
Formalizing Database Recovery

Yuri Gurevich
University of Michigan, USA
gurevich@eecs.umich.edu

Nandit Soparkar
University of Michigan, USA
soparkar@eecs.umich.edu

Charles Wallace
University of Michigan, USA

wallace@eecs.umich.edu

Abstract: Failure resilience is an essential requirement for database systems, yet there
has been little e�ort to specify and verify techniques for failure recovery formally. The
desire to improve performance has resulted in algorithms of considerable sophistica-
tion, yet understood by few and prone to errors. In this paper, we illustrate how the
methodology of Gurevich Abstract State Machines can elucidate recovery and provide
formal rigor to the design of a recovery algorithm. In a series of re�nements, we model
a recovery algorithm at several levels of abstraction, verifying the correctness of each
model. This work suggests that our approach can be applied to more advanced recovery
mechanisms.

1 Introduction

The ability to recover from failures and erroneous executions is crucial for con-
currently accessed database systems. As recovery management requires a good
deal of time-consuming access to secondary storage, both during recovery and
normal processing, current research (e.g. [Elm92, MHL+92, GR93]) has sought
ways to improve performance while still ensuring failure resilience. This research
has produced algorithms of higher e�ciency but also of greater subtlety and in-
tricacy. The descriptions of the algorithms are generally imprecise and obscure,
leaving them error-prone, di�cult to understand and assess, and hence familiar
only to experts in the �eld. The formalization of recovery in [Kuo93] is a welcome
addition to the literature, but the single low level of abstraction adopted in this
work makes the formal models large and confusing.

In this paper we demonstrate the use of Gurevich Abstract State Machines
(ASMs) in the modeling and veri�cation of recovery algorithms. As noted in
[Gur93, B�or95b], ASMs can model an algorithm at any level of abstraction. In
work such as [BGR95, BR94], ASM models are used in re�nements from high
to low levels of detail. Here we view the database recovery problem at di�erent
levels of abstraction, starting with a high-level model and successively re�ning
it, making implementation decisions at each re�nement step. We prove that the
initial model is correct and that the model at each step is a re�nement of that of
the previous step. The result is an orderly and understandable development of
a validated recovery algorithm. We believe that this work can serve as both an

Journal of Universal Computer Science, vol. 3, no. 4 (1997), 320-340
submitted: 20/12/96, accepted: 21/4/97, appeared: 28/4/97  Springer Pub. Co.

e�ective introduction to the area of database recovery and an inspiring example
of the use of ASMs in design.

A brief description of ASMs can be found in Appendix A; for a more thor-
ough presentation, we direct the reader to [Gur95], a guide to ASMs (formerly
known as Evolving Algebras). We use the terminology and design outline from
the discussion of the undo-redo algorithm in [BHG87]. We start in Section 2 with
an ASM model of recovery that captures the notion of recovery at a high level.
In Section 3 we provide a model which re�nes the initial ASM by introducing
cache and log management. Section 4 contains three further re�nements which
further detail how to use the cache and log in recovery.

Some preliminary results of this paper were presented in [WGS95, GW95].
The work here is primarily that of the third author. We wish to thank Jim
Huggins and Marc Spielmann for comments on drafts of this paper. The �rst
and third authors were supported in part by NSF grant CCR-95-04375 and ONR
grant N00014-94-1-1182.

2 A high-level view of recovery

A database is a set of locations, each containing a value. The database is man-
aged by a database management system (DBMS) and accessed concurrently by
multiple users by means of transactions. A transaction consists of a sequence
of operations issued by a user. Once one of a transaction's operations has been
issued to the DBMS, the transaction remains active until all its operations have
been issued, at which time the transaction has completed. A completed transac-
tion contains a commit or abort as its �nal operation, which determines whether
the transaction completed successfully or unsuccessfully. A commit indicates
that the transaction has terminated normally and that the e�ects of its updates
must remain in the database. An abort indicates that the computation is in error
and that its updates must be undone: their e�ects must be removed from the
database. The e�ect of a transaction on the database is therefore atomic: either
all updates are maintained (in the case of a commit) or none are maintained (in
the case of an abort).

Data values may be stored on both stable and volatile media. Typically,
volatile storage provides faster access but is smaller and more prone to failure
than stable storage, so it is used as a temporary storage medium. A version of
the entire database always resides in stable storage, but for certain locations
there may be values in volatile storage as well. If a data value exists in volatile
storage, it has the most recent value for its location; otherwise it is the copy in
stable storage that is the most recent value. We refer to the set of most recent
data values (over volatile and stable storage) as the current database, and to the
set of values in stable storage as the stable database.

In this paper we consider recovery from failures of volatile storage, also known
as system failures. The e�ects of all updates issued by committed transactions
must be durable: persistent despite system failures. A system failure results in
the loss of the contents of volatile storage. Any transaction active at the time
of the failure is treated as if it aborted. After a system failure, all data values
must re
ect only the updates made by transactions that committed before the
failure. Furthermore, all the information needed for recovery must be in stable
storage at the time of recovery.

321Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

The goal of the recovery manager (RM) is to ensure the atomicity and dura-
bility of transactions. To do so, it communicates with two other DBMS modules.
The concurrency control manager (CCM) controls the sequence or schedule of
operations issued to the RM. The cache manager (CM) controls the contents
of volatile storage (also known as the cache) and stable storage, fetching data
values from stable storage to the cache and
ushing values from the cache to
stable storage.

The semantics and the temporal ordering of the operations issued to the
DBMS a�ect the actions required for recovery. In this paper we focus on sys-
tems supporting only two operations: read and write. A write to a location l
overwrites the value of any previous write to l, so undoing the write involves
overwriting the current value at l with the value of the previous unaborted write
to l. Furthermore, we restrict our attention to strict schedules of operations. In
a strict schedule, any transaction that writes to a location l terminates before
the next read/write to l. (It should be noted that in a strict schedule, a trans-
action may not read from or write to a data location once it has written to it.)
Strict schedules have the advantage that transactions only read values written
by committed transactions. This prevents application programs from reading
values later determined to be erroneous. In addition, it ensures that there is
only one active writer to a location at any time, so undoing an update to a
location l involves restoring the value at l to the value written by the committed
transaction that wrote last to l. The collection of last committed values gives
rise to a virtual database, called the committed database. The goal of recovery
is to install the committed database as the current database.

The �rst ASM M1 provides a high-level view of an RM for a DBMS sup-
porting read and write operations and strict schedules. We de�ne universes
Location and V alue. To distinguish transactions, we introduce a universe
Transaction of transaction identi�ers. Operation is the universe of transaction
operations. Associated with this universe are four functions: Type : Operation!
fread; write; commit; abortg, Issuer : Operation ! Transaction, Loc :
Operation ! Location and V al : Operation ! V alue return respectively the
type of a given operation, the identi�er of the transaction that issued it, the loca-
tion at which a read or write is to be performed (for read and write operations),
and the value to be written (for write operations).

The functions CurrentDB; StableDB;CommDB : Location ! V alue rep-
resent the current, stable and committed databases, respectively. In addition,
WriteSet : Transaction ! 2Location represents the set of data locations that
have been updated by a given transaction. A location l 2 WriteSet(t) if trans-
action t has issued a write to l.

The external function Op : Operation represents the current operation opera-
tion to be serviced.Mode : fnormal; recoveringg represents the current mode of
RM processing, and the external function Fail? : Boolean determines whether a
system failure has occurred at a given point in the run. Finally, the external func-
tion CacheF lush? : Location! Boolean models the behavior of the CM, deter-
mining when to
ush data values to stable storage. If CacheF lush?(l) = true,
then the cache value with location l is to be copied to stable storage.

We use the following terms to describe runs of M1 and its subsequent re�ne-
ments.

{ The system fails if Fail? = true; otherwise, the system is running. The

322 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

system is normal (respectively, recovering) if it is running and Mode =
normal (respectively, recovering). Transaction t issues an operation if the
system is normal and Op:Issuer = t.

{ Transaction t reads from location l if it issues an operation such that
Op:Type = read and Op:Loc = l. Transaction t writes value v to loca-
tion l if it issues an operation such that Op:Type = write, Op:Loc = l and
Op:V al = v.

{ Transaction t commits (respectively, aborts) if it issues an operation such
that Op:Type = commit (respectively, abort). Transaction t commits
(aborts) a write to location l if it commits (aborts) and l 2WriteSet(t).

{ Transaction t is active at stage S if it writes or reads for the �rst time at
some stage R � S, and it does not abort or commit and the system does not
recover at any stage R0

2 (R;S).
{ Transaction t encounters a failure if the system fails and t is active. Trans-
action t terminates if it commits, aborts or encounters a failure.

{ Transaction t is well-behaved during a run if it is active whenever it issues
an operation. A run is strict if every transaction is well-behaved and for any
two transactions t and t0, if t writes to location l at stage S and t0 writes to
l at stage T > S then t is not active at T .

The RM expects a strict schedule of operations from the CCM. Rather than
provide the details of how the CCM produces a strict schedule, we ensure strict-
ness by a constraint on runs:

{ Run constraint: A run must be strict.

The transition rules of M1 can be found in Figure 1. The skeletal transi-
tion rule MAIN contains references to the macros FAIL, FLUSH, etc. While
these macro structures may seem unnecessary for such a simple model, they
provide useful modularity in the subsequent re�nements. Initially, all values of
CurrentDB, StableDB and CommDB are undef , and all values of WriteSet
are ;. A failure sets all database values to the stable values, while a
ush at
location l sets l's stable value to its current database value. At this level of ab-
straction, a read of l changes nothing (the macro READ consists of an empty
rule sequence). A write to l changes the current database at l. A commit sets
the last committed values of the locations in the committed transaction's write
set to their current database values. An abort does the inverse action, setting
the current database values of the aborting transaction's write set to the last
committed values. Finally, a recovery sets all values of the current database to
those of the committed database.

The RM must provide atomicity and durability for the transactions accessing
the database. We de�ne the properties of atomicity and durability with regard
to the model M1 and then prove that they hold for any run of the model.
Atomicity is a condition on the behavior of the current database. If a transaction
commits, the values of its writes must remain in the current database, until other
transactions overwrite these values. If a transaction aborts, or a system failure
occurs while it is still active, the values of its writes must be removed and
replaced with their previous values, and these previous values must remain until
they are overwritten by other transactions. Proposition 3 states the atomicity
property in terms of M1.

323Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

MAIN: if Fail? then FAIL
else

FLUSH
if Mode = normal then

if Op:Type = read then READ
elseif Op:Type = write then WRITE
elseif Op:Type = commit then COMMIT
elseif Op:Type = abort then ABORT
endif

else RECOVER
endif

FAIL: vary l over Location
CurrentDB(l) := StableDB(l)

endvary

Mode := recovering

FLUSH: vary l over Location satisfying CacheF lush?(l)
StableDB(l) := CurrentDB(l)

endvary

READ:

WRITE: CurrentDB(Op:Loc) := Op:V al
WriteSet(Op:Issuer) :=WriteSet(Op:Issuer) [fOp:Locg

COMMIT: vary l over Location satisfying l 2WriteSet(Op:Issuer)
CommDB(l) := CurrentDB(l)

endvary

ABORT: vary l over Location satisfying l 2WriteSet(Op:Issuer)
CurrentDB(l) := CommDB(l)

endvary

RECOVER: vary l over Location
CurrentDB(l) := CommDB(l)

endvary

Mode := normal

Figure 1: High-level recovery manager model M1.

324 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

Lemma 1. Let S be a normal stage for which CurrentDB(l) = CommDB(l),
and let T be any normal stage > S. If no transaction writes to l in [S; T), then
CurrentDB(l)T = CurrentDB(l)S .

Proof. By induction on the number of stages in [S; T]. Since there is no
write to l in [S; T), CurrentDB(l) and CommDB(l) can di�er only if there
is a failure at some S0

2 [S; T). But if the system fails at S0, then at
the next non-failure state S00

2 (S0; T) (which must exist since T is nor-
mal), the system recovers. RECOVER �res, and CurrentDB(l) is updated
to CommDB(l). Since CommDB(l) is not updated when the system fails
or recovers, CommDB(l)S00+1 = CommDB(l)S0 . Thus CurrentDB(l)S00+1 =
CommDB(l)S00+1 = CommDB(l)S0 = CurrentDB(l)S0 . It follows that
CurrentDB(l)T = CurrentDB(l)S . 2

Lemma 2. At stage S, if transaction t writes to location l then CommDB(l) =
CurrentDB(l).

Proof. Let Q be the last stage < S where a transaction committed a write
to l; then COMMIT �res and updates CommDB(l) to CurrentDB(l), so
CommDB(l) = CurrentDB(l) at Q + 1. If such a Q exists, let R be Q + 1;
otherwise, let R be the initial state, at which CommDB(l) = CurrentDB(l) =
undef . Then CommDB(l) is unchanged in [R;S]. The only ways in which
CurrentDB(l) can be updated to some value other than CommDB(l) are if
a transaction u writes to l or the system fails at some R0

2 [R;S). But by
strictness and the fact that S is normal, u aborts or the system recovers at
some R00

2 (R0; S), so CurrentDB(l) is updated to CommDB(l). It follows
that CommDB(l) = CurrentDB(l) at S. 2

Proposition 3. (Atomicity) Let R be a stage at which transaction t writes value
v to location l. Let T be any normal stage > R. If t terminates at a stage
S 2 (R; T), and no transaction writes to l in (R; T), then

CurrentDB(l)T =

�
v if t commits at S;
CurrentDB(l)R if t aborts or encounters a failure at S

Proof. Since WRITE �res at R, CurrentDB(l) = v and l 2 WriteSet(t) at
R+ 1. Then there are two cases:

1. t commits at S. By strictness, in (R;S) no transaction writes to l or
aborts a write to l, and there is no system failure, so CurrentDB(l) is
unchanged in (R;S]. Then t commits at S, so CommDB(l) is updated to
CurrentDB(l), making CurrentDB(l) = CommDB(l) = v at S + 1. By
Lemma 1, CurrentDB(l) = v at T .

2. t aborts or encounters a failure at a stage S 2 (R; T). By strictness, no
transaction commits a write to l in [R; T], so CommDB(l) is unchanged
in [R; T]. By Lemma 2, CurrentDB(l) = CommDB(l) at R. Then t is
aborted or the system fails at S. In the �rst case, ABORT �res at S and
CurrentDB(l) is updated to CommDB(l), making CurrentDB(l)S+1 =
CommDB(l)S+1 = CommDB(l)R = CurrentDB(l)R. In the second case,
let S0 be the �rst non-failure stage in (S; T) (which must exist since T is nor-
mal); then RECOVER �res and CurrentDB(l) is updated to CommDB(l),

325Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

making CurrentDB(l)S0+1 = CommDB(l)S0+1 = CommDB(l)R =
CurrentDB(l)R. By Lemma 1, CurrentDB(l) = v at T . 2

Durability is a condition on the behavior of the committed database. If a
transaction commits, its values must remain in the committed database un-
til other transactions commit and overwrite these values. Proposition 4 states
durability in terms of M1.

Proposition 4. (Durability) Let R be a stage at which transaction t writes value
v to location l. Let T be any stage > R. If t commits at a stage S 2 (R; T), and
no transaction commits a write to l in (R; T), then CommDB(l)T = v.

Proof. If transaction t writes v to location l at R, CurrentDB(l) is updated
to v and l is added to WriteSet(t) at R. If t commits at S > R, in [R;S] no
transaction writes to l or aborts a write to l, and there is no system failure,
so CurrentDB(l) is unchanged in (R;S]. At S, COMMIT �res, and since l 2
WriteSet(t), CommDB(l) is updated to CurrentDB(l)S = v. Then since no
transaction commits a write to l in (S; T], CommDB(l) is unchanged in this
interval, so CommDB(l)T = v. 2

3 Incorporating cache and log management

The ASM in the previous section represents the current and committed databases
in an abstract manner. It does not explicitly represent how the current data val-
ues are partitioned into volatile and stable storage, nor how the last committed
values are recorded in stable storage. In this section, we present a re�nement that
implements the storage of the current and committed databases in a particular
way.

Our implementation imposes no restrictions on the CM's
ush policy; data
values in the cache are
ushed only when the CM decides to do so. This allows
the RM and CM to act as independently as possible, but it introduces problems
for atomicity and durability. At the time of a failure, some uncommitted val-
ues might have been
ushed to stable storage; these erroneous values must be
removed from the database. Furthermore, some committed values might reside
only in the cache when a failure occurs; these values must be reinstalled. The
recovery procedure must perform two tasks: undo all writes by uncommitted
transactions, and redo all writes by committed transactions.

The RM maintains the information necessary for recovery in two objects. The
commit list resides in stable storage and contains the identi�ers of all committed
transactions. The log is a history of the writes to the system. It consists of a
sequence of records, each added as a write is performed. A log record consists of
the identi�er of the transaction t performing the write, the location l it writes
to, and the value v being written. The current value v at l after t's write is the
after-image of l with respect to t.

Like data values, log records may reside in stable or volatile storage. How-
ever, to ensure that the committed database is retrievable after a failure, the
records containing last committed values must be in stable storage at the time
of a failure. Another condition is needed for the case where no transaction has
committed a write to a given location: if no record for that location exists in the

326 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

stable portion of the log, then its value may not be
ushed to stable storage.
Otherwise, the record of an uncommitted write might be lost in a failure, in
which case its after-image would remain in stable storage. (In Section 4.3, we
describe a particular policy for log record caching.)

The RM processes a read operation by fetching the requested data value from
stable storage if there is no value in the cache. A write is processed by caching the
new value and adding a log record containing the new value. When a transaction
commits, the RM adds the transaction's identi�er to the commit list. When a
transaction aborts, the RM searches the log for records with the transaction's
identi�er. (In Section 4.2, we show a way of implementing this search.) For every
such record, the RM performs an undo. The value to write in this case is the
last committed value, which can be found in a previous entry in the log. All
the information needed to determine the last committed value is present in the
log and commit list. (In Section 4.1 we show an e�cient way to �nd the last
committed value.)

The recovery procedure also involves a log search. For each data location, the
RM �nds the last log record with a matching location. This record was added
during the latest write to that location. The RM consults the commit list to
determine if the writer transaction has committed. If so, a redo is performed by
caching the log record's after-image; otherwise, an undo is performed. When the
entire log has been scanned, the recovery procedure ends, and normal processing
resumes. (Details of this log scan are presented in Section 4.2).

To re�ne the high-level ASM of M1 to a lower-level model M2, we modify
the original ASM, using some of its functions, adding others, and changing its
transition rule macros as shown in Figure 2. The current database is represented
by two functions: in addition to StableDB, we de�ne Cache : Location! V alue
to represent the contents of the cache. When a cached data value is
ushed, it
may also be removed from the cache. We represent this decision by the external
function CacheRemove? : Location! Boolean.

The commit list in stable storage is represented by the function Committed? :
Transaction ! Boolean. To represent the log, we de�ne universes LogRecord
and 2LogRecord. The function Log : 2LogRecord represents the current contents
of the log, and the external function StableLog : 2LogRecord represents the log
contents in stable storage. Associated with each element of LogRecord are three
functions Issuer : LogRecord ! Transaction, Loc : LogRecord ! Location
and AfterImage : LogRecord ! V alue which return the �elds of a given log
record. As the records in a log are ordered, we de�ne a discrete total order �
on elements of LogRecord. The function LogEnd : 2LogRecord ! LogRecord
returns the maximum element of the given set (undef if the set is empty).
Succ : LogRecord ! LogRecord takes a record r and returns the minimum
record that is > r.

The external function LastRcd : Location � 2LogRecord ! LogRecord re-
turns the maximum record in the log with the given location. The external
function CommRcds : 2LogRecord returns the subset of log records with com-
mitted issuers. LastCommRcds : 2LogRecord returns the set containing the last
committed records for each location.

{ LastRcd(l; L) = max�2L(�:Loc = l)
{ CommRcds = fr 2 Log : Committed?(r:Issuer) = trueg
{ LastCommRcds = fr 2 CommRcds : r = LastRcd(r:Loc; CommRcds)g

327Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

FAIL: vary l over Location
Cache(l) := undef

endvary
Log := StableLog
Mode := recovering

FLUSH: vary l over Location satisfying
CacheF lush?(l) and Cache(l) 6= undef

StableDB(l) := Cache(l)
if CacheRemove?(l) then Cache(l) := undef endif

endvary

READ: if Cache(Op:Loc) = undef then
Cache(Op:Loc) := StableDB(Op:Loc)

endif

WRITE: Cache(Op:Loc) := Op:V al
let r = Succ(LogEnd(Log))

WRITELOG(r)
endlet

COMMIT: Committed?(Op:Issuer) := true

ABORT: vary r over LogRecord satisfying
r 2 Log and r:Issuer = Op:Issuer

UNDO(r)
endvary

RECOVER: vary l over Location
let r = LastRcd(l; Log)

if r 6= undef then
if Committed?(r:Issuer) then

REDO(r)
else

UNDO(r) endif
endif

endlet
endvary
Mode := normal

WRITELOG(r): r:Issuer := Op:Issuer
r:Loc := Op:Loc
r:AfterImage := Op:V al
Log := Log [frg

UNDO(r): Cache(r:Loc) := UndoRcd(r):AfterImage

REDO(r): Cache(r:Loc) := r:AfterImage

Figure 2: Modi�cations for re�nement M2, incorporating cache and log management.

328 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

When an undo is performed for a record r, the external function UndoRcd :
Location�LogRecord! LogRecord returns the record with the after-image to
install. Of the committed records in the log, it is the last record before r with
the same location as r:

{ UndoRcd(r) =

�
max�2CommRcds(� < r and �:Loc = r:Loc) if � exists;
undef otherwise

Initially, all values of Cache are undef , all values of Committed? are false,
and Log and StableLog are both empty. To ensure that the stable log obeys
the conditions de�ned earlier, we place the following constraints on runs. First,
for any data location with a committed write, there must be a record in stable
storage of the last committed write to that location. Second, for any data location
with no record in the stable log, the value in the stable database must remain
unde�ned.

{ Run constraint: LastCommRcds � StableLog � Log
{ Run constraint: 6 9r 2 StableLog(r:Loc = l)) StableDB(l) = undef

We introduce some de�nitions to describe the actions of an abort or recovery.

{ A log record r is an l-record (respectively, a t-record) if r:Loc = l (respec-
tively, r:Issuer = t).

{ Let r be an l-record in Log. If a transaction t aborts and r is a t-record, then
r is undone. If the system is recovering and r = LastRcd(l; Log), then r is
redone if Committed?(r:Issuer) = true and undone otherwise.

When a data location is being read from or written to, the CM must not
be allowed to remove the value at that location, as this would create an update
con
ict. To avoid this, we put the following constraint on runs:

{ Run constraint: CacheRemove?(l) = false when t reads or writes to l, or
when an l-record is undone or redone.

We show that M2 is a re�nement of M1. The values of CurrentDB(l),
CommDB(l) and WriteSet(t) (for each location l and transaction t) are main-
tained in M2, but implicitly rather than explicitly. To prove this we �nd equiva-
lent terms in M2's vocabulary: equivalent in that they behave in M2 in the same
way as their counterparts in M1.

Term in M1 Equivalent term in M2

CurrentDB(l)

�
StableDB(l) if Cache(l) = undef
Cache(l) otherwise

CommDB(l) LastRcd(l; CommRcds):AfterImage
WriteSet(t) fl 2 Location : 9r 2 Log(r:Issuer = t and r:Loc = l)g

Propositions 6{11 show that all the updates to CurrentDB(l), StableDB(l),
CommDB(l) and WriteSet(t) that occur in the various rule macros of M1 also
occur to their equivalent terms in the same macros ofM2. A complete proof that
M2 is a re�nement of M1 must also show that only the updates of M1 occur in
M2; we omit this straightforward but tedious part of the proof.

329Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

Lemma 5. If transaction t writes value v to location l at a stage R and t is
active at a stage S > R, then (a) the last l-record in LogS is the record r written
at R, and (b) CurrentDB(l)S = v.

Proof. By induction on the number of stages after R. WRITE �res at R, so the
last record in LogR+1 is r, and (b) Cache(l)R+1 = v. Assume that for some
stage S0

2 (R;S), the last l-record in LogS0 is r and CurrentDB(l)S0 = v.
Since t is active at S and the run is strict, the system does not fail or recover
at S0. (a) At S0 + 1, the last l-record of Log 6= r only if some t0 writes to l
at S0, but since t is active at S and the run is strict, this is not possible. (b)
CurrentDB(l)S0+1 6= CurrentDB(l)S0 only if some t0 writes to l at S0, or an
l-record is undone in an abort at S0. The �rst case is immediately discounted by
strictness and the fact that t is active at S. In the second case, t cannot be the
aborting transaction at S0, as t is still active at S. But if it is some t0 6= t that
aborts at S0, then there is a record in LogS0 with issuer t0 and location l, so t0

must write to l at some stage R0 < S0. As t and t0 are both active at either R (if
R0 < R) or R0 (if R < R0), this would violate strictness. Thus CurrentDB(l) is
unchanged at S0. 2

Proposition 6. (Equivalence of FLUSH macros) If CacheF lush?(l) = true at
a stage S, then StableDB(l)S+1 = CurrentDB(l)S .

Proof. If Cache(l) = undef , then CurrentDB(l) = StableDB(l),
and StableDB(l) is unchanged, so StableDB(l)S+1 = StableDB(l)S =
CurrentDB(l)S . Otherwise, CurrentDB(l) = Cache(l) at S, and FLUSH �res,
so StableDB(l)S+1 = Cache(l)S = CurrentDB(l)S . 2

Proposition 7. (Equivalence of WRITE macros) If t writes v to l at a stage S,
then at S + 1 (a) CurrentDB(l) = v and (b) l 2WriteSet(t).

Proof. WRITE �res at S, so at S +1 (a) Cache(l) = v (thus, CurrentDB(l) =
v), and (b) Log has an l-record with issuer t (thus, l 2WriteSet(t)). 2

Proposition 8. (Equivalence of COMMIT macros) If t commits and l 2

WriteSet(t) at a stage S, then CommDB(l)S+1 = CurrentDB(l)S .

Proof. If l 2WriteSet?(t) at S, there is a record in Log with issuer t and location
l, so t must write a value v to l at some stage R < S. By strictness, t must be
active at S, so by Lemma 5, CurrentDB(l) = v and v = r:AfterImage where
r is the last l-record in Log. COMMIT �res, so Committed?(t) = true at S +1
and therefore r:AfterImageS = CommDB(l)S+1. Thus CommDB(l)S+1 =
CurrentDB(l)S . 2

Proposition 9. (Equivalence of ABORT macros) If t aborts and l 2

WriteSet(t) at a stage S, then CurrentDB(l)S+1 = CommDB(l)S.

Proof. Since l 2 WriteSet?(t) at S, there is an l-record r 2 Log with issuer t.
By strictness, t must be active at S, so by Lemma 5, r is the last l-record in Log.
Then r is undone, so UNDO �res and Cache(l)S+1 = r0:AfterImageS, where
r0 is the last committed l-record preceding r in LogS . Since r is the last l-record
in LogS , r

0 is the last committed l-record in LogS , and so r0:AfterImageS =
CommDB(l)S . Then CurrentDB(l)S+1 = Cache(l)S+1 = CommDB(l)S . 2

330 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

Proposition 10. (Equivalence of FAIL macros) If the system fails at a stage S,
then CurrentDB(l)S+1 = StableDB(l)S.

Proof. FAILURE �res at S, so Cache(l)S+1 = undef and therefore
CurrentDB(l)S+1 = StableDB(l)S. 2

Proposition 11. (Equivalence of RECOVER macros) If the system recovers at
a stage S, then CurrentDB(l)S+1 = CommDB(l)S .

Proof. If there is no l-record in Log at S, then there has been no committed
write to l, so CurrentDB(l) = CommDB(l) = undef , and Cache(l) is not
updated at S. If there is an l-record in Log, let r be the last such record and let
t = r:Issuer. If Committed?(t) = true, then REDO �res and Cache(l)S+1 =
r:AfterImageS = CommDB(l)S . Otherwise, UNDO �res and Cache(l)S+1 =
r0:AfterImageS , where r

0 is the last committed l-record preceding r in LogS .
But since r is the last l-record in LogS , r

0 is the last committed l-record in
LogS, and so r0:AfterImageS = CommDB(l)S . Then CurrentDB(l)S+1 =
Cache(l)S+1 = CommDB(l)S . 2

4 Further re�nements

M1 and M2 are high-level models that omit many implementation-level details.
In this section, we re�ne the model to provide some of these details. In Section 4.1
we identify a method of determining the value to install in the database in
the case of an undo. In Section 4.2 we represent aborts and recovery as multi-
step procedures, thereby introducing multiple points of failure into an abort
or recovery. In Section 4.3 we specify a policy of log caching. These are just
some of the re�nements needed in the path toward an implementation. Other
re�nements may involve a further de�nition of the structure of data items or the
introduction of multiple points of failure into other actions (writes, for example).
The re�nements here are intended to be examples of what can be done.

4.1 Logging before-images

The re�nement M3 speci�es a method for �nding the last committed value in
the case of an undo. This method relies on the strictness of the schedule issued
to the RM. For a transaction t writing to a location l, we call the database value
at l before t's write the before-image of l with respect to t. Since the schedule of
operations is strict, every before-image with respect to an active transaction is
a committed value and therefore the proper value to write to the database when
undoing a write. To undo transaction t's write to l, the RM may simply replace
l's current value with its before-image with respect to t.

Before-images must be saved in stable storage and be easily accessible at the
time of an undo. As a write is processed, the before-image is added to the log
record along with the after-image. In an undo, the system simply caches the
contents of the log record's before-image �eld.

The changes required for re�nement M3 are minor. We add a function
BeforeImage : LogRecord ! V alue. The modi�ed macros WRITE and
ABORT are shown in Figure 3. A write operation is serviced by writing a log

331Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

WRITELOG(r): r:Issuer := Op:Issuer
r:Loc := Op:Loc
r:AfterImage := Op:V al
if Cache(Op:Loc) = undef then

r:BeforeImage := Stable(Op:Loc)
else

r:BeforeImage := Cache(Op:Loc)
endif
Log := Log [frg

UNDO(r): Cache(r:Loc) := r:BeforeImage

Figure 3: Modi�ed macros for M3, incorporating before-image logging.

record with the before-image from volatile or stable storage. An undo is per-
formed by caching the value in the before-image �eld of the current log record.

Proposition 14 states that the value in the before-image �eld of a log record,
which is used in the UNDO macro of M3, is the same as the last committed
value used in the UNDO macro of M2. This is su�cient to show that M3 re�nes
M2.

Term in M2 Equivalent term in M3

UndoRcd(r):AfterImage r:BeforeImage

Lemma 12. If t writes to l at a stage R and aborts at a stage S, then
CurrentDB(l)S+1 = CurrentDB(l)R.

Proof. At R, WRITE �res and adds record r with issuer t, location l and
before-image CurrentDB(l) to Log. At S, UNDO �res and Cache(l)S+1 =
r:BeforeImageS = CurrentDB(l)R. 2

Lemma 13. If t writes to l at a stage R and is active at a stage S, and the
system fails in the interval [S; T) and recovers at T , then CurrentDB(l)T+1 =
CurrentDB(l)R.

Proof. At R, WRITE �res and adds record r with issuer t, location l and before-
image CurrentDB(l) to Log. Since t is active at S, by Lemma 5 r is the last
l-record in Log. FAIL �res in [S; T) but adds no record to Log, so r is the last l-
record in LogT . Committed(t) = false at T , so UNDO �res and Cache(l)T+1 =
r:BeforeImageS = CurrentDB(l)R. 2

Proposition 14. If a record r 2 Log at a stage T , then r:BeforeImage =
UndoRcd(r):AfterImage at T .

Proof. Let l = r:Loc and r 2 Log at a stage T . Then a transaction t must write
to l at some stage S < T . Let t0 be the last committed writer to l at S. Then
at a stage Q < S, t0 writes a value v to l, so at Q + 1, Cache(l) = v and the
last l-record r0 in Log has after-image v. At a stage R 2 (Q;S), t0 commits, so
Committed?(t0) = true at R + 1. By Lemma 5, CurrentDB(l) = v at R; then

332 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

by strictness, for any stage R0
2 (R;S) where some t00 writes to l, there is a

stage S0
2 (R0; S) where t00 is active and either t00 aborts or the system recovers,

so by Lemma 12 and Lemma 13, CurrentDB(l)S0+1 = CurrentDB(l)R0 . Thus
CurrentDB(l)S = CurrentDB(l)R = v. WRITE �res at S, adding the l-record
r with before-image CurrentDB(l)S = v. At S + 1 the l-record preceding r
in Log with committed issuer is r0, so UndoRcd(r) = r0. Then UndoRcd(r) is
unchanged in (S; T). As r:BeforeImage = r0:AfterImage = v at T , we have
r:BeforeImage = UndoRcd(r):AfterImage. 2

4.2 Log scanning during recovery and abort processing

In the re�nement M4, aborts and recovery become multi-step procedures. Only
one log record is considered at a single stage. We must de�ne ways to scan the
log e�ciently. Furthermore, a failure may now occur within the span of an abort
or recovery process. We must ensure that a partially done abort or recovery does
not lead to an inconsistent database state.

The re�nement M4 presents a way to �nd the appropriate log records to
undo in the case of an abort, by forming a backward chain of a transaction's
log records during normal processing. For each active transaction t, the RM
maintains a pointer to the log record written at t's latest write. When t issues
a write and adds a record to the log, the new record contains a pointer to the
previous record that t issued. Abort processing starts at the last of t's log records
and follows the pointers to the preceding records, undoing each one.

M4 also details a way of �nding the correct log records to undo or redo in the
case of recovery. The log is scanned backwards, one record at a time. A list of
restored (undone or redone) locations is maintained. If a record whose location
�eld is not in the restored list, the record is the last one in the log with that
location, and therefore the proper record to undo or redo.

We make the following changes to arrive atM4. A log scan now considers one
log record at each stage. ThisRec : LogRecord represents the current log record
during abort or recovery processing. Initially, ThisRec is undef . PrevRcd :
LogRecord ! LogRecord returns the value of the previous-write �eld in the
given log record. FirstAbortRcd : Transaction! LogRecord keeps track of the
last log record written by each transaction, which is the �rst record undone if
the transaction aborts. For recovery processing, we add a function Restored? :
Location ! Boolean which determines whether a given location has already
been undone or redone. We also add LogBegin : 2LogRecord ! LogRecord, which
returns the minimum record in the set, and Pred : LogRecord � 2LogRecord !
LogRecord, which takes a record r and a set of records and returns the maximum
record in the set that is < r.

Since an abort may now require multiple stages, we make Op an internal
function so that it cannot change during abort processing. We add the external
function NextOp : Operation to represent the operation to be serviced immedi-
ately after the current one.

The modi�ed macros WRITE and ABORT appear in Figure 4. A write oper-
ation involves including the record pointer value stored in FirstAbortRcd in the
new log record. The update Op := NextOp sets the current operation to a new
value. This update is also added to the macros COMMIT and READ. Abort
processing starts by setting ThisRec to the last record issued by the aborting

333Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

FAIL: vary l over Location
Cache(l) := undef
Restored?(l) := false

endvary
Log := StableLog
if StableLog = ; then Op := NextOp
else

ThisRec := LogEnd(StableLog)
Mode := recovering

endif

WRITE: Cache(Op:Loc) := Op:V al
let r = Succ(LogEnd(Log))

WRITELOG(r)
FirstAbortRcd(Op:Issuer) := r

endlet
Op := NextOp

ABORT: if ThisRec = undef then
if FirstAbortRcd(Op:Issuer) = undef then

Op := NextOp
else

ThisRec := FirstAbortRcd(Op:Issuer)
endif

else
UNDO(ThisRec)
if ThisRec:PrevRcd = undef then Op := NextOp endif
ThisRec := ThisRec:PrevRcd

endif

RECOVER: if not Restored?(ThisRec:Loc) then
if Committed?(ThisRec:Issuer) then REDO(ThisRec)
else UNDO(ThisRec)
endif
Restored?(ThisRec:Loc) := true

endif
if ThisRec = First(Log) then Mode := normal endif
ThisRec := Pred(ThisRec;Log)

WRITELOG(r): r:Issuer := Op:Issuer
r:Loc := Op:Loc
r:AfterImage := Op:V al
if Cache(Op:Loc) = undef then

r:BeforeImage := Stable(Op:Loc)
else

r:BeforeImage := Cache(Op:Loc)
endif
r:PrevRcd := FirstAbortRcd(Op:Issuer)
Log := Log [frg

Figure 4: Modi�cations for re�nement M4, detailing recovery and abort log scans.

334 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

transaction. When the current log record has no pointer to a previous record,
the abort terminates and a new operation is processed.

We introduce the following terminology for an abort or recovery over an
interval:

{ A transaction t aborts in an interval [S; T] if t is issuing an abort at all stages
in [S; T], ThisRec = LastRcd(Op:Issuer) at S, and ThisRec:P revRcd =
undef at T .

{ The system recovers in an interval [S; T] if it is recovering at every stage in
[S; T], ThisRec = LogEnd(Log) at S, and ThisRec = LogBegin(Log) at
T .

Propositions 16 and 17 states that in M3 and M4, the same log records are
undone during abort and recovery processing. This shows that M4 re�nes M3.

Lemma 15. Let r be the nth t-record in Log. Then either r is the last t-record
in Log and r = FirstAbortRcd(t), or there is an (n + 1)st t-record r0 2 Log
such that r0:P revRcd = r.

Proof. Let R be the stage at which r is added to Log. WRITE �res, and
FirstAbortRcd(t)R+1 = r. Let S be a stage > R. If t does not write in (R;S),
r is the last t-record in Log and r = FirstAbortRcd(t) at S. If t does write in
(R;S), let R0 be the �rst such write; then FirstAbortRcd(t)R0 = r. WRITE �res
at R0 and adds record r0 to Log with r0:P revRcd = r. 2

Proposition 16. If t aborts in the interval [S; T] and there is a t-record r 2
LogS, then r is undone at some stage in [S; T].

Proof. By induction on the number of t-records following r in LogS . If r is
the last record with issuer t, then ABORT �res at S and sets ThisRecS+1 =
FirstAbortRcd(t)S+1 = r. Otherwise, let r and r0 be the nth and (n + 1)st
records with issuer t in LogS, respectively. If t undoes r

0 at a stage S0 in (S; T),
then ABORT �res and sets ThisRecS0+1 to r

0:P revRcd, which is r by Lemma 15,
so t undoes r at S0 + 1. 2

Proposition 17. If the system recovers in the interval [S; T] and there is an
l-record in LogS, then at some stage S0

2 [S; T], the record LastRcd(l; Log)S is
redone if its issuer is committed or undone otherwise, and no other l-record is
undone or redone in [S; T].

Proof. Let r = LastRcd(l; Log)S. At S, Restored?(l) = false. Since ThisRec =
LogEnd(Log) at S, ThisRec = First(Log) at T , and RECOVER updates
ThisRec to Pred(ThisRec; Log) at each stage after S, at some S0

2 [S; T],
ThisRec = r. Restored?(l) = true at S only if ThisRec:Loc = l at some stage
in [S; S0), but this is not possible since r = LastRcd(l; Log). Thus at S0, r is
redone if Committed?(r:Issuer) = true, or undone otherwise. Then in (S0; T],
Restored?(l) = true, so no l-record is undone or redone. 2

335Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

4.3 Log caching

In the models so far, the caching policy for log records has been enforced only by
run conditions. First, the records of all last committed writes must be in stable
storage, so that the values of these writes can be reinstalled during recovery.
Second, if there is no record of a write to location l, then no value at l should be

ushed to stable storage. The re�nement M5 implements a method of ensuring
these conditions.

In our implementation, increasing pre�xes of the log are saved in stable stor-
age as a run progresses. The �rst condition can be attained simply by
ushing
the log contents to stable storage at the time of a commit. To ensure the second
condition, we maintain for each location the last log record with that location.
Before a data value is
ushed to stable storage, the index of the last log record for
that value's location is checked against that of the last record in stable storage,
to ensure that the last write is recorded there.

FLUSH: vary l over Location satisfying
CacheF lush?(l) and
LogEnd(StableLog) � LastRcd(l; Log)

StableDB(l) := Cache(l)
if CacheRemove?(l) then Cache(l) := undef endif

endvary

WRITE: Cache(Op:Loc) := Op:V al
let r = Succ(LogEnd(Log))

WRITELOG(r)
if LogF lush? then StableLog := Log [frg endif
FirstAbortRcd(Op:Issuer) := r
LastRcd(l; Log) := r

endlet
Op := NextOp

COMMIT: Committed?(Op:Issuer) := true
StableLog := Log
Op := NextOp

Figure 5: Modi�cations for re�nement M5, detailing log caching.

The modi�cations needed for M5 are shown in Figure 5. StableLog becomes
an internal function. When a write is processed, the contents of the log may
be
ushed, according to the external function LogF lush? : Boolean. When a
commit is processed, a log
ush is mandatory. A failure sets the current log
contents to the contents in stable storage. Finally, before
ushing a data value,
a comparison is performed between the last stable record and the record of the
last write to the value's location. Only if the last write's record has been saved
in stable storage does the
ush proceed.

We show that the conditions on log caching are preserved in this model.

Proposition 18. LastCommRcds � StableLog � Log.

336 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

Proof. To show that StableLog � Log, we observe that initially StableLog =
Log = ;. Then if StableLog � Log at a stage S, the condition holds whenever
StableLog or Log is updated: in the case of a write (where Log increases and
StableLog is either unchanged or updated to Log), a commit (where StableLog
is updated to Log), or a failure (where Log is updated to StableLog).

To show that LastCommRcds � StableLog, let r be a record in
LastCommRcds at stage S. Then a transaction t writes record r at some stage
Q < S, and t commits at stage R 2 (Q;S). By strictness there is no failure
in [Q;R], so r 2 Log at R. We then induct on the number of stages in [R;S].
Since COMMIT �res at R, StableLogR+1 = LogR and so r 2 StableLog and
r 2 Log at R + 1. Then if r 2 StableLog and r 2 Log at a stage R0

2 (R;S),
StableLog or Log is updated only if (a) there is a commit or log
ush at R0,
in which case StableLogR0+1 = LogR0 ; (b) there is a failure at R0, in which
case LogR0+1 = StableLogR0 ; or (c) there is a write at R0, in which case
LogR0+1 = LogR0 [fr0g for some r0. In any case, r 2 StableLog and r 2 Log at
R0 + 1. 2

Proposition 19. 6 9r 2 StableLog(r:Loc = l)) StableDB(l) = undef .

Proof. Assume 6 9r 2 StableLog(r:Loc = l) but StableDB(l) 6= undef at some
stage S. Then it must be the case that l is
ushed at some stage R < S. For this
to occur, it must be that at R, LogEnd(StableLog) � LastRcd(l; StableLog),
so LastRcd(l; StableLog) 6= undef , and therefore 9r 2 StableLog(r:Loc = l).
StableLog is monotonically increasing, since it is only ever updated to Log,
which by Proposition 18 is � StableLog. Therefore, 9r 2 StableLog(r:Loc = l)
at S, a contradiction. 2

5 Conclusions

We believe that the formal approach to recovery presented in this paper has
something to o�er both novices and experts in the area. The high-level initial
model provides a clear general view of the recovery problem, and the second
model gently introduces the details of a particular implementation. The me-
thodical re�nements of the later models indicate that lower-level optimizations
may be added incrementally.

ASMs require little overhead in terms of formal machinery, so the models are
elegant, intuitive, and accessible to those unfamiliar with formal methods. More-
over, they are executable; using the ASM interpreter developed at the University
of Michigan [HM], we have implemented all the models presented in this paper.
With the work described in this paper as a starting point, we are con�dent about
the applicability of ASMs to more di�cult recovery problems. ASMs provide a
formal underpinning to complex database techniques that enhances reliability
and fosters understanding.

A Gurevich abstract state machines

This section describes the concepts from Gurevich abstract state machines
(ASMs) that we use in this paper. A sequential ASM (hereafter, ASM) mod-
els a system in which an agent changes the current state in discrete steps. The

337Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

behavior of the system may be seen as a sequence of states, with each non-initial
state determined by its predecessor in the sequence. To model such systems, a
speci�cation method must de�ne what a state is and how a state is obtained
from its predecessor. We explain the ASM notion of a state �rst, followed by the
notion of state transition rules.

A.1 States

An ASM state is determined by evaluating a �nite collection of function names,
called the vocabulary. Certain function names appear in each ASM vocabulary:
true, false and undef , the equality sign, and the names of the standard Boolean
operators.

A state S of an ASM M with vocabulary � consists of a nonempty set
X , called the superuniverse of S, and an interpretation of each function name
in � over X . The superuniverse is sorted into universes. To represent partial
functions, undef is used : for any tuple outside its domain, a partial function
returns undef .

Functions whose interpretations do not change during any execution of the
ASM (e.g. the functions true, false and undef , equality, and the Boolean op-
erators) are called static. The behavior of a system is captured by dynamic
functions, whose interpretations may change over the course of an execution. Of
these, internal functions change in a way determined by the state of the sys-
tem. External functions may change in ways beyond the system's control; these
represent outside forces (e.g. system errors) which a�ect the system. External
functions may also be used to represent system components in an abstract way.
Instead of explaining the behavior of a component through deterministic rules,
we may choose to use an external function.

A.2 Transition Rules

Transition rules de�ne the system dynamics that are within the control of the
system; we specify the operation of the recovery manager through these rules.
Terms are de�ned in the usual way: a variable x is a term, and f(�x) where f is
an n-ary function name and �x is an n-tuple of terms, is a term. (In the case of
a nullary function name, f abbreviates f(), and in the case of a unary function
the notation x:f may be used in place of f(x).) Then an update instruction, the
simplest type of transition rule, has the form f(�x) := v, where f is a dynamic
function name of some arity n, �x is an n-tuple of terms, and v is a term. Executing
an update instruction changes the function at the given value; if �a and b are the
values of �x and v in a given state, then f(�a) = b in the succeeding state.

The following are also transition rules:

{ The sequence R1 : : : Rn, where each Ri is a transition rule. Execution is
performed by executing each transition rule in the sequence simultaneously.
If the rules in the sequence produces a set of con
icting updates, none of the
updates are performed.

{ if g0 then R0 elseif g1 then R1 . . . elseif gn then Rn endif, where each
guard gi is a Boolean �rst-order term and each Ri is a transition rule. This
type of rule operates similarly to the if � then � else statements of most

338 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

imperative programming languages. Execution is performed by executing
transition rule Ri, where i is the minimal value for which gi evaluates to true.
If no guard evaluates to true, no Ri is executed. (if g0 then R0 . . . else Rn

endif abbreviates if g0 then R0 . . .elseif true then Rn endif.)
{ let x = T R endlet, where x is a variable, T is a term and R is a transition
rule. Execution is performed by executing R with x taking the value of T .

{ vary x over U satisfying g R endvary, where x is a variable, U is a uni-
verse name, g is a Boolean term and R is a transition rule. Let U 0 be the
set consisting of all elements e 2 U for which g evaluates to true when x
takes the value of e. Let n be the number of elements in U 0. Then execution
is performed by executing n copies of R simultaneously, with x taking a
di�erent value in U 0 in each copy. (vary x over U R endvary abbreviates
vary x over U satisfying true R endvary.)

A run of an ASM is a sequence of stages, where each stage S consists of a
state of the ASM and its number I(S) in the sequence. For each stage S after the
initial stage, the interpretations of the internal functions at S are obtained from
the state of the previous stage by executing all enabled updates simultaneously.
External function interpretations are determined arbitrarily.

We use the following notation to describe the behavior of an ASM during a
run. For any term t and any stage S, tS is the result of evaluating t at stage
S. We use relational operators to compare stages based on their order in the
run: e.g. S < T means I(S) < I(T). We use the notation S + n, where n is an
integer, to refer to the nth stage after S in the run: i.e. the stage T for which
I(T) = I(S) + n. We use interval notation to denote subsequences of a run;
e.g. (S; T] refers to the subsequence of a run containing all stages > S and � T .
A function is unchanged in an interval if it evaluates to the same value at all
stages in that interval.

References

[BGR95] E. B�orger, Y. Gurevich, and D. Rosenzweig. The bakery algorithm: yet an-
other speci�cation and veri�cation. In B�orger [B�or95a], pages 231{243.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[B�or95a] E. B�orger, editor. Speci�cation and Validation Methods. Oxford University
Press, 1995.

[B�or95b] E. B�orger. Why use Evolving Algebras for hardware and software engineer-
ing? In Proceedings of SOFSEM 1995, 1995.

[BR94] E. B�orger and D. Rosenzweig. A mathematical de�nition of full Prolog.
Science of Computer Programming, 1994.

[Elm92] A. K. Elmagarmid. Database Transaction Models for Advanced Applica-
tions. Morgan Kaufmann, 1992.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[Gur93] Y. Gurevich. Evolving Algebras: an attempt to discover semantics. In
G. Rozenberg and A. Salom�a, editors, Current Trends in Theoretical Com-
puter Science, pages 266{292. World Scienti�c, 1993.

[Gur95] Y. Gurevich. Evolving Algebras 1993: Lipari guide. In B�orger [B�or95a],
pages 9{36.

339Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

[GW95] Y. Gurevich and C. Wallace. Speci�cation and veri�cation of the undo/redo
algorithm for database recovery. Technical Report CSE-TR-249-95, Univer-
sity of Michigan, 1995.

[HM] J. Huggins and R. Mani. The Evolving Algebra interpreter version 2.0.
Available at ftp://ftp.eecs.umich.edu/groups/gasm/.

[Kuo93] D. Kuo. Model and Veri�cation of Recovery Algorithms. PhD thesis, Uni-
versity of Sydney, 1993.

[MHL+92] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES:
A transaction recovery method supporting �ne-granularity locking and par-
tial rollbacks using write-ahead logging. ACM Transactions on Database
Systems, 17(1):94{162, 1992.

[WGS95] C. Wallace, Y. Gurevich, and N. Soparkar. Formalizing recovery in
transaction-oriented database systems. In S. Chaudhuri, A. Deshpande,
and R. Krishnamurthy, editors, Advances in Data Management '95: Pro-
ceedings of the Seventh International Conference on Management of Data,
pages 166{185. Tata McGraw-Hill, 1995.

340 Gurevich Y., Soparkar N., Wallace Ch.: Formalizing Database Recovery

