name of this helper class contains the name of
the element class. All helper classes implement one generic interface which now
replaces the template. The application program calls the makeHelpermethod of
the factory class with an object of element type as parameter. This looks for the
corresponding helper class and loads it, if available. If not, it writes the source
to a �le inserting the object's type name where appropriate, compiles this �le on
the 
y and then loads the corresponding class. Since all helpers have identical
structure this process of writing and compiling can be made automaticly.

4 Arithmetic

Java is one of very few languages which completely specify the semantics of their

oating-point types. The IEEE 754 formats single and double have to be used
for the float and double data type, respectively. All 4 basic arithmetic opera-
tions are to be performed with full precision using the rounding to the nearest
neighbor. Expression evaluation has to use these basic operations to compute
each intermediate result, i.e. round after each operation. This rule ignores the
facilities which some hardware units supply, like fused multiply and add or ex-
tended temporaries, and therefore has lead to some discussion [4]. In our opinion
this feature of strict expression evaluation is mandatory for a language which
claims to get identical results on all computers. And, indeed, this goal is achieved
by that rule. So even programs using 
oating point operations are completely
portable.

An interesting Java extension where expression evaluation may be switched
between this strict mode and a so-called natural mode which makes use of ex-
tended hardware features and hence produces results which are at least as good,
is discussed in [3]. It will be interesting to investigate, if the switching of arbi-
trary evaluation modes can be made an integral part of a language. Then other
modes like the accurate expression evaluation of the C++ toolbox [2] can be
incorporated smoothly. But this certainly leads to another language.

Although Java supports some of the IEEE 754 properties there are a lot
of 
aws in the adaption of the full standard. Two minor ones are the lack of
any extended 
oating point type and the de�nition of the square root function

13v. Gudenberg J.W.: Java for Scientific Computing, Pros and Cons



without accuracy requirements. In our opinion all standard functions should be
optimally accurate or at least specify their errors exactly.

The IEEE standard provides 4 rounding modes, but Java only knows one
of them. So it is impossible to call the directed roundings and hence de�ne an
interval arithmetic in the language.

One strong point of Java is its extendable exception handling. Surprisingly
enough the 5 IEEE 
oating point exceptions are ignored. There is no way to
enable traps for these exceptions and specify handlers, or at least to check for
the occurrence of the exception. Only if an in�nity or NaN is the result, the user
has the indication that something has gone wrong.

4.1 Workaround: Arithmetic

We derive all IEEE exceptions from the Java exception ArithmeticError.
The native interface of Java allows to write methods in C which return java

classes and raise Java exceptions and bind them to Java programs. We exploit
these features to de�ne a class FPU which has access to the underlying hardware
status. It provides native methods, i.e. written in C, for the arithmetic operations
for all rounding modes. These methods execute the corresponding operation,
read and copy the fpu state register, raise a new Java exception, if the IEEE
exception occurred and the corresponding trap is enabled and then clear the
fpu state. Class FPU further provides native methods to set, clear and test traps
or exception 
ags and native methods to set and get the rounding modes. The
utility functions like nextAfter etc. can then be written in Java.

Since this class has to use native methods, the program can only be dis-
tributed as an applet, if the external part is locally available, or it has to be
ported as a stand-alone program.

The native arithmetic operations are declared as methods of the FPU class,
i.e. they have 2 parameters. So it is advisable to de�ne higher numeric data
types like IEEE_float or interval on top of these class. We have tried such an
implementation and have measured a considerable decrease of e�ciency mostly
due to the fact that native methods run in a separate thread, for details see [9].
As stated in the beginning operators for these classes can not be declared.

5 Conclusion

We have pointed out some strong and weak points in the de�nition of the Java
language. In the following table we give a concise overview.

Several criteria may be checked to judge whether a language is favorable for
scienti�c computing.

{ portability
{ e�ciency
{ clean and reliable 
oating point arithmetic
{ de�nition of intervals and other arithmetic types
{ mathematical notation

If only the �rst three items are considered to be important, Java is a good
choice. The e�ciency is surprisingly high and will certainly be improved by new
optimizing compilers.

14 v. Gudenberg J.W.: Java for Scientific Computing, Pros and Cons



We, however, consider the last two items to be important and hence pro-
posed di�erent workarounds: a precompiler for operator overloading, dynamic
generation of templates and native methods to adapt the 
oating point arith-
metic. Since these are relatively comprehensive tools or expensive and ine�cient
workarounds, we cannot really recommend Java as a language for scienti�c com-
putation.

topic pro con
type system hierarchy

primitive vs reference objects are no values
no operators
no expressions
no contiguous matrices

wrapper classes without semantics

runtime info (Class)
exceptions, threads

hierarchical prog. packages
classes
interfaces
�nal

generic prog. no templates
type casts need explicit type id
iterator Enumeration

exception handling available not 
oating-point
arithmetic IEEE formats no extended

IEEE operations no srqt
strict evaluation rules

no directed roundings
exceptions ignored

Java pros and cons (summary)

References

1. Barton,J. und Nackman,L.: Scienti�c and Engineering C++, Addison-Wesley, 1994
2. R. Hammer, M. Hocks, U. Kulisch, D. Ratz: C++ Toolbox for Veri�ed Computing,

Springer, 1995
3. Coonen, J.:RealJava,www.validgh.com/java/realjava
4. newsgroup www.validgh.com/java

5. The Java(tm) Language: An Overview,
java.sun.com/docs/overviews/java/java-overview-1.html

6. Arnold,K., Gosling,J.:The Java(tm) Programming Language, Addison-Wesley, 1996.
7. Gosling,J., Joy,B., Steele,G.:The Java(tm) Language Speci�cation, Addison-Wesley,

1996.
8. The Java Generic Library, www.objectspace.com
9. Lerch, M. and Wol� von Gudenberg, J.: Java for Scienti�c Computing, Technical

Report, Institut f�ur Informatik, Universit�at W�urzburg, to appear

15v. Gudenberg J.W.: Java for Scientific Computing, Pros and Cons


