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Abstract: We present a systematic reconstruction of a compilation method for an
extension to logic programming that permits procedure de�nitions to be given a scope.
At a logical level, this possibility is realized by permitting implications to be embedded
in goals. Program clauses that appear in the antecedents of such implications may
contain variables that are bound by external quanti�ers, leading to non-local variables
in procedure declarations. In compiling programs in this extended language, there is,
therefore, a need to consider the addition to given programs of program clauses that
are parameterized by bindings for some of their variables. A proposed approach to
dealing with this aspect uses a closure representation for clauses. This representation
separates an instance of a clause with parameterized bindings into a skeleton part that
is �xed at compile-time and an environment that maintains the part that is dynamically
determined. A development of this implementation scheme is provided here by starting
with an abstract interpreter for the language and then re�ning this to arrive at an
interpreter that uses the closure representation for clauses. The abstract state machine
formalism of Gurevich is used in specifying the interpreters that are of interest at the
two di�erent stages. We also justify this re�nement by showing that the essential notion
of a computation is preserved by the re�nement and thus the re�nement is a correct
one.
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1 Introduction

Logic programming has traditionally lacked mechanisms that permit procedure

declarations and names to be given a scope. This de�ciency is an outcome of

using a weak logic as the basis for languages in this paradigm. Without scoping

constructs, logic programming does not provide the capability of modularizing

code: in particular, a program is typically monolithic, unstructured collection of

procedure de�nitions. This is an unsatisfactory situation from the perspective of

developing large programs and, consequently, attention has been given to meth-

ods for restricting the extent of particular procedure declarations. One approach

that is of interest to us in this paper involves the enrichment of the underlying

logic to allow for hypothetical or implication goals [Miller 89, Miller et al. 91].

An implication goal has the form of D � G where D is a conjunction of program

clauses and G is a goal and is intended to be interpreted in the following fashion:

it is to be solved by adding D to the current program and then attempting to

solve G. Thus, the availability of the procedure declaration contained in D is to

be restricted to the context of trying to solve G.
The scoping ability provided by implication goals is su�cient to support

the idea of local de�nitions as well as a more general notion of modules. An

illustration of the former facet is provided by the following de�nition of the

reverse relation between lists:
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(rev(L1; L2) :-
(((rev aux([]; L2))^
(8X8L18L2(rev aux([X jL1]; L2) :- rev aux(L1; [X jL2]))))

� rev aux(L1; []))).

The body of this clause contains an implication goal. The clauses that occur

in the antecedent of this goal contain an explicit universal quanti�cation over

some of their variables. Such a quanti�cation is necessary to distinguish these

variables from other \non-local" variables such as L2 in the �rst clause that

are intended to be (implicitly) quanti�ed at the outer level. Now, based on the

semantics of implication that we have discussed informally above, we see that

there is a de�nition of the predicate rev aux that is not available at the top-level

but that becomes available when solving the goal rev aux(L1; []) in the body of

rev. As a particular example, solving the query rev([1; 2; 3]; L) would result in

the clauses

rev aux([]; L):
8X8L18L2(rev aux([X jL1]; L2) :- rev aux(L1; [X jL2])):

being added to the program, subsequent to which an attempt would be made to

solve the goal rev aux([1; 2; 3]; []). Notice that the �rst of these clauses contains
a variable that is, in fact, \tied" to a variable in the query. The given goal will

succeed after a sequence of backchaining steps by instantiating this variable to

[3; 2; 1] and this value will eventually be returned as the desired result at the top

level.

As seen from the example above, implication goals can be used to give a scope

to program clauses. However, the use of this device also raises new implementa-

tion problems. One problem arises from the fact that the programs to be used in

solving di�erent subgoals might be distinct. An e�cient method has, therefore,

to be found for managing changing program contexts. Special consideration has

to be given, in this regard, to the requirement that a program that was opera-

tive earlier in the computation must be resurrected upon backtracking. Another

problem relates to the issue of compiling clauses that appear in the antecedent

of implication goals. Thus, given a goal expression of the form D(�x) � G, a
method that supports the compilation of the clauses constituting D(�x) needs
to be described. As indicated schematically, these clauses may contain variables

that are bound in the textual context external to the speci�c implication goal.

A satisfactory compilation method must permit a decoupling of the occurrences

of such variables from the quanti�ers binding them in the generation of code.

However, the code that is produced must include some means for the run-time

coordination of di�erent occurrences of variables bound by the same quanti�er.

An approach to handling these and related problems has been described in

[Nadathur et al. 95]. The proposed scheme utilizes a stack-based approach to

managing dynamically changing program contexts and has built into it relevant

book-keeping devices for backtracking. Further, it treats the problem of tied

variables in program clauses by using a notion similar to that of closures used in

implementations of functional programming languages; the code generated for a

program clause may then contain a segment of code for initializing bindings for

some variables from an associated environment. These ideas are given speci�c

substance by describing an abstract machine for the extended logic programming

language and by outlining a compilation method in its context.
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The work in this paper is part of a larger e�ort to provide a rational re-

construction of, and to thereby verify, these implementation ideas [Kwon 94].

The approach that we have used is to start with a high-level description of an

interpreter for the language of interest and to re�ne this in well-motivated and

understandable ways so as to arrive eventually at a description that is based

on executing low-level instructions on a corresponding abstract machine. We

have used the abstract state machine formalism of Gurevich [Gurevich 91] as

a speci�cation language in this task. This formalism is especially suited to our

task since it permits perspicuous yet mathematically precise description of ma-

chines to be provided at various levels of granularity. There is, furthermore, a

well-developed veri�cation methodology that can be used in conjunction with

this formalism: despite di�erences in detail, we can use standard techniques to

show that successive re�nements to a given machine preserve a relevant essential

notion a computation.

In this paper we provide an analysis in the described form of only one com-

ponent of the implementation scheme for the overall language. In particular, we

consider only the transformation of embedded program clauses that underlies

their separate compilation and their treatment as closures. This abbreviated dis-

cussion is motivated partly by reasons of space. However, we also believe that the

component of the implementation approach that we treat here is of independent

interest. The notion of embedded program clauses and the possibility of quan-

ti�ers of di�ering scope are present in a variety of proposed extensions to logic

programming [Gabbay and Reyle 84, Giordano et al. 88, Hodas and Miller 94,

McCarty 88a, McCarty 88b, Miller 94, Monteiro and Porto 89]. The ideas that

we present here will, we believe, be an important component of the proper treat-

ment of such languages.

The rest of this paper is organized as follows. Section 2 summarizes the

important notions pertaining to abstract state machines that are used in this

paper. Section 3 presents the extended logic programming language that is of

interest and describes a nondeterministic interpreter for it. Section 4 presents an

abstract state machine speci�cation of a deterministic version of this interpreter.

In Section 5, we describe a re�nement of the deterministic interpreter which

introduces the notion of environments. This re�nement is essential to the reuse

of code. We then present a preprocessing of clauses and goals that is central

to the scheme for compiling embedded clauses. These discussions provide the

basis for the presentation of an abstract state machine that incorporates the

idea of environments. In Section 6, we verify that this machine is equivalent to

the earlier deterministic interpreter. We conclude the paper in Section 7.

2 The Abstract State Machine Formalism

To understand the basic notion that underlies abstract state machines, let us

consider the execution of an algorithm. This execution can be represented, with-

out loss of generality, as a sequence of states S0; S1; : : : ; Sn; : : : with S0 being

the initial state. The abstract state machine approach views each state Si as a
many-sorted mathematical structure, i.e., a number of �nite disjoint sets called
universes and functions (including constants) on Cartesian products of universes.
Each state is represented by the states of these universes, together with the val-

ues of the associated functions. There are several advantages in adopting this
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view. First, it is suitable for utilizing the simplicity found in most computation

processes. As long as the components of the structure are properly set up, a

set of simple transition rules usually su�ces to describe the transition from Si
to Si+1. In fact, only three elementary transitions are currently permitted: a

universe extension, a universe contraction, and a function update. A universe

extension amounts to adding a new element to the universe, while a universe

contraction is the opposite operation|it removes a speci�ed element from the

universe. A function update amounts to updating the value of the function at

the given inputs. Second, the abstraction levels of the components (i.e., uni-
verses and functions) can be tailored to any desired level of granularity. As a

particular example, we can specify the semantics of a language at many di�erent

abstraction levels including one that corresponds to a high-level presentation of

the language and another that corresponds to its implementation. When these

di�erent levels of description are related to each other by a process of re�nement,

they can be used in a veri�cation of the language implementation.

Because of these attributes of abstract state machines, they have been suc-

cessfully used in describing the operational semantics of various programming

languages including Modula-2 [Gurevich and Morris 88], Smalltalk [Blakley 92],

Occam [Gurevich and Moss 90], Prolog [B�orger 90a, B�orger 90b] as well as in

proving the correctness of a Prolog machine [B�orger and Rosenzweig 94].

2.1 The Basic Terminology

We de�ne formally some of the notions relating to abstract state machines.

De�nition 2.1. A many-sorted �rst-order algebra A consists of a number of

disjoint sets called universes and functions on the Cartesian product of these

sets. The collection of these function symbols is referred to as the signature of

A. A function of arity zero is called a distinguished element or constant.

Following Gurevich [Gurevich 91], we assume that both the universes and

the associated signature are �xed throughout the computation. Among the con-

�gurations, some are identi�ed, as usual, as initial and �nal states.
The following notation corresponding to universes will be useful:

De�nition 2.2. For any universe U , we shall use the notation U�
to stand

for the universe of �nite lists of elements of U . An empty list is denoted by

nil and elements of U�
will be generated by means of an in�x constructor ::.

For instance, a1 :: a2 :: a3 :: nil represents a list of three elements a1; a2 and

a3 of some universe. We shall often use [a1; : : : ; an] as a shorthand notation for

a1 :: : : : :: an :: nil and [] for an empty list. An element in the Cartesian product

of universes U1 � : : :� Un is written as ha1; a2; : : : ; ani provided that each ai is
in the universe Ui for 1 � i � n.

De�nition 2.3. Relative to an algebra A, a transition rule of is an expression

of the form

if condition
then update1; update2; . . . ; updaten
endif
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where condition is a Boolean expression, and each updatei, 1 � i � n, is one of
the following three kinds:

(i) A function update of the form f(t1; : : : tn) := t where f be a function

symbol of A and t1; : : : ; tn; t are terms relative to the signature of A. An
update of this form corresponds to the rede�nition of the function f at the

given arguments.

(ii) A universe contraction of the form dispose(tmp), where tmp is an element
of some universe of A. When this operation is executed, tmp is deleted from
the universe to which it belongs and functions de�ned on this element are

made unde�ned.

(iii) A universe extension of the form

extend U by tmp1; : : : ; tmpk with

F1; F2; . . . ; Fn
endextend

which �rst extends the universe U by adding new elements tmp1; : : : ; tmpk
to this universe, and then simultaneously performs the function updates

F1; : : : ; Fn which may depend on tmpi's, 1 � i � k.

A transition rule of this form is to be interpreted as follows: if the condition is

true, then each update will be executed simultaneously, producing a new algebra

(with the same signature).

It is convenient to allow the syntax of transition rules to be extended to

include constructs such as if-then-else, let-in-endlet, case-endcase, with

the usual meanings. These forms are reducible to the original format and so can

be dispensed with in a more elaborate presentation.

De�nition 2.4. An abstract state machine is a pair hA; T i consisting of a �nite,
many-sorted, �rst-order algebra A which serves as con�gurations and a �nite set

of transition rules T with respect to which the con�guration evolves in discrete

time.

2.2 Showing the Equivalence of Abstract State Machines

In later sections we shall be interested in observing that two abstract state ma-

chines M and M 0
that di�er signi�cantly in their detailed structure are, never-

theless, equivalent in a relevant computational sense. We describe this situation

by saying that M and M 0
simulate each other, where the notion of simulation

is de�ned as follows:

De�nition 2.5. An abstract state machineM with an initial state A0 simulates
another abstract state machine M 0

with an initial state B0 if the following hold:

(1) If B0 reaches a �nal success state through a sequence of transitions in

M 0
, then A0 reaches a �nal success state through a sequence of transitions

in M . Furthermore, it is the case that they produce identical observable

outputs.
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(2) If B0 reaches a �nal failure state through a sequence of transitions in M 0
,

then A0 reaches a �nal failure state through a sequence of transitions in

M .

To establish thatM simulatesM 0
, we shall typically proceed as follows: First,

we shall identify a subset of the states reachable from an initial state in the two

machines as their essential states and we de�ne a state relation � which maps

essential states of M 0
to essential states of M . Then we show that the following

properties hold of � and the essential states:

(a) � maps an initial state of M 0
to an initial state of M , every �nal success

state of M 0
to a �nal success state of M with identical observable outputs,

and every �nal failure state of M 0
to a �nal failure state of M ,

(b) the set of essential states for M and M 0
are properly chosen so that any

transition sequence from an initial state to a �nal state in the two abstract

state machines can be decomposed into a sequence of transitions between

essential states, and

(c) If Bi is an essential state of M 0
and Aj is an essential state of M that

Bi is mapped to by �, then, for any essential state Bi+1 of M 0
that can

be reached by a single transition (under decomposition) from Bi, there is

an essential state Ak of M that Bi+1 is mapped to by � and that can be

reached by a �nite sequence of transitions from Aj in M .

The requirement stated in (c) is shown pictorially below, where S is a single

transition (under decomposition) in M 0
and T is a corresponding transition

sequence in M :

��

S

T

Bi+1

Ak

Bi

Aj

If we can carry out these steps successfully, we can actually conclude that M
simulates M 0

. A detailed inductive argument can be provided in support of this

conclusion with the commutativity of the above �gure being used in an obvious

manner in the inductive step.

3 A Language with Embedded Implications

Two classes of formulas are central to our description of the logic programming

language that is of interest in this paper. These are G- and D-formulas given by
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the following syntax rules:

G ::= A j G ^G j G _G j D � G

C ::= A j G � A j 8xC

D ::= C j C ^D:

In the rules above, A represents an atomic formula. The C-formulas de�ned here
are a subclass of �rst-order hereditary Harrop formulas [Miller et al. 87]. In the

programming language to be considered, G-formulas will function as queries and
collections of C-formulas will constitute programs. For this reason, we refer to
a G-formula as a goal or query, to a C-formula as a clause, to a D-formula as

a program clause, and to a collection of clauses as a program.
1
As explained in

[Miller et al. 91], the programming language based on Horn clause logic can also

be characterized in a fashion similar to that done here, with the main di�erence

that implications are not permitted in G-formulas. This symbol is included in

the language we consider here so as to provide a notion of scope.

In the framework of [Miller et al. 91], the notion of programming consists of

describing relationships between objects through a program and of querying such

a speci�cation through a G-formula. We will show exactly how this is done by

presenting an operational semantics for this language, i.e., the rules for solving a
query in the context of a given program. These rules correspond to each possible

case for the top-level logical symbol in the query and have the e�ect of producing

a new query and a new program. Thus, the operational semantics induces a

notion of computational state given by a program and a query. To represent

such a state, we employ structures of the form P �! G where P is a listing

of closed clauses and G is a G-formula. We refer to these structures as sequents,
and the idea of solving a query from a set of closed clauses corresponds to that

of constructing a derivation for an appropriate sequent.

Some terminology and notation are needed before we can de�ne the notion

of a derivation precisely. We shall write F(F ) to denote the set of free variables
in a formula F . We also have to consider the notion of a substitution for some

of the free variables in an expression.

De�nition 3.1. A substitution � is a mapping from a �nite set of variables to

the set of terms and is written as fhx1; t1i; : : : ; hxn; tnig. The domain of such

a substitution, denoted by dom(�), is the set fx1; : : : ; xng. The restriction of �
to V is the substitution �0 such that �0 = fhx; ti j hx; ti 2 � and x 2 Vg. A
substitution � = fhx1; t1i; : : : ; hxn; tnig is a (variable) renaming substitution if

ti is a distinct variable for 1 � i � n.

Given a substitution �, we write �(F ) to denote the application of � to a

formula F . Such an application must be done carefully to avoid the usual capture
problems. We write �1 � �2 to denote the the composition of �1 and �2, i.e.,
�1 � �2(x) = �1(�2(x)). We also note that the composition of substitutions is an

associative operation, i.e., (�1 � �2) � �3 = �1 � (�2 � �3). We shall often use the

notation [t=x]F to denote the application of the singleton substitution fhx; tig to
a formula F . Finally, a formula F1 is said to be an alphabetic variant of another

1 Although no explicit syntax is provided for this purpose, existential quanti�cation
may also be present in goals. Thus, a clause of the form 8x(G(x) � A), is equivalent
(in intuitionistic logic) to (9xG(x) � A), provided that x does not appear free in H.
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formula F2 if F1 is obtained by replacing some (possibly no) subparts of the form

8yG or 9yG of F2 by 8z([z=y]G) or 9z([z=y]G), where z is a variable which is

not free in G.
In describing the idea of a derivation, we shall need to de�ne the notion of

an instance of a clause.

De�nition 3.2. An instance of a clause of the form 8x1 : : :8xnA or 8x1 : : :8xn
(G � A) is any formula that can be written as �(A) or �(G � A), where � is a

substitution fhx1; t1i; : : : ; hxn; tnig for some choices of terms t1; : : : ; tn.

The rules for solving queries in our language are \goal-directed" in the sense

that the next rule to be used depends on the top-level logical symbol of the goal

formula.

De�nition 3.3. Let G be a query and let P be a �nite set of clauses. Then a

derivation is constructed for P �! G by using one of the following rules:

SUCCESS By noting that G is identical to an instance of a clause in P .
BACKCHAIN By picking an instance of a clause in P of the form G1 � G

and constructing a derivation for P �! G1.

AND If G is G1 ^ G2, by constructing derivations for P �! G1

and P �! G2.

OR If G is G1 _G2, by constructing a derivation for either

P �! G1 or P �! G2.

AUGMENT If G is (C1 ^ : : : ^ Cn) � G1, by constructing a derivation for

C1; : : : ; Cn;P �! G1.

The above rules essentially allow the connectives in goal formulas to be inter-

preted as search primitives. Thus, _ and ^ can be used to specify OR and AND

branches in a search. The symbols �, on the other hand, provide a scoping mech-
anism: it allows for the augmentation of the program in the course of solving

a query. The above notion of \computation-as-search" is referred to as uniform
provability in [Miller et al. 91] and is justi�ed there as a basis for programming

in logic.

A standard way of obtaining an answer (or an output) from a computation

in logic programming is by solving a goal with free variables. Thus, a goal with

free variables may be interpreted as a request to produce the instantiations for

the free variables that lead to a successful solution. Our ultimate interest is in

a procedure for carrying out computations of the kind described above and for

extracting results from these computations. The rules for constructing deriva-

tions provide a structure for such a procedure, but additional mechanisms are

needed. One problem arises from solving a query with free variables, where a

proper instantiation that yields a solution must be picked. A standard technique

for dealing with this is to delay the instantiations of such variables until informa-

tion is available for making an appropriate choice. This e�ect is usually achieved

by replacing the free variables by placeholders whose values are determined at

a later stage through the process of uni�cation. Thus, a goal such as G(x) may
be transformed into one of the form G(X) where X is a new \logic" variable

that may be instantiated at a later stage. In attempting to solve an atomic goal

A, we look for a program clause 8y1 : : : yn(G0 � A0
) such that A uni�es with

the atomic formula that results from A0
by replacing the universally quanti�ed
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variables by new logic variables. If such a clause is found, the next task becomes

that of solving the resulting instance of G0
.

We now describe a nondeterministic interpreter for our language. This inter-

preter re�nes the operational semantics by incorporating the uni�cation proce-

dure into the process of solving a goal from a program. We describe this abstract

interpreter by means of a transition system. The states of this transition sys-

tem are given by a tuple of the form hG;V ; �i. In the tuple, G represents a set

of tuples hG;Pi where G is a goal formula and P is a �nite set of clauses. V
represents the set of free variables appearing in the state and � denotes a substi-
tution. Transition rules in the system of interest are those given by the following

de�nition.

De�nition 3.4. Given a state hG1;V1; �1i, the state hG2;V2; �2i can be obtained

from it in one of the following ways:

(1) Suppose that G1 is fhA;Pig [ G0 and that C is a clause 8x1 : : :8xnA0
in

P . Let � = fhx1; w1i; : : : ; hxn; wnig be a renaming substitution such that,

for 1 � i � n, wi is a distinct variable not in V1. If �1(A) and �1 � �(A0
)

are uni�able with a most general uni�er �, then the new state may be

obtained by setting G2 to G0, V2 to V1 [ fw1; : : : ; wng and �2 to � � �1.
(2) Suppose that G1 is fhA;Pig[G0, and that C is a clause 8x1 : : :8xn(G � A0

)

in P . Let � = fhx1; w1i; : : : ; hxn; wnig be a renaming substitution such

that, for 1 � i � n, wi is a distinct variable not in V1. If �1(A) and

�1 � �(A0
) are uni�able with a most general uni�er �, then the new state

may be obtained by setting G2 to fh�(G);Pig[G0, V2 to V1[fw1; : : : ; wng
and �2 to � � �1.

(3) If G1 is fhG1^G2;Pig[G0, then the new state may be obtained by setting

G2 to fhG1;Pi; hG2;Pig [ G0, V2 to V1 and �2 to �1.
(4) If G1 is fhG1_G2;Pig[G0, then the new state may be obtained by setting

G2 to either fhG1;Pig [ G0 or fhG2;Pig [ G0, V2 to V1, and �2 to �1.
(5) If G1 is fhD � G;Pig [ G0 and D is of the form C1 ^ : : : ^ Cn, then the

new state may be obtained by setting G2 to fhG;P [ fC1; : : : ; Cngig [ G0,
V2 to V1, and �2 to �1.

To complete the description of our transition system, we need to specify its

initial and �nal states. The initial state is obviously dependent on the given

query and program. Let G be a goal and P be a �nite set of closed clauses. Then

an initial state relative to G and P is given by hfhG;Pig;V ; ;i where V is the

set of free variables appearing in G. A �nal state in the transition system is any

state hG0;V 0; �0i where G0 is an empty set. A successful computation can then be

explained as a sequence of transitions that starts at an initial state and reaches

a �nal state.

De�nition 3.5. Let G be a goal, let P be a set of closed clauses and let

hG1;V1; �1i be an initial state corresponding to G and P . A derivation rela-

tive to G and P is then a sequence hGi;Vi; �ii1�i�n where, for 1 � i < n,
hGi+1;Vi+1; �i+1i is obtained from hGi;Vi; �ii by virtue of the transition rules in

De�nition 3.4. Such a derivation is called a derivation of G from P if, in addition,

hGn;Vn; �ni is a �nal state, i.e., if Gn = ;. In this case, �n restricted to F(G) is
referred to as the corresponding answer substitution.
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The following proposition, whose proof is immediate from the discussions in

[Nadathur 93]
2
, relates our transition system to an existing deduction system.

Proposition1. Let P be a set of closed clauses and let G be a query whose free
variables are included in fx1; : : : ; xng. Then the following holds:

(i) Suppose there is a derivation of G from P with answer substitution �. Then
there is a proof in intuitionistic logic for P �! �(G).

(ii) Suppose there is a proof in intuitionistic logic for P �! �(G), for some
substitution �. Then there is a derivation of G from P with an answer
substitution � that is more general than �. Moreover, such a derivation
can be obtained by picking the next tuple to be processed in an arbitrary
fashion.

Up to this point, we have described a transition system in which nondeter-

minism is present in several places. To be speci�c, there is a choice concerning

which disjunct of a disjunctive goal is to be solved in the OR rule, and a choice

concerning which program clause is to be selected in solving an atomic goal. Fur-

thermore, there is also a choice concerning which tuple is to be picked next. An

abstract interpreter must, in principle, explore every possible alternative when-

ever nondeterminism is present. However, by virtue of Proposition 1, we see that

nondeterminism in picking up the next tuple to be processed can be replaced,

without a loss of completeness, by some �xed rule.

From now on, we assume that the interpreter always picks the leftmost tuple

where G is represented as a sequence of tuples to be solved. The other two

nondeterminisms are similar to those in the case of Horn clause logic and can be

handled, as usual, by a depth-�rst search with the following rules: disjunctive

goals will be considered in left-to-right order and program clauses will be used

in the order of presentation. While it is well-known that this has a drawback of

incompleteness, it can be very e�ciently implemented.

In the next section, we present a speci�cation of a deterministic interpreter

based on the choices above.

4 A Speci�cation of a Deterministic Interpreter

Based on the discussions in Section 3, we now present an abstract state machine

speci�cation of a deterministic version of the abstract interpreter. The execution

strategy of our interpreter is a depth-�rst search of a tree with backtracking and

thus calls for a stack for maintaining possible alternative derivation paths to

be explored. We represent this stack using a universe NODE, two distinguished

constants root and cnode for representing the bottom and top element of the

stack, and a function b : NODE � frootg ! NODE which yields the previous

element in the stack for any given node. Thus the stack algebra is of the form

(NODE; root; cnode; b)

2 Our transition system is a simpli�ed variant of the one described in [Nadathur 93]: it
dispenses with the elaboration operation, the INSTANCE and the GENERIC rules.
In addition, it applies the computed substitution to formulas in a lazy way, and it
maintains in each tuple a composite rather than an incremental substitution.
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where the universe NODE extends dynamically as the computation proceeds.

Our computation model can be seen as a linear layout of the standard depth-

�rst search tree; it creates children of a node on \demand" rather than creating

them all in advance. This requires our interpreter to work in two di�erent major

modes: call mode and try mode. In call mode, the interpreter tries to solve the

goal sequence (i.e., the G component) associated with a node, while in try mode,
it tries to initiate an alternative computation thread.

We now briey describe how our interpreter works in these modes. When,

at a given node n, the �rst tuple of the G component is called for execution in

call mode, all possible candidates, if there are more than one, are selected and

attached to n as a list cands(n). At this stage, no children of the node will be

explicitly created. The mode is then switched to try. In this mode, the interpreter
creates a child of n using the �rst element in cands(n). The computation then

proceeds in call mode. If control ever returns to n due to backtracking, the

computation will proceed in try mode, trying to select the next element in the

cands(n) list. If there is one, then it will initiate an alternative computation

thread using the element. If there is none, the node n will be abandoned and

control will return to its parent node, the node continuing to be set to try;
This overall action is usually referred to as backtracking. The computation then

proceeds in try mode. In addition to these two modes, our interpreter may also

proceed in the modes enter and unify in the course of solving an atomic goal.

The purpose of the enter mode is to create a new instance of a selected clause.

The purpose of the unify mode is to attempt to unify the head of the selected

clause with a given atomic goal. Several functions such as g, i, together with a

constant cll are newly introduced to support this mode.

We de�ne the \interpreter" machine called M1 by �rst specifying its uni-

verses and signature and then describing its transition rules. The resulting spec-

i�cation, as we shall see, turns out to be simple and mathematically rigorous.

4.1 Universes and Functions of the MachineM1

We list below the various universes and functions of the machine M1 that is

intended to correspond to a deterministic version of the interpreter. Recall that

the notation U�
where U is a universe represents the universe of sequences of

elements of U . This notation is used in the descriptions that follow.

(1) There is a universe N of natural numbers with the usual arithmetic func-

tions +,�. There is also a universe BOOL given by the set ftrue; falseg.
(2) There are a universe FV which consists of free variables. Associated with

these universes, there is an injective function w : N ! FV which returns

an ith free variable given an index i. In addition, there is a universe BV
which consists of bound variables.

(3) There is a universe of predicate symbols. We use PSYMBOL to denote this

universe. Further, there are universes such as TERM, GOAL, CLAUSE,

and ATOM which represent, respectively, the set of terms, the set of G-
formulas, the set of clauses, and the set of atomic formulas.

(4) To handle uni�cation in our machine, we introduce a universe SUBST

consisting of substitutions. Related to these universes is a function unify,
a composition function � and a function apply. The function unify has
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the type (TERM � TERM)
� ! (SUBST [ ffailg). Given a list of dis-

agreement pairs T , the function unify either produces a most general

uni�er for T , or reports a failure if T is not uni�able. The function �
produces the composition of two given substitutions and has the type

SUBST � SUBST ! SUBST. Finally, the function apply has the type

U � SUBST ! U where U may be either ATOM, CLAUSE or GOAL.

This function is thus parameterized by a choice of domain for U . Given
a substitution � and a suitably determined element e, the function apply
produces the result obtained by applying � to the element. We shall often

use the notation �(e) instead of apply(e; �).
(5) Solving an atomic goal requires clauses whose heads are uni�able with the

goal to be selected. We assume a function procdef : CLAUSE
��ATOM!

CLAUSE
�
that, given a list of clauses P and an atomic goal A, yields a list

of clauses of the form 8x1 : : :8xn(G � A0
) or 8x1 : : :8xnA0

in P such that

the predicate symbol of A0
and its arity are identical to those of A. We

expect that the order in which such clauses are listed respects the order in

which they appear in P .
(6) There is a distinguished constant stop : f0; 1;�1g which indicates running

of the computation, termination with success, or termination due to no

more choice points.

(7) There is a distinguished constant mode : ftry; call; enter; unifyg which

indicates the mode of the computation, as explained in the informal dis-

cussion.

(8) As explained above, we need to represent a \stack". For this, we assume

a universe called NODE. We also have two distinguished elements root
and cnode ranging over NODE and a function b : NODE ! NODE. Ele-

ments of NODE, called nodes, will also \contain" information relevant to

computation. This is modelled via the following functions called decorating
functions:

{ G : NODE ! (GOAL� CLAUSE
�
)
�
that yields a list of tuples of the

form hG;Pi where G is a goal formula and P is a list of clauses. We

refer to each such tuple as a decorated goal and to a list of such tuples

as a decorated goal sequence.

{ vi : NODE ! N that yields a variable index V i for any given node.

This index is intended to be such that w(V i) is the �rst variable that
has not been used at a relevant point in the computation.

{ � : NODE ! SUBST that yields the computed substitution at a rele-

vant point in the computation.

{ cands : NODE! CLAUSE
�
that yields a list of candidate clauses to

be explored.

{ candg : NODE ! GOAL
�
that yields a list of candidate goals to be

explored.

{ g : NODE ! ATOM which is used as a device for storing an atomic

goal that is to be solved.

{ i : NODE ! CLAUSE
�
which is used as a device for storing the

program active at a relevant point in the computation.

{ tmode : NODE! ftrycl; tryglg which indicates a submode of compu-

tation in try mode; the value of this function for a given element of

NODE indicates whether the \choice point" is one resulting out of a
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disjunctive goal or a multitude of clauses.

It is useful to note that each element of NODE can be thought of as a

record, the �elds of the record indicating the values of G; vi; �; cands; candg,
g; i; tmode and b for that node. It is under this viewpoint that NODE will

correspond to a linked stack in the course of a computation, with cnode
\pointing" to the top of the stack and root pointing to the bottom.

(9) There is a constant cll : CLAUSE which temporarily stores the selected

candidate clause at a relevant point in the computation. This constant can

be thought of as a \register".

4.2 The Transition Rules

We complete the description of our abstract state machine by de�ning the tran-

sition rules. Prior to doing this, we de�ne the notions of initial and �nal states in

our algebra. It can be easily seen that these notions together with the transition

rules constitute a deterministic rendition of the interpreter de�ned in Section 3.

We also observe that the machine M1 needs to be parameterized by the choice

of program and goal and that a precise identi�cation of the machine being con-

sidered requires these to be speci�ed. However, such a speci�c identi�cation may

not be necessary in all situations and we shall use the expression \the machine

M1" in such cases.

De�nition 4.1. Let P be a program and G be a goal such that the set of

free variables appearing in G is of the form fw(0); w(1); : : : ; w(n� 1)g for some
positive number n. An initial state of the machineM1 with program P and goal

G is then the state in which

(i) mode is set to call and stop is set to 0, and

(ii) there are two nodes in NODE and root and cnode \reference" these. The
\contents" of these nodes are as follows:

(a) No functions are de�ned on the node that root corresponds to, i.e.,
this is a nil node.

(b) G(cnode) is set to [hG;Pi], vi(cnode) is set to n, �(cnode) is an empty
substitution, and b(cnode) = root.

De�nition 4.2. A �nal success state of the algebra M1 with program P and

goal G is a state in which stop = 1. As we shall see below, this represents the

(�rst) successful execution of the query. In this case, �(cnode) restricted to the

free variables of G is referred to as the answer substitution. A �nal failure state
is a state in which stop = �1.

We present transition rules of the interpreter in Figures 1{3. We assume that

all transition rules are implicitly guarded under stop = 0, i.e., they are applicable
only to states in which stop = 0. A transition rule t that is guarded by some

condition cond is actually a rule of the form if cond then t endif.
In presenting these rules, we �nd the following abbreviations useful:

(1) when the argument to a decorating function is cnode, we shall suppress it;
e.g., we write G for G(cnode) and � for �(cnode).

(2) we shall use backtrack as an abbreviation for the following transition rule:
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(1) the AND rule

if mode = call & G = hG1 ^G2;Pi :: G0;
then G := hG1;Pi :: hG2;Pi :: G0

endif

(2) the AUGMENT rule

if mode = call & G = h(C1 ^ : : : ^ Cn) � G;Pi :: G0

then G := hG;C1 :: : : : :: Cn :: Pi :: G0

endif

(3) the OR rule

if mode = call & G = hG1 _G2;Pi :: G0

then candg := [G1; G2]; G := G0; i := P ;
tmode := trygl; mode = try

endif

(4) the TRY GOAL rule

if mode = try & tmode = trygl
then case candg of

[]: backtrack
G :: Goals: candg := Goals;

extend NODE by t with
G(t) := hG; ii :: G; vi(t) := vi; �(t) := �;
b(t) := cnode; cnode := t
endextend

mode = call
endcase

endif

Figure 1: Transition rules for solving complex goals

if b(cnode) = root
then stop := �1
else cnode := b; mode = try
endif.

(3) the symbol & will represent the \logical-and" operation.

The rules presented in the �gures are self explanatory, being a straightfor-

ward rendition of the deterministic interpreter discussed in Section 3; note that

the various transition rules apply only to mutually exclusive states and thus the

machine M1 does in fact correspond to a deterministic interpreter. In under-

standing the rules, it is perhaps relevant to note the following:

(1) Sets of tuples of the form hG;Pi are now maintained as lists; the usual

arguments justify such a representation in a \machine" implementation.

As a particular consequence, repetition of the same element is allowed in

both programs and goal sets.

(2) The mechanism for using clauses has been broken up into three transition

rules: SELECTION, ENTER and UNIFY.
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(1) the SELECTION rule

if mode = call & G = hA;Pi :: G0

then cands := procdef(P ; A); G := G0; g := A; i := P ;
tmode := trycl; mode = try

endif

(2) the TRY CLAUSE rule

if mode = try & tmode = trycl
then case cands of

[]: backtrack
C :: Cands: cands := Cands;

extend NODE by t with
G(t) := G; vi(t) := vi; �(t) := �;
g(t) := g; i(t) := i; b(t) := cnode; cnode := t
endextend;

cll := C; mode = enter
endcase

endif

(3) the ENTER rule

if mode = enter
then let cll = 8x1 : : :8xsC 0 and � = [hx1; w(vi)i; : : : ; hxs; w(vi+s�1)i]

in vi := vi+ s; cll := �(C 0
) endlet;

mode = unify
endif

(4) the UNIFY rule

if mode = unify
then case cll of

G � A: case unify([h�(g); �(A)i]) of
fail : backtrack
� : � := � � �; G := hG; ii :: G; mode = call
endcase

A: case unify([h�(g); �(A)i]) of
fail : backtrack
� : � := � � �; mode = call
endcase

endcase

endif

Figure 2: Transition rules related to solving atomic goals

(1) the QUERY SUCCESS rule

if mode = call & G = []

then stop := 1

endif

Figure 3: The success rule
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Despite the division into SELECTION, ENTER and UNIFY mentioned in

(2) above, it will be convenient to combine transitions caused by these three

transition rules in analyzing transition sequences. This motivates the following

de�nition.

De�nition 4.3. The essential states of M1 are categorized as follows:

(1) The �nal success or failure states.

(2) stop = 0 and mode is set in that state to either try or call.

Theorem2. The initial and �nal states of M1 are essential states. Further-
more, any transition sequence from an initial state to a �nal state can be decom-
posed into a sequence of transitions between essential states.

Proof. This theorem follows from the de�nition of essential states of M1 and a

straightforward inspection of the transition rules.

This concludes the speci�cation of a deterministic interpreter for the ex-

tended language that is based on a depth-�rst search of a tree with backtracking.

As mentioned in Section 3, the interpreter described here is not complete in that

it may follow an in�nite path even when a successful derivation exists. We note

that the speci�cation in this section is modelled closely on the speci�cation of

Prolog in [B�orger and Rosenzweig 94].

In the next section, we will have to consider clauses and goals that are iden-

tical to given ones except for the fact that quanti�er pre�xes may be reordered.

Such clauses and goals are referred to as �-variants of each other, as made clear

by the following de�nition.

De�nition 4.4. The notion of a clause being a �-variant of another clause is
given as follows:

(1) A clause 8x1 : : :8xsC is a �-variant of the clause 8xi1 : : :8xisC if i1; : : : ; is
is a permutation of the sequence 1; : : : ; s.

(2) 8x1 : : :8xsC1 is a �-variant of any alphabetic variant of 8xi1 : : :8xisC2

where

(a) i1; : : : ; is is a permutation of the sequence 1; : : : ; s, and
(b) C2 is obtained from C1 by replacing some (possibly no) subformulas

that are clauses by their �-variants.

We use the notation C �� C
0
to denote that two clauses C and C 0

are �-variants
of each other.

Similarly, the notion of a goal being a �-variant of another goal is given as

follows: a goal formula G1 is a �-variant of any alphabetic variant of another

goal G2 if G2 is obtained from G1 by replacing some (possibly no) subformulas

that are clauses by their �-variants. We use the notation G �� G
0
to denote that

G and G0
are �-variants of each other.

The following lemma, whose proof is straightforward, shows that the machine

with program P and goal G is equivalent to one in which P and G are replaced

by ones that are their �-variants.
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Lemma3. Let G be a goal and let P be a program. Further, let G0 and P 0 be a
goal and a program that are �-variants of G and P. Then the machine M1 with
program P and goal G is equivalent (in the sense of Section 2.2) to the machine
M1 with program P 0 and goal G0. In particular, the answer substitutions in the
two cases are identical up to variable renaming.

5 An Environment-based Model

Once a clause is selected in M1, a new version of it is produced by perform-

ing renaming substitutions on it. Performing these substitutions in an eager

fashion preempts a sharing of clause and goal structure. This has undesirable

consequences from the perspective of space usage and must also be avoided if

compilation of clauses is to be possible.

We consider a re�nement ofM1 that permits a delaying of substitutions and,

consequently, provides a basis for sharing of structure. The standard technique

for delaying renaming substitutions is to record them in a data structure called

an environment and to read a relevant formula skeleton in conjunction with this

environment. This technique is used, for instance, in the WAM [Warren 83]. We

adapt this method to our context in this section and also extend it to handle

the new feature of our language. The new requirement is to deal with clauses

that have free variables in them that are \tied" to other occurrences of these

variables; such a clause would arise, for instance, in the course of solving the

goal (D(x) � G(x)).
The actual scheme that is used is reasonably complex and we therefore be-

gin by describing it informally in the �rst section. The implementation of this

scheme requires a preprocessing of clauses and goals that we take up in Section

5.2. We then describe an abstract state machine that incorporates the idea of

environments.

5.1 Introduction

One of our objectives is to delay the renaming substitutions that have to be

performed on a selected clause in the context of M1. To understand what is

involved in achieving this, consider a clause that is given schematically as

8z18z2(G1 � p(z1)):

When this clause is selected, a renaming substitution such as fhz1; w(�)ig; hz2; w(
�+1)ig would have to be applied on (G1 � p(z1)), assuming � is the value of vi
at the node under consideration. Notice, however, that this substitution can be

implicitly performed by \remembering" � and thinking of z1 as an \o�set" of 0

from � and of z2 as an o�set of 1 from �. Of course, this interpretation of z1 and
z2 must be consistent throughout the clause. Furthermore, the variables w(�)
and w(�+1) may themselves have to be bound in the course of execution and

hence must have some physical space allocated to them. The �rst requirement

is achieved by a preprocessing phase that replaces the quanti�ed variables by a

new kind of variables that we call \o�set" variables and the second requirement

is met (in an actual implementation) by the allocation of an environment.
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The major complication to the environment scheme arises from nested clauses

and variable dependencies across these. As an illustration of the simplest case,

consider a clause of the form

8z1((C1(z1) � G) � p(z1)):

Suppose this clause is selected and uni�cation with its head succeeds. This would

result in an attempt to solve a suitable instance of the goal C1(z1) � G which,

in turn, results in solving an instance of G after adding an instance C1(z1) to
the program. Under the scheme being considered, the binding for the variable z1
would have to be resolved as an o�set relative to a base value for the instance of

the overall clause. This in general leads to a treatment of a clause in the program

as a closure consisting of a \skeleton" clause and a base value with respect to

which the free variables in the skeleton are determined.

Working with the example being considered a bit further reveals a �nal issue

to be handled. Thus, based on the preceding discussion, we have in our program

a clause of the form hC1(z1); �1i. Assume that this clause is now selected. The

�rst step in using it is that of allocating its environment. This leads to our having

to deal with two di�erent base values, one of these being �1 and the other being

the one for the newly created environment. Moreover, it must be possible to

determine the base value with respect to which a given o�set variable has to be

resolved. This situation gets worse if C1(z1) itself contains embedded clauses,

e.g., if C1(z1) were of the form

8z2((C2(z1; z2) � G0
) � p0(z1; z2)):

Our solution to this problem is to reduce the number of base values to 1.

This is achieved by resolving all variables in a clause as o�sets from the same

base value and to include an initialization phase, when a clause is selected,

that dynamically reconciles the free variables in the clause with their values

determined from the surrounding environment. Thus, consider the case of C1(z1)
in the example just considered. At the level of the clause within which C1(z)
is embedded, the variable z1 is conceptually substituted for by a new variable

of the form w(�1+(i�1)). Now, suppose z1 is treated as a variable with o�set

j within C1(z1). Its value within an instance created for C1(z1) would then be

determined by the value of the variable w(�2+(j�1)) where �2 is the base

value for this instance. The initialization phase must therefore result in binding

w(�2+(j�1)) to w(�1+(i�1)), i.e., in registering a substitution of the form

fhw(�2+(j�1); w(�1+(i�1))ig.
In realizing this �nal aspect of our scheme, the preprocessing phase must

generate a table of initializing bindings corresponding to a clause that is to

be used in the dynamic process. Under this �nal view, a preprocessed clause

consists of a tuple hN; IT; Skeli where N is the size of the environment, IT
is an initialization table and Skel is a (preprocessed) skeleton of the clause.

This structure will get linked with a base value during execution to determine

an actual clause. We describe the preprocessing phase that produces such a

representation for the clauses in the next section and then go on to using it in

the execution model.
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5.2 Preprocessing clauses and goals

Towards incorporating the ideas expressed in Section 5.1 into our framework,

we include a new �xed universe of variables that we call o�set variables. This
universe consists of the denumerable collection fY1; : : : ; Yn; : : :g. The variables
in this universe can appear in terms and in formulas just as other variables and

can appear either bound or free.

We are interested in de�ning the notion of environment variables for clauses

and goals. This is given below.

De�nition 5.1. Let C be a clause of the form 8x1 : : :8xnC 0
such that all of its

quanti�ers pertain to distinct variables. Then the environment variables of C,
denoted by EV(C), are given by EV(C) = fx1; : : : ; xng[F(C 0

). The environment
variables of a goal G, also written as EV(G), are given as follows: EV(G) = F(G).

We shall be interested in the use of the above de�nitions mainly in connection

with formulas in the earlier syntax, i.e., formulas that do not contain o�set

variables. However, we will need these de�nitions, for technical reasons, also for

formulas with the revised syntax.

De�nition 5.2. An o�set table is a bijective function from some �nite subset

of FV [BV to fY1; Y2; : : : ; Ymg for some number m; the Yi's are o�set variables
here. We represent the universe of o�set tables by OFFSET TABLE.

An o�set table can be viewed as a substitution and we will adopt this viewpoint

below.

We now want to consider the preprocessing of goals and clauses formally.

For this reason, we introduce modi�ed notions of goal formulas and clauses. As

already explained, a clause will now include the following components:

(1) an integer indicating the size of its \environment",

(2) a table indicating initialization for its free variables, and

(3) the head and body of the clause with the environment variables replaced

by o�set variables.

With regard to (2), based on our informal discussion in Section 5.1, we ob-

serve that the free variables in the clause will in general be considered to be

o�set variables in two di�erent environments. The information for initialization

must thus be a pairing of o�set variables.

De�nition 5.3. An initialization table is a one-to-one function from a �nite set

of o�set variables to a �nite set of o�set variables.

An initialization table may also be thought of as a substitution, and we use this

viewpoint at places below.

De�nition 5.4. A preprocessed atomic formula is like an atomic formula with

the di�erence that the only variables appearing in it are o�set variables. We use

PPATOM to denote the universe of such preprocessed atomic formulas.

De�nition 5.5. Let A denote a preprocessed atomic formula. The category of

preprocessed clauses and preprocessed goals, denoted by C and G respectively,

are de�ned by the following syntax rules:

359Kwon K.: A Structured Presentation of a Closure-Based Compilation Method for ...



G ::= A j G ^G j G _G j D � G

C ::= hN; IT;Ai j hN; IT;G � Ai

D ::= [C] j C :: D

where N represents natural numbers, Y represents o�set variables and IT rep-

resents initialization tables.

In the above, we expect C of the form hN; IT;G � Ai (hN; IT;Ai) to satisfy
the following constraints:

(a) All the free o�set variables in G � A (A) are included in fY1; : : : ; YNg.
(b) The domain of the initialization table is a subset of the free variables

appearing in G � A (A),

These requirements are expressed by the de�nition of well-formed prepro-

cessed goals and clauses that is provided below.

De�nition 5.6. The notions of well-formed preprocessed goals and clauses and

of free variables in these goals and clauses are given recursively as follows:

(1) Let G be A, a preprocessed atomic formula. Then G is a well-formed pre-

processed goal. In this case, F(G) = fYi j Yi appears in Ag.
(2) Let G be G1 ^G2 or G1 _G2. Then G is a well-formed preprocessed goal

if G1 and G2 are well-formed preprocessed goals. In this case, F(G) =

F(G1) [ F(G2).

(3) Let G be [C1; : : : ; Cn] � G1. Then G is a well-formed preprocessed goal if

G1 is a well-formed preprocessed goal and, for 1 � i � n, Ci is a well-formed
preprocessed clause. In this case, F(G) = F(C1) [ : : : [ F(Cn) [ F(G1).

(4) Let C be hN; IT;G � Ai. Then C is a well-formed preprocessed clause if

the following hold:

(a) G is a well-formed preprocessed goal, and

(b) dom(IT ) � (F(G) [ F(A)) � fY1; : : : ; YNg.
In this case, F(C) = range(IT ).

(5) Let C be hN; IT;Ai. Then C is a well-formed preprocessed clause if the

following holds: dom(IT ) � F(A) � fY1; : : : ; YNg. In this case, F(C) =
range(IT ).

We assume an extension of the notion of free variables of a preprocessed clause

to a list of preprocessed clauses as follows: If D is of the form [C1; : : : ; Cn]
where each Ci; 1 � i � n, is a well-formed preprocessed clause, then F(D) =

F(C1) [ : : : [ F(Cn).

Example 5.1. Consider the preprocessed clause of the form h3; fhY4; Y3ig; G �
Ai. This is not well-formed because Y4 is not an element of fhY1; Y2; Y3ig.

We henceforth assume that we are dealing only with well-formed preprocessed

goals and well-formed preprocessed clauses. The universes of these formulas will

be represented by PPCLAUSE and PPGOAL.
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The intended correspondence between goals and clauses and their prepro-

cessed versions is made clear by a pair of mappings. The �rst of these produces

a preprocessed version for a given goal or clause and can thus be thought of as

the preprocessing function. In the course of de�ning this map, we will need to

\combine" two o�set tables to produce an initialization table. This process is

de�ned as follows.

De�nition 5.7. If # and #0 are two o�set tables, then

init(#; #0) = fhYi; Yji j hx; Yii 2 # and hx; Yji 2 #0g:

The preprocessing functions have the following character: one of them takes a

clause and an o�set table whose domain includes the free variables in the clause

to a preprocessed clause. The other takes a goal and an o�set table whose domain

includes the environment variables in the goal to a preprocessed goal. These two

functions are called 	C and 	G respectively and are de�ned as follows:

De�nition 5.8. The functions

	C : CLAUSE�OFFSET TABLE! PPCLAUSE

	G : GOAL�OFFSET TABLE! PPGOAL

are such that 	C(C; #) is de�ned only if F(C) � dom(#) and all quanti�ers in

C pertain to distinct variables, and 	G(G; #) is de�ned only if EV(G) � dom(#)
and all quanti�ers in G pertain to distinct variables, and are given, in this case,

as follows:

(1) 	G(A; #) = #(A)
(2) 	G((C1 ^ : : : ^ Cn) � G; #) = ([	C(C1; #); : : : ; 	C(Cn; #)]) � 	G(G; #)
(3) 	G(G1 ^G2; #) = 	G(G1; #) ^ 	G(G2; #)
(4) 	G(G1 _G2; #) = 	G(G1; #) _ 	G(G2; #)
(5) Let C be 8x1 : : :8xn(G � A), let N be the size of the set of environment

variables of C and let #0 be an o�set table for EV(C). Then 	C(C; #) =
hN; IT; 	G(G; #0) � #0(A)i where init(#0; #) = IT .

(6) Let C be 8x1 : : :8xnA, let N be the size of the set of environment vari-

ables of C and let #0 be an o�set table for EV(C). Then 	C(C; #) =

hN; IT; #0(A)i where init(#0; #) = IT .

In the de�nition above, we assume some �xed but unspeci�ed method of gener-

ating an o�set table.

The functions 	D and 	P are extensions of 	C to conjunctions and lists of

clauses that are de�ned as follows:

{ 	D(D;#) = [	C(C1; #); : : : ; 	C(Cn; #)] provided that D is C1 ^ : : : ^ Cn.
{ 	P(P ; #) = [	C(C1; #); : : : ; 	C(Cn; #)] provided that P is [C1; : : : ; Cn].
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Example 5.2. Let C be a clause of the form 8z18z28z3(q(z2; z3; x1)) � p(z1))
and let # = fhx1; Y1ig. Then EV(C) = fz1; z2; z3; x1g. Let C 0

be such that

C 0
= 	C(C; #). Then C 0

might be of the form h4; fhY1; Y1ig; (q(Y3; Y4; Y1)) �
p(Y2)i, and this would be obtained by using an o�set table for EV(C) of the
form fhz1; Y2i; hz2; Y3i; hz3; Y4i; hx1; Y1ig.

In de�ning the mapping in the converse direction, we shall need the notion

of a header sequence of a preprocessed clause.

De�nition 5.9. Given a preprocessed clause C of the form hN; IT;G � Ai or
hN; IT;Ai, the header sequence of C, denoted by hseq(C), is de�ned as a listing

of the variables in fY1; : : : ; YNg � dom(IT ).

We assume here that the o�set variables in the relevant sets are listed in some

�xed (but unspeci�ed) order.

Next, we need to de�ne the notion of partially preprocessed formulas. These

are given as follows:

De�nition 5.10. A partially preprocessed clause or goal formula is like a clause

or goal with the exception that all the free variables appearing in it are o�set

variables.

We now de�ne two functions, one for converting a preprocessed clause to a

partially preprocessed clause, and the other for converting a preprocessed goal

to a partially preprocessed goal.

De�nition 5.11. The functions �C and �G are intended to return a partially

preprocessed clause and a partially preprocessed goal given a preprocessed clause

and a preprocessed goal respectively, and are de�ned as follows:

(1) �G(A) = A
(2) �G([C1; : : : ; Cn]) � G) = ([�C(C1); : : : ; �C(Cn)]) � �G(G)
(3) �G(G1 ^G2) = �G(G1) ^ �G(G2)

(4) �G(G1 _G2) = �G(G1) _ �G(G2)

(5) Let C be hN; IT;G � Ai and let hseq(C) = [Yh1 ; : : : ; Yhs ]. Then

�C(C) = IT (8z1 : : :8zs[z1=Yh1 ] : : : [zs=Yhs ](�G(G) � A))

where z1; : : : ; zs are variables in BV which do not appear in �G(G).
(6) Let C be hN; IT;Ai and let hseq(C) = [Yh1 ; : : : ; Yhs ]. Then

�C(C) = IT (8z1 : : :8zs[z1=Yh1 ] : : : [zs=Yhs ]A)

where z1; : : : ; zs are variables in BV.

The desired map from preprocessed clauses and goals to clauses and goals,

respectively, is obtained by using the map to partially preprocessed formulas

and interpreting the free o�set variables relative to a base value. This is made

precise below.

De�nition 5.12. The functions

�C : PPCLAUSE�N ! CLAUSE

�G : PPGOAL�N ! GOAL

are de�ned as follows:
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(1) �G(G; �) = �(�G(G)) where � = fhYi; w(�+i�1)i j Yi 2 F(�G(G))g.
(2) �C(C; �) = �(�C(C)) where � = fhYi; w(�+i�1)i j Yi 2 F(�C(C))g.

The following functions are obvious extensions of the function �C .

{ �D(D;�) = �C(C1; �) ^ : : : ^ �C(Cn; �) where D is [C1; : : : ; Cn].
{ �P (P) = [�D(D1; �1); : : : ; �D(Dn; �n)] where P is [hD1; �1i; : : : ; hDn; �ni].

Example 5.3. Consider a preprocessed clause C = h4; fhY1; Y1ig; (q(Y3; Y4; Y1))
� p(Y2)i. This preprocessed clause was produced as a result of the preprocessing
process in Example 5.2. It is easily seen that �C(C) = 8z8z08z00(q(z0; z00; Y1)) �
p(z)) and �C(C; �) = 8z8z08z00(q(z0; z00; w(�)) � p(z)) for some variables z, z0

and z00 in BV.

The following lemma describes some properties of the functions above.

Lemma4. Let C be a well-formed preprocessed clause, let C 0 be the partially
preprocessed clause �C(C) and let C 00 be the clause �C(C; �). Then it is the case
that (i) F(C 0

) = F(C), and (ii) F(C 00
) = fw(�+i�1) j Yi 2 F(C)g. Similarly,

let G be a well-formed preprocessed goal, let G0 be the partially preprocessed goal
�G(G) and let G00 be the goal �G(G; �). Then it is the case that (i) F(G0

) =

F(G), and (ii) F(G00
) = fw(�+i�1) j Yi 2 F(G)g.

Proof. By an induction on the structure of preprocessed clauses and goals.

The following lemma shows that the functions �C and �G are indeed the

inverses of 	C and 	G respectively up to �-equivalence.

Lemma5. Let C be a clause such that all quanti�ers in it pertain to distinct
variables and such that F(C) = fx1; : : : ; xng. Further, let C 0 be the preprocessed
clause 	C(C; #) where # is an o�set table such that # � fhx1; Yf1i; : : : ; hxn; Yfnig.
Finally, let  = fhw(�+ fi� 1); xii j 1 � i � ng for some natural number
�. Then it is the case that C 0 is well-formed, F(C 0

) = fYf1 ; : : : ; Yfng, and
C �� (�C(C

0; �)). Similarly, let G be a goal formula such that all quanti�ers in
it pertain to distinct variables and F(G) = fx1; : : : ; xng. Let G0 be a preprocessed
goal 	G(G; #) where # is an o�set table such that # = fhx1; Yf1i; : : : ; hxn; Yfnig.
Finally, let  = fhw(�+ fi� 1); xii j 1 � i � ng for some natural number
�. Then it is the case that G0 is well-formed, F(G0

) = fYf1 ; : : : ; Yfng, and
G �� (�G(G

0; �)).

Proof. By an induction on the number of connectives in clauses and goals and

also using Lemma 4.

5.3 A Machine Incorporating Environments

To incorporate the scheme outlined in Section 5.1 intoM1, several modi�cations

are necessary.

First, each node needs to maintain a list of environments for the preprocessed

clauses that have been used along the path from the root to the node. For this

purpose, a new decorating function E is provided. Now, when a preprocessed
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clause is used, a new environment (represented by a natural number) for the

clause will be created and then added to the front of the existing E list. When

this clause is \solved", the environment for the clause will be removed from the

E list. Thus, the E list will be maintained in a stack-like manner. In addition,

each node must maintain a substitution that records the bindings generated by

the INIT rule to be given below. For this reason, a new decorating function ' is

introduced.

Secondly, a program, which we shall continue to denote by P , now consists

of a list of pairs hD;�i where D is a list of preprocessed clauses and � is the

environment relative to which the free variables in D are determined. We shall

use the universe CLOSLIST (for closures list) whose elements are lists of such

tuples to represent programs in this context.

Finally, the decorated goal sequence associated with each node will take the

form of a list of tuples hG;Pi, interspersed with a marker $cls, where G is a

preprocessed goal and P is a program. The marker $cls is used to mark the end

of the body of a clause instance at which point the environment associated with

the clause instance must be \discarded".

These various changes are manifest in the abstract state machine called M2

that we now present precisely.

5.3.1 Universes and Functions of the MachineM2

Most universes and functions from M1 are retained in the new machine, except

for those described explicitly below.

(1) The universe of o�set variables is added. The universes GOAL, CLAUSE

and ATOM are replaced by PPGOAL, PPCLAUSE, and PPATOM de-

scribed in the previous section. Finally, the universe PROGRAM is re-

placed by CLOSLIST.

(2) We assume the existence of a universe of markers. This universe consists

of f$clsg.
(3) The decorating functions associated with nodes are extended and modi�ed

as follows:

{ G : NODE ! (PPGOAL� CLOSLIST + f$clsg)� is a function that

yields, for a given node, a list of decorated goals interspersed with the

marker $cls. By an extension of terminology, we shall refer to such a

list also as a decorated goal sequence.

{ E : NODE ! N �
is a function that yields a list of environments for

a given node.

{ ' : NODE ! SUBST is a function that yields a substitution for a

given node. This substitution is distinct from the substitution obtained

by using the function � and maintains the bindings generated by the

initialization phase that is to be described.

{ cands has the type NODE! (PPCLAUSE�N )
�
, candg has the type

NODE! PPGOAL
�
, and i has the type NODE! CLOSLIST.

(4) Solving an atomic goal requires clauses whose heads are uni�able with the

goal to be selected. The function procdef that �nds these clauses has a new

type: CLOSLIST � PPATOM ! (PPCLAUSE � N )
�
. Given a program

P and a preprocessed atomic goal A0
, the function yields a list of pairs of
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the form hC; �i where C is a preprocessed clause of the form hN; IT;Ai or
hN; IT;G � Ai and � is the associated environment such that the predicate
symbol of A0

and its arity are identical to those of A. As before, we expect
that the order in which such clauses are listed respects the order in which

they appear in P .
(5) A new constant si is introduced to temporarily hold what might be called

the surrounding environment for a selected clause. In addition, the register
cll now has the type PPCLAUSE.

(6) The mode enter is re�ned into two modes: alloc and init. In alloc mode
the computation consists of allocating an environment and an initialization

of the free variables of the clause is carried out in init mode.

5.3.2 The transition system

The initial and �nal states of M2 are de�ned below. We note that an initial

state of M2 is parameterized by the choice of program and (initial) goal.

De�nition 5.13. Let P be a list of well-formed preprocessed clauses and let G
be a well-formed preprocessed goal such that F(P) is an empty set. An initial
state of M2 with program P and goal G is a state in which

(i) mode is set to call and stop is set to 0.

(ii) there are two nodes in NODE and root and cnode reference these. Further,
the contents of these nodes are as follows:

(a) root is the nil node, i.e., it is a node on which all the decorating

functions are unde�ned,

(b) G(cnode) = hG; [hP ; 0i]i :: [$cls], vi(cnode) is set to the size of EV(G),
both �(cnode) and '(cnode) are empty substitutions, E(cnode) is [0],
and b(cnode) = root.

De�nition 5.14. A �nal success state of M2 with program P and goal G
is a state in which stop = 1. In this case, �(cnode) � '(cnode) restricted to

fw(i�1) j Yi 2 F(G)g is referred to as the answer substitution. A �nal failure
state is a state in which stop = �1.

We present transition rules of M2 in Figures 4 { 6. In the presentation of

these rules, we shall use the following abbreviations in addition to those described

in Section 4:

(1) e shall represent the �rst element of E(cnode), yi shall represent the variable
with o�set i in the current environment, i.e., the variable w(e+i�1), and
yei shall represent the variable with o�set i in the surrounding environment
for a selected clause, i.e., the variable w(si+i�1).

(2) The symbol represents a \don't-care" value.

The rules presented are, largely, self explanatory. We observe that, in pro-

cessing an atomic goal, M2 utilizes an extra transition rule in comparison with

M1, namely, the DEALLOCATE rule. This rule is used to remove, after a clause

is solved, the environment for it.
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(1) the AND rule

if mode = call & G = hG1 ^G2;Pi :: G0

then G := hG1;Pi :: hG2;Pi :: G0

endif

(2) the AUGMENT rule

if mode = call & G = hD � G;Pi :: G0

then G := hG; hD; ei :: Pi :: G0

endif

(3) the OR rule

if mode = call & G = hG1 _G2;Pi :: G0

then G := G0; candg := [G1; G2]; i := P ;
tmode := trygl; mode = try

endif

(4) the TRY GOAL rule

if mode = try & tmode = trygl
then case candg of

[]: backtrack
G :: Goals: candg := Goals;

extend NODE by t with
G(t) := hG; ii :: G; vi(t) := vi; �(t) := �; '(t) = ';
E(t) = E ; b(t) := cnode; cnode := t
endextend;

mode = call
endcase

endif

Figure 4: Transition rules for solving complex goals

In our analysis of transition sequences we wish not to split the processing of

atomic goals into separate parts. This motivates the following de�nition:

De�nition 5.15. The essential states of M2 are categorized as follows:

{ The �nal success or failure states.

{ stop = 0 and mode is set to try.
{ stop = 0 and mode is set to call and G(cnode) is not of the form $cls :: G0.

The following theorem is easily established.

Theorem6. All initial states and �nal states are essential states of the inter-
preter. Furthermore, any transition sequence from an initial state to a �nal state
can be decomposed into a sequence of transitions between essential states.

We have described a transition system corresponding to M2, and it is easily

observed that the system is well-de�ned. However, for later analyses, it is useful

to categorize each variable introduced to a node � as one of the following:
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(1) the SELECTION rule

if mode = call & G = hA;Pi :: G0

then G := G0; cands := procdef(A;P); g := �G(A; e); i := P ;
tmode := trycl; mode := try

endif

(2) the TRY CLAUSE rule

if mode = try & tmode = trycl
then case cands of

[]: backtrack
hC; �i :: Cands: cands := Cands;

extend NODE by t with
G(t) := G; vi(t) := vi; �(t) := �; g(t) := g; i(t) := i;
E(t) = E ; '(t) = '; b(t) := cnode; cnode := t
endextend;

cll := C; si := �; mode := alloc
endif

(3) the ALLOCATE rule

if mode = alloc
then let cll = hN; ; i in

E := vi :: E ; vi := vi+N ; mode := init
endlet

endif

(4) the INITIALIZE rule

if mode = init
then let cll = h ; IT; i and IT = [hYi1 ; Yj1i; : : : ; hYin ; Yjni] in

' := ' � fhyi1 ; yej1i; : : : ; hyin ; yejnig; mode := unify
endlet

endif

(5) the UNIFY rule

if mode = unify
then case cll of

h ; ; G � Ai: case unify([h� � '(g); � � '(�G(A; e))i]) of
fail : backtrack
� : G := hG; ii :: $cls :: G; � := � � �; mode = call
endcase

h ; ; Ai: case unify([h� � '(g); � � '(�G(A; e))i]) of
fail : backtrack
� : G := $cls :: G; � := � � �; mode = call
endcase

endcase

endif

Figure 5: Transition rules related to solving atomic goals
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(1) the QUERY SUCCESS rule

if mode = call & G = []

then stop := 1

endif

(2) the DEALLOCATE rule

if mode = call & G = $cls :: G0

then let E = e :: E 0 in E := E 0; G := G0 endlet
endif

Figure 6: Other rules

(i) as an auxiliary variable in that it is introduced for initialization, i.e., it
appears in dom('(�)),

(ii) as an essential variable in the case that it is not an auxiliary variable.

We make these notions precise in the following de�nitions.

De�nition 5.16. Let � be a node in NODE. Then, V(�) denotes the set of vari-
ables generated along the path from the root to �, i.e., V(�) = fw(0); : : : ; w(vi(�)
�1)g. The set of essential variables of � is denoted by Ve(�) and is given by

Ve(�) = V(�)� dom('(�)).

Below we identify \properness" property that all nodes that arise in a com-

putation will have. In describing this property, it will be convenient to transform

goal sequences, candidate clauses and candidate goals that adorn nodes in the

machineM2 into a decoded form. The preprocessing functions de�ned in Section

5.1 provide the basic ingredients for such a transformation. However, we shall

also need the following extensions to these functions.

De�nition 5.17. Let G be a decorated goal sequence and let E be an environ-

ment sequence associated with a node ofM2. Then the function �G on G and E
is de�ned as follows:

{ �G([]; []) = []

{ �G($cls :: G; � :: E) = �G(G; E)
{ �G(hG;Pi :: G; � :: E) = h�G(G; �); �P (P)i :: �G(G; � :: E)

The function �[C] that produces a list of clauses from a list of preprocessed

clauses paired with natural numbers is de�ned as follows:

{ �[C]([]) = []

{ �[C](hC; �i :: Cands) = �C(C; �) :: �[C](Cands)

Finally, the function �[G] that produces a list of goals from a list of prepro-

cessed goals and a list of environments is de�ned as follows:

{ �[G]([]; ) = []

{ �[G](G :: Goals; � :: E) = �G(G; �) :: �[G](Goals; � :: E)
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De�nition 5.18. A node � is said to be proper if it is the root node, or the
following hold:

(i) Every preprocessed formula that appears in G(�) is well-formed,
(ii) range('(�)), dom(�(�)) and range(�(�)) are subsets of Ve(�),
(iii) The set of free variables appearing �G(G(�); E(�)) is a subset of V(�),
(iv) If tmode(�) = trycl, then the set of free variables appearing in �P(i(�)),

�[C](cands(�)) or g(�) is a subset of V(�), and
(v) If tmode(�) = trygl, then the set of free variables appearing in �P(i(�))

or �[G](candg(�); E(�)) is a subset of V(�).

An essential state is said to be proper if every node in it is proper.

Lemma7. Each essential state in M2 with program P and goal G is proper.

Proof. By induction on the number of transitions leading to an essential state.

The conditions for properness follow from a simple inspection of the transition

rules, utilizing the well-formedness of P and G and possibly also Lemma 4.

In the next section, we verify that this machine is equivalent to the machine

M1.

6 Equivalence of the MachinesM1 andM2

Our interest in this section is to show that M1 andM2 are equivalent from the

perspective of the answer substitution that is computed. These answers will in

general not be identical. However, we will show that they can be made identical

by renaming free variables in a consistent fashion and we consider this su�cient

to claim equivalence. This is made precise in the following de�nition.

De�nition 6.1. Two answer substitutions �1 and �2 are considered equivalent
if there is a bijection  from F(�2) to F(�1) such that �1 �  =  � �2.

In showing the equivalence between M1 and M2, we assume this notion

of equivalence for answer substitutions. Keeping this in mind, we de�ne the

following notion of correspondence between states of M2 and M1.

De�nition 6.2. A node �2 in the machineM2 with a list of preprocessed clauses

P and a preprocessed goal G �-corresponds to a node �1 in the machine M1

with program P 0
and goal G0

if both �2 and �1 are the root node in the two

machines or if the following conditions are satis�ed:

(1) b(�2) �-corresponds to b(�1)
(2) There exists a bijection  from Ve(�2) to V(�1) such that

(a)  is also a bijection from F(G) to F(G0
),

(b) �(�1) �  =  � �(�2), i.e.,  commutes with the application of sub-

stitutions in M2 and M1,

(c) G(�1) =  �'(�2)(�G(G(�2); E(�2))), i.e., the decoded decorated goal

sequence in �2 and the decorated goal sequence in �1 correspond up

to the renaming contained in ,
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(d) If tmode(�2) = trycl, then tmode(�1) = trycl, and (i) g(�1) =  �
'(�2)(g(�2)), (ii) i(�1) =  � '(�2)(�P (i(�2))), and (iii) cands(�1) =
 � '(�2)(�[C](cands(�2))), i.e., both nodes are the objects of the

SELECTION rule in the two machines, and the current goals, cur-

rent clauses and candidate clauses correspond up to the renaming

contained in , and
(e) If tmode(�2) = trygl, then tmode(�1) = trygl and (i) i(�1) =  �

'(�2)(�P (i(�2))), and (ii) candg(�1) = �'(�2)(�[G](candg(�2); E(�2
))), i.e., both nodes are the objects of the OR rule in the two ma-

chines, and the current clauses and candidate goals correspond up to

the renaming contained in .

The content of De�nition 6.2 should, for the most part, be clear from the

preceding discussions. The condition (2b) asserts the equivalence of substitu-

tions associated with these states relative to a renaming of variables de�ned in

De�nition 6.1.

De�nition 6.3. Let B be an essential state of M2 and let A be an essential

state of M1. Let us refer to the current nodes of B and A as cnode2 and cnode1
respectively. Then B �-corresponds to A if both are the �nal states in the two

machines or mode of B is identical to mode of A and cnode2 �-corresponds to
cnode1.

Now we claim that the state map � is preserved between initial states.

Lemma8. Let P be a list of preprocessed clauses such that F(P) = ; and G
be a preprocessed goal such that F(G) = fYi1 ; : : : ; Yirg. Further, let P

0 be the
program (�P([hP ; 0i])) and G0 be the goal (�G(G; 0)) where  is a substitution
which is bijective from fw(i1�1); : : : ; w(ir�1)g to fw(0); : : : ; w(r�1)g. Then the
initial state of M2 with program P and goal G �-corresponds to the initial state
of M1 with program P 0 and goal G0 and vice versa.

Proof. Let us refer to the current nodes of the initial state of M2 and A
as cnode2 and cnode1 respectively. From Lemma 4, it follows that F(G0

) =

fw(0); : : : ; w(r � 1)g. Furthermore, it is easily seen that Ve(cnode2) = fw(i1�
1); : : : ; w(ir�1)g. It follows from this that  is bijective from Ve(cnode2) to

V(cnode1). The rest of the conditions are straightforward to verify.

The following lemma shows that the notion of �-correspondence is preserved
between intermediate states.

Lemma9. Let A be an essential state of M1 that is not a �nal state and let B
be an essential state of M2 that is not a �nal state. If B �-corresponds to A,
and if A0 and B0 are the next essential states that M1 and M2 transit to from
A and B respectively, then B0 �-corresponds to A0.

Proof. We prove this lemma by considering the possibilities for B, an essential

but not �nal state inM2. We refer below to the cnode of B and A at the outset

as �2 and �1 respectively.
Let us �rst consider the case where mode of B is set to call. The transition

from B to B0 is based on four di�erent transition rules depending on the value of

370 Kwon K.: A Structured Presentation of a Closure-Based Compilation Method for ...



G(�2) and these are the AND, AUGMENT, OR and SELECTION rules. Using

the de�nition of �-correspondence, it can be easily veri�ed that mode of A is

also set to call and A transits to A0
using the transition rule of the same name

in M1 and B0 �-corresponds to A0
.

Let us consider the case wheremode is set to try and tmode(�2) is set to trygl
in B. From the hypothesis, we observe that mode is set to try and tmode(�1)
is set to trygl in A. The next essential state, denoted by B0, in M2 results

from B by using TRY GOAL. Again, from the de�nition of �-correspondence,
it is straightforward to verify that A transits to A0

using TRY GOAL and B0

�-corresponds to A0
.

Let us consider the case wheremode is set to try and tmode(�2) is set to trycl
in B. From the hypothesis, we observe that mode is set to try and tmode(�1) is
set to trycl in A. In the case of interest, we know that

cands(�1) =  � '(�2)(�[C](cands(�2)))

where  is the substitution by virtue of which �2 �-corresponds to �1. Now,
there are two kinds of transitions possible from B depending on the value of

cands(�2). The �rst kind corresponds to the situation where cands(�2) is an

empty list. From the de�nition of �-correspondence, it follows that cands(�1) is
also an empty list. Since B is not a �nal state,M2 will transit to a new essential

state with mode set to try and cnode2 set to b(�2), or to the �nal failure state

if b(�2) = root. The machine M1 will also transit to a new essential state with

mode set to try and cnode1 set to b(�1) or to the �nal failure state if b(�1) = root.
By de�nition, b(�2) �-corresponds to b(�1) and hence, in either case, the new

essential states in the two machines also �-correspond.
The other possibility is for cands(�2) to be of the form hC2; �i :: Cs2 where

� is a variable index. Then cands(�1) must be of the form C1 :: Cs1 where

C1 =  � '(�2)(�C(C2; �))

and

(1) Cs1 =  � '(�2)(�[C](Cs2))

Now C2 is either of the form hN; IT;G2 � A2i or of the form hN; IT;A2i. We

verify the claim only for the former case, since the argument for the latter case is

similar but simpler.
3
Let hseq(C2) be [Yh1 ; : : : ; Yhs ], let yej denote the variable

w(�+j�1) and let �I = fhYi; yeji j hYi; Yji 2 ITg. From the de�nition of �C , it
follows easily that C1 is of the form 8z1 : : :8zs(G1 � A1) where

(2) G1 = [z1=Yh1 ] : : : [zs=Yhs ] �  � '(�2) � �I(�G(G2)), and

(3) A1 = [z1=Yh1 ] : : : [zs=Yhs ] �  � '(�2) � �I(A2).

Let ui denote the variable w(vi(cnode1)+ i�1) and let yi denote the variable

w(vi(cnode2) + i� 1). Further, let � be the renaming substitution fhzi; uii j 1 �
i � sg, let 0 = [fhyh1 ; u1i; : : : ; hyhs ; usig and let '

0
= '(�2)�fhyi; yeji j hYi; Yj

i 2 ITg.
We now claim the following:

3 It is relevant to observe that in the latter case where C2 is of the form hN; IT;A2i,
the transition to the next essential state in M2 might involve a sequence of uses of
the DEALLOCATE rule. However, the treatment of this rule is straightforward as
the reader may well verify.
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(i) �(G1) = 0 � '0(�G(G2; vi(�2))) and �(A1) = 0 � '0(�G(A2; vi(�2))),
(ii) �(�1) � �(A1) = 0 � �(�2) � '0(�G(A2; vi(�2))),
(iii) �(�1)(g(�1)) =  � �(�2) � '0(g(�2)),

Item (i) above follows from (2) and (3) by a recon�guration of the various sub-

stitutions involved; the details are obvious even if somewhat tedious to describe

explicitly. Item (ii) follows from (i) by noting that �(�1) � 0 = 0 � �(�2); this
observation itself follows from condition (2b) of De�nition 6.2 and by noting

that the variables in fu1; : : : ; usg do not appear in dom(�(�1)) and, likewise,

the variables in fyh1 ; : : : ; yhsg do not appear in dom(�(�2)). For item (iii), we

observe �rst that by De�nition 6.2 that g(�1) =  �'(�2)(g(�2)). But then from

condition (2b) of De�nition 6.2

�(�1)(g(�1)) =  � �(�2) � '(�2)(g(�2)):

But by the properness of �2, we have that '(�2)(g(�2)) = '0(g(�2)) and hence
that

�(�1)(g(�1)) =  � �(�2) � '
0
(g(�2)):

Now let us inspect the states of both machines right before the UNIFY rule

is invoked. This state would be reached inM2 by invoking in turn the TRY, the

ALLOCATE and the INITIALIZE rules. Let t2 be the new cnode in M2 at the

end of this sequence. Similarly, M1 reaches such a state by executing the TRY

and then the ENTER rule. Let t1 be the new cnode in M1 at the end of this

sequence.

We note �rst that as a result of the transitions caused by the TRY rules

in the two machines, �2 and �1 are modi�ed so that cands(�2) = Cs2 and

cands(�1) = Cs1. Using (1), it follows easily that the resulting �2 �-corresponds
to the resulting �1. We also note the following with regard to the nodes t2 and

t1:

(v) G(t2) is set to G(�2), vi(t2) is set to vi(�2)+N , �(t2) is set to �(�2), '(t2) is
set to '0, E(t2) is set to vi(�2) :: E(�2) and b(t2) is set to �2. Furthermore,
g(t2) is set to g(�2), and i(t2) is set to i(�2).

(vi) G(t1) is set to G(�1), vi(t1) is set to vi(�1) + s, �(t1) is set to �(�1). Fur-
thermore, g(t1) is set to g(�1), and i(t1) is set to i(�1).

The next step in both machines is to invoke the UNIFY rule. Let B be

�(t2) � '(t2)(g(t2)) and let B0
be �(t2) � '(t2)(�G(A2; vi(�2))). Then M2 will

invoke the uni�cation procedure on fhB;B0ig. Similarly, if A is �(t1)(g) and A0

is �(t1)(�(A1)), then M1 invokes the uni�cation procedure on fhA;A0ig. Now
we claim the following:

(a) If B and B0
have a most general uni�er �2, then A and A0

have a most

general uni�er �1 such that �1(y) = 0 � �2(x) for each hx; yi 2 0.
(b) If B0

and B00
have no uni�er, then neither do A0

and A00
.

To see this, using (ii)-(iii) above, we observe that A = 0(B) and A0
= 0(B0

).

Thus M1 and M2 respectively invokes the uni�cation procedure on a pair of

terms that are identical up to a variable renaming.
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Now suppose B and B0
have no uni�ers. Since B is not a �nal state,M2 will

transit to a new essential state with mode set to try and cnode set to �2. By (b)
above, M1 will also transit to a new essential state with mode set to try and

cnode1 set to �1. We have already noted that �2 �-corresponds to �1 and so the

lemma follows in this case.

Now suppose B and B0
have a most general uni�er �2. Then, by virtue of

(a) above, A and A0
have a most general uni�er �1. Thus, using the de�nition

of the UNIFY rule in the two machines, we see that M2 and M1 will transit to

new essential states in which mode is call and with cnode t02 and t01 respectively,
that have the following characteristics:

(vii) t02 is identical to t2 except that G(t02) is set to hG2; i(t2)i :: $cls :: G(t2),
and �(t02) is set to �2 � �(t2). Further, mode is set to call.

(viii) t01 is identical to t1 except that G(t01) is set to h�(G1); i(t1)i :: G(t1), and
�(t01) is set to �1 � �(t1). Furthermore, mode is set to call.

Our requirement, then, is to verify that t02 �-corresponds to t01. We have

already seen that condition (1) of De�nition 6.2 is true: b(t02) is �2 and b(t01) is
�1. To verify condition (2), we observe �rst that 0 is a bijection from Ve(t02) to
V(t01). This follows from noting that

Ve(t
0
2) = Ve(�2) [ fy1; : : : ; yNg � fyi j Yi 2 dom('0)g

= Ve(�2) [ fyh1 ; : : : ; yhsg

and V(t01) = V(�1) [ fu1; : : : ; usg. Now, condition (2a) is obviously true. Con-

dition (2b) follows from (a) above and by noting that that �(�1) �  =  �
�(�2). Finally condition (2c) follows from (i) and by noting that G(�1) = 0 �
'(t02)(�G(G(�2); E(�2))), and i(�1) = 0 �'(t02)(�P (i(�2))). Thus we have veri�ed
the lemma in this case.

The following lemma is immediate from the de�nition of �-correspondence.

Lemma10. Let A be an essential state of M1 and let B be an essential state
of M2 such that B �-corresponds to A. Then A is a �nal success (failure) state
of M1 if and only if B is a �nal success (failure) state of M2.

Lemma11. Let P and G be a list of preprocessed clauses and preprocessed goal
such that F(G) = fYi1 ; : : : ; Yirg, and let P 0 be the program (�P([hP ; 0i])) and
G0 be the goal (�G(G; 0)) where  is a substitution which is bijective from
fw(i1�1); : : : ; w(ir�1)g to fw(0); : : : ; w(r�1)g. Then the machine M2 with
program P and goal G is equivalent to the machine M1 with program P 0 and
goal G0 in the sense of Section 2.2.

Proof. To show thatM1 simulatesM2, we need to verify that the requirements

(a){(c) of Section 2.2 hold, assuming thatM2 isM
0
,M1 isM and the notion of

�-correspondence de�ned in this section is the map �. Lemma 8 and 10 ensure

that condition (a) holds. Theorems 2 and 6 ensure that condition (b) holds.

Condition (c) follows from Lemma 9. Finally, the reverse direction follows from

Lemma 8{10, the fact that � is bijective from the essential states of M2 to the

essential states of M1, and the fact that M1 is deterministic. Note that our

notion of equivalence is based on considering identical two answer substitutions

that are equivalent in the sense of De�nition 6.1.
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The following theorem establishes the main result of this paper.

Theorem12. Let P 0 and G0 be a program and goal, and let P be the list of
preprocessed clauses 	P(P 0; nil)) and G be the goal 	G(G

0; #) where # is an
o�set table for the environment variables of G0. Then the machine M2 with
program P and goal G is equivalent to the machine M1 with program P 0 and
goal G0.

Proof. let P 00
be a program such that P 00

= (�P ([hP ; 0i])) and let G00
be a goal

such that G00
= (�G(G; 0)). From Lemma 11, it follows thatM2 with P and G

is equivalent toM1 with P 00
and G00

. By virtue of Lemma 3,M2 with P and G
is equivalent toM1 with any �-variant of P 00

and any �-variant of G00
. However,

it follows from Lemma 5 that P 0
is a �-variant of P 00

and G0
is a �-variant of

G00
. Thus we have veri�ed the theorem.

Theorem 12, the main result of this paper, observes the correctness of both

our preprocessing functions for programs and goals, and the machine incorpo-

rating the notion of an environment that is based on it.

7 Conclusion

Our main objective in this paper has been in verifying the correctness of a

compilation method for an extension to Prolog with embedded implications.

We have achieved this goal by showing that the deterministic interpreter M1

for the language is equivalent to its re�nement M2 that adopts a closure-based

representation of clauses. This closure-based representation separates an instance

of a clause with possible free variables into a skeleton part that is �xed during

computation and an environment that maintains the part that is dynamically

determined. This representation can be easily adapted to other languages with

similar features.

The machine M2 is interesting in that it provides a basis for sharing of

structure and for e�cient implementations of the language. Thus we can obtain

a reasonable abstract machine fromM2 by applying a series of re�nements. One

particular concern with M2 is that each goal needs to carry its own program

context. This is rather cumbersome and is avoided by managing the program

context in a stack-based manner. Hence, a goal such as D � G is solved by

adding D to the program context, solving G, and then removing D from the

program context. In [Nadathur et al. 95], we introduced an implication stack to

permit the incremental addition and subsequent retraction of clauses from a pro-

gram context that is needed in an implementation of this approach. However,

backtracking may require reinstating states previously in existence and book-

keeping devices are needed to implement this e�ciently. We incorporated an

e�cient bookkeeping mechanism into our model by embedding the implication

stack and the stack of choice points into a single stack and by managing them

on a chronological basis. We refer the reader to [Nadathur et al. 95] for further

details.

Besides the work in [Nadathur et al. 95], there have been another proposal

related to the implementation of scoped program clauses: Lamma, Mello and

Natali in [Lamma et al. 92] presented, in the extended context of the WAM,
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a stack-based approach to manage the dynamically changing program. Their

proposal is quite similar to the one in [Nadathur et al. 95], but they concerned

just program clauses, not closures.

Finally, the ideas presented in this paper are used in the development of

an abstract machine for �Prolog [Nadathur and Miller 88] | a superset of the

language considered here.
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