
Free space modeling for placing rectangles without

overlapping

Marc Bernard
(Centre de Recherche en Informatique de Dijon

9, Avenue Alain Savary - B.P. 400
21011 DIJON Cedex - FRANCE

e-mail : Marc.Bernard@crid.u-bourgogne.fr)

Fran�cois Jacquenet
(Centre de Recherche en Informatique de Dijon

9, Avenue Alain Savary - B.P. 400
21011 DIJON Cedex - FRANCE

e-mail : Francois.Jacquenet@crid.u-bourgogne.fr)

Abstract: The placement of rectangular objects without overlapping on a bounded
surface is a generic problem that may have many applications. Space planning, chipset
placement, cutting-stock problems, point-feature label placement, or the placement of
articles on a newspaper page, are all instances of this more abstract problem.
All these applications are concerned with the insertion of rectangular objects on a part
of a bounded free surface. It is therefore important to be able to e�ciently model the
free space of the bounded surface.
In this article we present a method to compute free space. The method is based on
an iterative insertion process. Our algorithm neither depends on the size of the object
to insert, nor on the method of placement. The �rst feature improves e�ciency, while
the second allows us to compare di�erent placement methods, and to parameterize the
placement system using resolution heuristics.

Key Words: Placement, algorithms, free space

Category: I.3, I.3.5, I.3.6, I.6

1 Introduction

Many problems involve the placement of rectangular objects without overlapping
on a bounded rectangular surface. There are also problems that at �rst sight do
not appear to have anything in common with the problem of the placement of
rectangles, but nevertheless can be reduced to this form.

We quote some signi�cant examples which have been the subject of research
work.

In the �eld of space planning, 3D objects to be placed in a house or in a room
can often be approximated by rectangles if we consider their projection onto the
placement plane [Charman 93], [Charman 95], [Mizoguchi, Ohwada 95].

Cutting-stock optimization problems are also linked to the general problem
[Dincbas Simonis Van Hentenryck 88]. In such applications we have a set S of
prede�ned rectangular objects and seek to cut an area in order to obtain all the

Journal of Universal Computer Science, vol. 3, no. 6 (1997), 703-720
submitted: 16/12/96, accepted: 23/5/97, appeared: 28/6/97 Springer Pub. Co.

elements of S. Some cuts may be forbidden by sawing constraints, which often
leads to a reduction of the complexity of the problem.

The placement of rectangles may also be used in several other �elds such
as chipset placement on integrated circuits [Du Verdier 90], the composition
of pages in computer-aided publication [Bernard, Jacquenet, Nicolini 97], point-
feature label placement [Christensen, Marks, Shieber 95] or the design of more
intelligent graphical user interfaces [Cruz, Marriott, Van Hentenryck 95].

When we wish to place objects on a surface without overlapping, we need
to know, whatever the constraint solving technique we use [Ja�ar, Maher 94],
[Hower, Graf 95], where new objects can subsequently be inserted. Thus we al-
ways need to be able to model the free space left by already-inserted objects in
order to allow placement of other objects on the bounded surface.

Let W be a rectangle and S be a set of rectangles.
Later, we will call W the base rectangle.

Problem 1: �nd a placement of the rectangles of S without overlapping on the
rectangle W .

R1

W

R2

R3

R4

Figure 1: Placement of four rectangles R1;R2;R3;R4 on a bounded surface W

Problem 2: suppose that n rectangles R1; R2; : : : ; Rn have already been placed
on the rectangleW . Can a rectangle Rn+1 be inserted inW�(R1[R2[� � �[Rn)?

In this article our goal is to model e�ciently the free space. We expect a
modeling method to be independent of the object to be inserted, and of the
placement method.

In the next section we briey describe three placement methods in current
use. For each, we lay emphasis on the free space calculation methods they em-
ploy, and discuss their advantages and possible drawbacks. Later, we introduce
a new free space calculation method. We present the algorithm and illustrate its
behaviour using an example. Finally, we prove the completeness and correctness
of the new algorithm.

704 Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

2 Existing methods

In this section we present several methods for placing rectangles on a rectan-
gular bounded surface. For each method we focus on the free space calculation.
First, we consider methods which are integrated with a placement algorithm. We
then present an iterative calculation method, and �nally a free space calculation
algorithm based on the notion of extended rectangles.

2.1 Free space calculation integrated with the placement algorithm

In many placement systems for rectangular objects subject to geometrical con-
straints, the free space calculation depends on the placement method. This is an
e�cient way to proceed when we wish to design a complete system, but the ap-
proach makes it di�cult to compare di�erent resolution algorithms, or di�erent
free space calculation algorithms. Moreover, the approach does not allow us to
design a generic placement system which may be parameterized by placement
heuristics or free space calculation methods.

The main idea in such systems is to draw a parallel between rectangle place-
ment systems and a constraint system over a reference domain, such as integers.

A rectangle is de�ned by its position and its dimensions. The rectangle do-
main - also called a rectangle con�guration - is the set of positions and dimensions
the rectangle can take. The position of a rectangle is represented by the position
of a particular point, called a referencing point. Figure 2 draws the parallel be-
tween a constraint satisfaction problem and a geometrical constraint satisfaction
problem (CSP) over rectangles. Thus, rectangles correspond to CSP variables,
and con�gurations correspond to variable domains.

CSP Rectangles
placement problem

variable rectangle
domain con�guration
constraint geometrical constraint

Figure 2: Analogy between the system of placement of rectangles and CSP

When we use CSP systems over integers, each variable has its own domain.
When we add a new constraint to the set of constraints of the system, a �ltering
method may reduce variable domains if necessary.

Choosing such a method involves each rectangle having its own domain,
which depends not only on the dimensions and the positions of other rectangles,
but also on its own dimensions.

During the resolution of a problem of the placement of rectangles, if the
system backtracks on the choice of the position or dimension of a rectangle, all
rectangle domains have to be updated. In fact, we compute the free space which
corresponds to each rectangle.

705Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

Our approach is to design a free space calculation method which is completely
independent of subsequent placements, and hence is closer to the methods we
consider in the following two subsections.

2.2 Iterative placement method

In this subsection we present the method described in [Du Verdier 90]. Although
the method attempts to place interconnected rectangular objects, it also has
some interesting principles for the placement of non-connected rectangles.

In this method the placement of rectangles proceeds in two steps. The �rst
step deals essentially with rectangle placement respecting the de�ned connec-
tions. The second step distributes the rectangles without overlapping. Briey,
the two steps consist of:

� perform a factorial analysis based on the distance between the blocks. This
step allows us to place the rectangles by considering them as points.
� move and distort the blocks. Following the �rst step, an iterative process
searches a block distribution in the bounded placement surface without over-
lapping. The distribution has to respect the initial con�guration as much as
possible. At each iteration, all blocks are moved. The process stops when the
displacement of each block is no longer signi�cant.

In the second step, we search the displacement area for each block. This area
is computed by determining the blocks whose boundaries are closest to the block
being processed. The search is performed in the four directions (top, bottom,
right and left) and de�nes a possible displacement area for this block (cf. �gure
3).

a
b

c d
W

 displacement area of

 the block d

Figure 3: Displacement area of block d

We now consider the iterative placement process. To eliminate the possibility
of cycling, a square shape is assigned to each block at the beginning of the
process, with the area of each square equal to the area of the corresponding
initial block. At each iteration, the block is distorted, preserving a constant
area, with a view to restoring its initial shape. The distortion of a block depends
on its displacement area, its previous shape, and of course its initial shape (cf.
�gure 4).

706 Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

1

2

3 4
5

67

2

1

7

3 4
5

6

6

1

7

2
5 3

4

a. Initial placement b. Placement after

c. Final placement

one iteration

Figure 4: Placement and distortion of the blocks

The main drawback of the method is that the rectangles are initially consid-
ered as points without taking their �nal size into account. This leads to overlap-
ping problems in some con�gurations, as in �gure 5.

Figure 5: Example of a non-resolved con�guration

707Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

2.3 Admissible region and extended rectangles

The following method is described in [Tokuyama, Asano, Tsukiyama 91].
Suppose n rectangles Ri; i 2 [1; n] have already been placed on the rectangle

W without overlapping. To place an (n+1)th rectangle, we construct the region
which consists of all possible placements of the right-upper corner of Rn+1. This
region is called the admissible region.

This notion of the admissible region of a rectangle is separate from the notion
of free space. In fact, the admissible region is the geometric area where a reference
point of a rectangle can be placed in order to place the rectangle entirely within
the free space.

The admissible region is computed considering the notion of extended rect-
angles using the following notation:

. we denote by R = [l; r] � [b; t] the rectangle constructed from the points
(l; b), (l; t), (r; t), (r; b)

. we denote by R[�; �] the extended rectangle de�ned by R[�; �] = [l; r+�]�
[b; t+ �]

We also introduce the notion of a contracted rectangle R�;�:

. R�;� = [l+ �; r]� [b+ �; t]

To insert a rectangle Rn+1 of width � and height �, we consider all extended
rectangles Ri[�; �]; i 2 [1; n], and the contracted rectangle W�;� .

Figure 6 shows extended rectangles of the rectangles which have already been
placed on W , and the contracted rectangle of W .

R n+1

β

α

Figure 6: Extended and contracted rectangles (dotted lines)

The admissible region of the right-upper corner of Rn+1 (cf. �gure 7) is given
by the following expression:

W�;� �

n[

i=1

Ri[�; �]

708 Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

n+1

β

α

R

Figure 7: Calculation of the admissible region of the right-upper corner

This method has a signi�cant drawback, since it depends on the rectangle to
be inserted. Indeed, we see from the above formula that the free space calculation
depends on the extended rectangles, which are directly computed using the size
of the rectangle to be inserted.

In the context of solving the problem of the placement of rectangles, if the
choice of the rectangle to be inserted is to be taken into account, the free space
must be entirely re-computed.

3 A new method for the calculation of free space

In the method we now present, we represent the free space by a set of rectangles,
called the set of largest free rectangles.

A rectangle which can be placed on the rectangle W will necessarily be
included in one of the largest free rectangles.

We introduce the de�nitions needed to present the algorithm.

3.1 De�nitions

Free rectangle
Assume that n rectangles R1; R2; : : : ; Rn have already been placed on a rectangle
W . Then R is a free rectangle if and only if:

� R �W
� 8Ri; i 2 [1; n]; R \ Ri = ;

Largest free rectangle (cf. �gure 8)
R is a largest free rectangle if and only if:

� R is a free rectangle

� 6 9R
0

; R
0

a free rectangle, such that R
0

� R

709Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

R

Figure 8: A largest free rectangle R

Rectangle generated by four segments (cf. �gure 9)
Let E1; E2; E3 and E4 be four segments such that:

� Ei is the segment [(xEi
; yEi

); (x0Ei
; y0Ei

)]
� x0E1

= xE1
and x0E2

= xE2
(that is, segments E1 and E2 are vertical)

� y0E3
= yE3

and y0E4
= yE4

(that is, segments E3 and E4 are horizontal)
� xE1

< xE2
(that is, E1 is to the left of E2)

� yE3
< yE4

(that is, E3 is below E4)
� max(yE1

; y0E1
) > yE3

� min(yE1
; y0E1

) < yE4

� max(yE2
; y0E2

) > yE3

� min(yE2
; y0E2

) < yE4

� max(xE3
; x0E3

) > xE1

� min(yE3
; y0E3

) < xE2

� max(xE4
; x0E4

) > xE1

� min(yE4
; y0E4

) < xE2

Then the rectangle generated by the segments E1; E2; E3 and E4 is:

R(E1; E2; E3; E4) = [xE1
; xE2

]� [yE3
; yE4

]

Figure 9b shows a situation in which four segments do not generate a rectangle
corresponding to our de�nition; condition max(xE4

; x0E4
) > xE1

does not hold.

E1

E2

E3

E4 E1E4

E3

E2

a. generated rectangle b. there is no generated
rectangle

Figure 9: Method for rectangle generation

710 Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

Rectangle modi�ed by a segment
We say that a rectangle is modi�ed by a segment if its intersection with the
segment is not empty.

Reduced rectangle (cf. �gure 10)
For a rectangle R = [l; r] � [b; t] and a segment [(x1; y1); (x2; y2)] we de�ne the
left-reduced rectangle1 to be the rectangle

2
left

[(x1;y1);(x2;y2)]
(R) = [max(x1; x2); r]� [b; t]

(x1,y1)

(x1,y1)

(x2,y2)
(x2,y2)

d dg g

Figure 10: Left-reduced rectangle

In a similar way, we can de�ne right-, top-, and bottom-reduced rectangles.

We denote by 2�(R) a reduced rectangle of R without specifying if it is left-,
right-, top- or bottom-reduced.

3.2 Algorithm

The free space calculation method we now propose is an incremental method.
The set of largest free rectangles is computed by considering the successive in-
sertions of the rectangles placed on the rectangle W .

Let LFRSet be the set of the largest free rectangles.
We also employ NewSet and RemoveSet as two sets of rectangles.
The free space calculation algorithm is:

1 The notion of a left-reduced rectangle is de�ned if and only if max(x1; x2) < r.

711Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

LFRSet fWg
for each rectangle Ri to be inserted
NewSet ; , RemoveSet ;
let Er be the right edge of Ri

. let B be the set of rectangles of LFRSet which are modi�ed by Er

. add all the left-reduced rectangles of B by Er to NewSet

. add the rectangles of B to RemoveSet
let Eb be the bottom edge of Ri

. let B be the set of rectangles of LFRSet which are modi�ed by Eb

. add all the top-reduced rectangles of B by Eb to NewSet

. add the rectangles of B to RemoveSet
let El be the left edge of Ri

. let B be the set of rectangles of LFRSet which are modi�ed by El

. add all the right-reduced rectangles of B by El to NewSet

. add the rectangles of B to RemoveSet
let Et be the top edge of Ri

. let B be the set of rectangles of LFRSet which are modi�ed by Et

. add all the bottom-reduced rectangles of B by Et to NewSet

. add the rectangles of B to RemoveSet
LFRSet LFRSet�RemoveSet
LFRSet LFRSet [NewSet

When the algorithm terminates, LFRSet contains all the largest free rectangles.

Note: when we add rectangles with this method, we need to make an inclusion
test to ensure that only the largest free rectangles are added.

3.3 Example

Consider the following example where we wish to model the free space remaining
after the insertion of two rectangles R1 and R2 (see �gure 11).

R1

R2

W

Figure 11: Placement of two rectangles R1;R2 on a bounded surface W

After the initialization step we have LFRSet = fWg, NewSet = ; and
RemoveSet = ;.

We begin with the insertion of the rectangle R1. Consider the right edge of
this rectangle: it modi�es only one element of LFRSet, namely the rectangle
W .

712 Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

R1

R1a

Figure 12: Consideration of the right edge of the rectangle R1

Ra
1 , the left-reduced rectangle of W by the right edge of R1 is added to

NewSet, and W is added to RemoveSet We now have: LFRSet = fWg,
NewSet = fRa

1g and RemoveSet = fWg.

Consideration of the three remaining edges of the rectangle R1 leads to the
identi�cation of the three black rectangles of �gure 13. Thus we have LFRSet =
fWg, NewSet = fRa

1 ; R
b
1; R

c
1; R

d
1g, and RemoveSet = fWg.

R1 R1 R1

R1b

R1c

R1d

Figure 13: Consideration of the remaining edges of the rectangle R1

The �nal two steps of the algorithm applied toR1 lead to the result LFRSet =
fRa

1 ; R
b
1; R

c
1; R

d
1g.

We now insert the second rectangle, R2.
The right edge of this rectangle modi�es two rectangles of the set LFRSet,

namely Ra
1 and R

d
1. The two reduced rectangles Ra

2 and R
b
2 (cf. �gure 14) should

consequently be added to NewSet.

R1

R2

R1

R2R2a

R2b

Figure 14: Consideration of the right edge of R2

713Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

When these rectangles are added to NewSet, an inclusion test is performed.
Here, one of the two generated rectangles is included in the other (Rb

2 � Ra
2)

and hence the rectangle Rb
2, which is not a largest free rectangle, is not added

to NewSet. We now have: LFRSet = fRa
1 ; R

b
1; R

c
1; R

d
1g, NewSet = fRa

2g and
RemoveSet = fRa

1 ; R
d
1g.

We do not elaborate on the process associated with the bottom edge of R2

since the situation is similar to the previous case. We simply observe that during
this step the rectangle Rc

2 is added to NewSet (cf. �gure 15).

R1

R2

R2c

Figure 15: Consideration of the bottom edge of R2

We now consider the left edge of the rectangle R2 which modi�es two rectan-
gles of LFRSet, namely Ra

1 and Rd
1. The two rectangles R

d
2 and Re

2 of �gure 16
are added to NewSet. We now have: LFRSet = fRa

1 ; R
b
1; R

c
1; R

d
1g, NewSet =

fRa
2 ; R

c
2; R

d
2; R

e
2g and RemoveSet = fRa

1 ; R
d
1g.

R1

R2

R1

R2R2d

R2e

Figure 16: Consideration of the left edge of R2

Finally, the top edge of R2 concerns only the rectangle R
a
1 and consideration

of this edge leads to the addition of the rectangle R
f
2 to NewSet (cf. �gure 17).

Hence we have: LFRSet = fRa
1 ; R

b
1; R

c
1; R

d
1g, NewSet = fRa

2 ; R
c
2; R

d
2 ; R

e
2; R

f
2g

and RemoveSet = fRa
1 ; R

d
1g.

After processing the second rectangle R2, LFRSet contains seven rectangles,

that is, LFRSet = fRb
1; R

c
1; R

a
2 ; R

c
2; R

d
2 ; R

e
2; R

f
2g.

3.4 Completeness

Let Wn be the rectangle W on which the rectangles Ri (i 2 [1; n]) have been
placed.

714 Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

R1

R2

R2f

Figure 17: Consideration of the top edge of R2

Let LFRSetn be the set of the largest free rectangles of Wn constructed by
our algorithm.

We remark that the algorithm constructs LFRSetn+1 from LFRSetn by:

. removing from LFRSetn the rectangles which are modi�ed by the edges of
Rn+1

. adding to LFRSetn+1 the reduced rectangles of the rectangles of LFRSetn
which are modi�ed by the edges of Rn+1

We denote by En the set of edges of the rectangles Ri; i 2 [1; n] and of the
rectangle W .

We introduce two lemmas which are useful for the proof of completeness.

3.4.1 Lemma 1

The two following assertions are equivalent:

� R is free and R = R(E1; E2; E3; E4), where Ei 2 En
� R is a largest free rectangle

Proof
Let R = R(E1; E2; E3; E4) be a free rectangle.
We extend the rectangle R in the direction of Ei.
Let Rj be the rectangle of which Ei is an edge.
The extended rectangle of R has a non empty intersection with Rj (see �gure
18).
If the edge Ei is an edge of W , then the extended rectangle does not belong to
W . Thus the extended rectangle is not a free rectangle.
Therefore, there does not exist a free rectangle which containsR(E1; E2; E3; E4),
which proves that R(E1; E2; E3; E4) is a largest free rectangle.

Conversely, let R be a largest free rectangle. Then R is a free rectangle.
Suppose that R cannot be written in the form R(E1; E2; E3; E4). This means
that there exists at least one edge E of R such that 8i E 62 Ri.
We can therefore extend the rectangle R to construct R0, a free rectangle which
contains R.
Hence R is not a largest free rectangle, which contradicts the original assumption.

715Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

E1

E3

W

E4

E2

extended E2

Figure 18: The extended rectangle is not free

3.4.2 Lemma 2

Let three edges E1; E2 and E3 belong to En such that:

. Ei is the segment [(xEi
; yEi

); (x0Ei
; y0Ei

)]
. E1 is the right edge of a rectangle Ri

. E2 is the left edge of a rectangle Rj

. E3 is the top edge of a rectangle Rk

. xE1
< xE2

(that is, E1 is to the left of E2)
. max(yE1

; y0E1
) > yE3

. max(yE2
; y0E2

) > yE3

. max(xE3
; x0E3

) > xE1

. min(yE3
; y0E3

) < xE2

. the rectangle [xE1
; xE2

]� [yE3
;max(min(yE1

; y0E1
);min(yE2

; y0E2
))] is free

Then there exists E4 2 En parallel to E3 such that R = R(E1; E2; E3; E4) is a
largest free rectangle.

We can generalize this Lemma to the three remaining symmetrical cases.

Proof
In Lemma 2 we deal with a con�guration which is similar to that of �gure

19.
Let � be that part of the plane de�ned by the set of points (x; y) such that:

. xE1
� x � xE2

. y � yE3

Let E be the set of edges Ei (i 2 [1; n]) such that Ei \� 6= ;.
Let E 2 E be such that

. min(yE ; y
0
E) = minEi2E(yEi

; y0Ei
)

. yE � max(min(yE1
; y0E1

);min(yE2
; y0E2

))

Then R = R(E1; E2; E3; E) satis�es the de�nition of a rectangle generated by
edges. Moreover, R is free because the edge E has been chosen to have the

716 Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

E1

E2

E3

W

 Π

Figure 19: Illustration of the hypothesis of the proof of lemma 2

smallest y-ordinate in � . Therefore, from Lemma 1 it follows that R is a largest
free rectangle.

Hence there exists an edge E4 = E such that R = R(E1; E2; E3; E4) is a
largest free rectangle.

3.4.3 Proof of completeness

We wish to prove that LFRSetn+1 contains all the largest free rectangles of
Wn+1.

To do this, we prove by induction that if R is a largest free rectangle forWn+1,
then it belongs to the set of the largest free rectangles LFRSetn+1 computed
by our algorithm.

We �rst prove that the assumption is true for n = 0.

It is trivial to show that the only largest free rectangle of W0 is W . Our
algorithm begins with the initialization of LFRSet to the set fWg, and termi-
nates immediately because there are no more rectangles Ri to place onW . Thus
LFRSet0 = fWg.

Induction assumption: Suppose that LFRSetn contains all the largest free
rectangles of Wn.

We now prove that if R is a largest free rectangle of Wn+1, then R 2
Ln+1.

Let R be a largest free rectangle of Wn+1. Since R is a largest free rectangle,
from Lemma 1 it can be written R = R(E1; E2; E3; E4), where E1; E2; E3; E4

are edges of W or Ri; i 2 [1; n+ 1].

case 1: fE1; E2; E3; E4g contains no edge of Rn+1.

717Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

We consider Wn+1 without Rn+1, that is Wn.
R(E1; E2; E3; E4) is a largest free rectangle of Wn+1, and therefore R\Ri =

; 8i 2 [1; n+ 1].
Since R = R(E1; E2; E3; E4) with the edges Ei existing in Wn, and R\Ri =

; 8i 2 [1; n], Lemma 1 leads us to conclude that R is a largest free rectangle of
Wn. Following the induction assumption, we have R 2 Ln.

Now, the algorithm computes LFRSetn+1 from LFRSetn by removing from
LFRSetn the rectangles which are modi�ed by the edges of Rn+1. Since R \
Rn+1 = ;, no edge of Rn+1 modi�es R. Hence R is not removed from LFRSetn,
and thus we have R 2 Ln+1.

case 2: fE1; E2; E3; E4g contains an edge of Rn+1. We suppose here that this
edge is E4. If the edge is other than E4 the proof follows in a similar manner.

We consider Wn+1 without Rn+1, that is Wn.
R is a free rectangle, and so from Lemma 2 we can �nd an edge E of a

rectangle Ri; i 2 [1; n] such that S = R(E1; E2; E3; E) is a largest free rectangle.
We observe that E4 \ S 6= ;.
According to the induction assumption, S 2 Ln.
By the construction of S, R = 2�

E4
(S) (see �gure 20).

Rn+1

A

R

S

W

Figure 20: Illustration of case 2 of the proof of completeness

By constructing LFRSetn+1 from LFRSetn using our algorithm, when Rn+1

is inserted, S is modi�ed by the edge E4, since E4 \ S = ;.
Therefore, to construct LFRSetn+1 we add the rectangle of S reduced by

the edge E4 (that is 2
�
E4
(S) = R) to LFRSetn.

This proves that R 2 Ln+1.

We have proved that the assumption is true for i = 0, that is W0 contains
all largest free rectangles. Moreover, we have proved that if the assumption is
true for i = n, then it is true for i = n + 1. Hence, by induction, we have that
8R, a largest free rectangle of Wn+1, we have R 2 LFRSetn+1. Our algorithm
e�ectively computes all the largest free rectangles of Wn+1.

718 Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

3.5 Correctness

When we construct LFRSetn+1 from LFRSetn the algorithm removes the set
of rectangles a�ected by edges of Rn+1 from LFRSetn. Using the argument of
case 1 of the completeness proof, all rectangles remaining in LFRSetn+1 are
largest free rectangles.

To prove correctness, the problem is to determine whether the algorithm
adds rectangles which are not largest free rectangles.

First, by construction, the reduced rectangles which are added are free. More-
over, when a rectangle is added, the algorithm tests if the rectangle is included
in an existing largest free rectangle; this test ensures correctness.

4 Conclusion

To design a free space calculation algorithm for the placement of rectangles,
and considering existing methods [Charman 93] [Charman 95] [Du Verdier 90]
[Tokuyama, Asano, Tsukiyama 91], we have introduced, a method which is inde-
pendent of the size of the objects to be inserted and of any method of placement.
This independence allows us to employ e�cient placement methods which may
be parameterized by some placement heuristics or by a free space calculation
method. The algorithm presented here also allows comparisons between several
placement heuristics to be made easily, and this is indispensable for our future
research work.

Completeness and correctness of the algorithm presented here have been
proved. This provides a formal basis for future development. Indeed, we aim to
integrate Inductive Logic Programming [Muggleton, De Raedt 94] and Inductive
Constraint Logic Programming mechanisms to provide the induction of geomet-
rical constraints [Bernard, Jacquenet, Nicolini 97], [Mizoguchi, Ohwada 95]. In
this context, the algorithm presented here will form part of the background
knowledge for an inductive learning system.

References

[Bernard, Jacquenet, Nicolini 97] M. Bernard, F. Jacquenet, and C. Nicolini. Induc-
tion of Constraint Logic Programs for Computer-Aided Publishing. In Interna-
tional Conference on Arti�cial Intelligence and Soft Computing, Ban�, Canada,
July 1997.

[Charman 93] P. Charman. Solving Space Planning Problems Using Constraint Tech-
nology. Research Report CS-57/93, Institute of Cybernetics - Estonian Academy
of Sciences, 1993.

[Charman 95] P. Charman. Gestion des contraintes g�eometriques pour l'aide �a
l'am�enagement spatial. Th�ese - Universit�e de l'Ecole Nationale des Ponts et
Chauss�ees, Novembre 1995.

[Christensen, Marks, Shieber 95] J. Christensen, J. Marks, and S. Shieber. An Empir-
ical Study of Algorithms for Point-Feature Label Placement. ACM Transaction
on Graphics, 14(3):203{232, July 1995.

[Cruz, Marriott, Van Hentenryck 95] I. Cruz, K. Marriott, and P. Van Hentenryck,
editors. Proceedings of the International Workshop on Constraints for Graphics
and Visualization, Monash University, 1995. Department of Computer Science.
in association with CP'95.

719Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

[Dincbas Simonis Van Hentenryck 88] M. Dincbas,
H. Simonis, and P. Van Hentenryck. Solving a cutting-stock problem in con-
straint logic programming. Technical Report TR-LP-28, ECRC, January 1988.

[Du Verdier 90] F. Du Verdier. Placement de rectangles par r�epartition dans une sur-
face born�ee. In MICAD '90 proceedings of the 9th International conference on
the CADCAM, volume 2, pages 634{648. Hermes, February 1990.

[Hower, Graf 95] W. Hower and W.H. Graf. Research in constraint-based layout, visu-
alization, cad, and related topics : A bibliographical survey. In CGV '95, Cassis,
France, September 1995.

[Ja�ar, Maher 94] J. Ja�ar and M.J. Maher. Constraint Logic Programming: A Sur-
vey. Journal of Logic Programming, 19/20:503{581, 1994.

[Mizoguchi, Ohwada 95] F. Mizoguchi and H. Ohwada. Using inductive logic pro-
gramming for constraint acquisition in constraint-based problem solving. In
Luc De Raedt, editor, 5th International Workshop on Inductive Logic Program-
ming, pages 297{322, September 1995.

[Muggleton, De Raedt 94] S. Muggleton and L. De Raedt. Inductive logic program-
ming : Theory and methods. Journal of Logic Programming, 19-20:629{679,
1994.

[Tokuyama, Asano, Tsukiyama 91] T. Tokuyama, T. Asano, and S. Tsukiyama. A
Dynamic Algorithm for Placing Rectangles without Overlapping. Journal of
Information Processing, 14(1):30{35, 1991.

Acknowledgments

The authors would especially like to thank M. Jean-Jacques Chabrier of Cen-
tre de Recherche en Informatique de Dijon, Crid (FRANCE), and M. Chris
Phillips of the University of Newcastle (UK) for useful help and suggestion
during this research.

720 Bernard M., Jacquenet F.: Free space modeling for placing rectangles ...

