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Abstract: It is demonstrated how a program making use of a single stack may be
transformed, via memorization, into an equivalent one running in time proportional
to the sum of variabilities at certain program points of the original program. This
result generalizes Cook's linear time simulation of a deterministic two-way push-down
automaton and also provides a lucid explanation of Cook's construction.
Obtaining an e�cient transformed program depends on making good use of the stack
to reduce variabilities at the critical program points. It is suggested to obtain such
a program directly from a source program expressed in a non-deterministic language
with invertible operations and annotated with a kind of \cuts" somewhat similar to
cuts in a Prolog program.
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1 Introduction

The result, also expounded in [Aho, Hopcroft and Ullman (1974)] (Section 9.4),
by Stephen A. Cook (see [Cook (1972)]) that a 2DPDA (a two-way deterministic
push-down automaton) could be simulated in time proportional to the length
of its input tape is extraordinary in view of the fact that such an automaton, if
run according to its de�nition, might take an exponential number of steps, and
his achievement inspired the widely used Knuth{Morris{Pratt string matching
algorithm [Knuth, Morris and Pratt (1977)].

[Jones (1977)] showed how the large tables implied by Cook's simulation
method could be built online during simulation, thus avoiding the construction
of useless entries.

The context of this work was automata theory, describing algorithms with
binary output, in the form of acceptance or rejection of a string (and thus de�ning
a corresponding formal language). [Bird (1977)] extended the transformation to
algorithms with general program variables, as this paper will also do, but Bird
only treated programs of a very special form (built around a loop with a single
pop operation), and some postprocessing had to be done by hand.

[Andersen and Jones (1994)] exhibited a general method to compile a stack
program directly into a semantically equivalent program that ran in linear time
if the original program was a 2DPDA in program form. The present paper is
a reformulation of that result, using a more straight-forward program notation
and a more explicit computation of the quantity u determining the running time
of the transformed program. In the source program a set of control ow arcs is
selected in such a way that one of the selected ars is contained in each path from

Journal of Universal Computer Science, vol. 3, no. 3 (1997), 148-171
submitted: 26/2/96, accepted: 14/10/96, appeared: 28/3/97  Springer Pub. Co.



a pop to a push, each path from a push to a push and each loop without a pop.
The sum of the variabilities (a term introduced by Peter Naur to denote the size
of a state space) at these arcs constitute u.

The usefulness of the transformation thus crucially depends on obtaining
a low value for u, and to that end the present paper suggests using a non-
deterministic algorithm as a starting point, transforming it into a deterministic
version as suggested by [Floyd (1967)], but making the stack required by Floyd's
method directly available to the user rather than letting it be a mere auxiliary
device. The programmer should assist the transformation by selecting the re-
quired set of control ow arcs; due to non-determinism an arc may be selected
in its forward or in reverse direction.

[Section 2] introduces the source language and [Section 3] describes an ex-
ample program. The actual transformation is presented in [Section 4], and [Sec-
tion 5] proves the linear running time result. The idea of taking outset from a
non-deterministic program is presented in [Section 6] (an experimental language
constructed to test this idea is described in [Appendix A]), and [Section 7] con-
cludes. .

2 Source Language

The computing device (a 2DPDA) for which Cook proved his result has, among
others, the following characteristics:

1. It is an imperative model, stepping deterministically from state to state.
2. It has a stack that may be pushed or popped, and the top of the stack

participates in determining the next step.
3. There is no dynamic reading operation: the input is copied to the read-only

tape of the automaton before computation starts.
4. The only variable, more than the stack, is an input tape head position (as-

suming values in the interval between 1 and the length of the input).
5. The result of a computation is accept or reject.

The present paper modi�es and generalizes this computational model in several
ways:

1. The transformation might, in principle, be applied to any sequential imper-
ative algorithm using a single stack; to expose the idea we describe it for
programs written in ow chart form.

2. Programs may push and pop the stack, but in the present model we as-
sume data completely unavailable while stored away on the stack. Before
information in the stack top can be used it must be popped to a variable.

3. There are no input operations in our ow charts. Conceptually, input may
be conceived of as loaded into constants of the program (e.g. into a constant
array) before execution.
This of course begs the question as to the meaning of \linear time execution".
We shall deal with that question below.

4. It is customary to employ variables in a very liberal way in ow charts,
but for the present purpose it proves convenient to indicate the introduction
and abolishment of variables explicitly. Assignments that update a variable
via a computation based on its old value are therefore distinguished from
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initializing assignments, and a speci�c ow chart symbol to indicate the
deallocation of a variable is introduced.

5. The outcome of a computation may be more than one bit; each result symbol
in a ow chart indicates an output value.

2.1 Syntax

Let V be a set of (simple) variables. We assume that each v 2 V is associated with
a rangeRv of possible values of this variable. The expressions expr and conditions
cond that appear in our ow charts are formulated in some applicative language
L by means of constants (which may be simple or subscripted) and variables
from V , combined with standard arithmetic, relational and Boolean operators
and functions (such as +, �, �, max, <, =, :, _, ^, etc.). Conditions may also
test for emptiness of the stack by using a built-in Boolean predicate empty.

For an expression or condition e we let vars(e) � V denote the variables
occurring in e.

A ow chart has a unique entry point [Tab. 1](a) and a number of symbols
of the eight kinds shown in [Tab. 1](b). (There are no assignments of the forms
\v := expr" where v =2 vars(expr), or \v := pop", since such operations could
never make use of the old value of v; they might be simulated by the sequences
\exit v; enter v := expr" and \exit v; enter v := pop".)

Formally, a ow chart over L is a quintuple (Q; q0; live; symbol; successors)
where Q is the set of program points, q0 2 Q is the unique entry point, and
live, symbol and successors are three mappings with domain Q, obeying the
restrictions mentioned below:

For each q 2 Q we use Vq to denote live(q) � V , the set of program variables
live at entry to q, and we require Vq0 = ;. Each symbol(q) is a speci�c ow chart
symbol, and successors(q) 2 Q0 [Q1 [Q2, where the length of successors(q) is
related to the kind of symbol(q) as shown in [Tab. 1](b).

[Tab. 1] also shows the restrictions on the ways variables may be employed
in symbol(q) and the required connections between Vq and Vq0 for q0 in the tuple
successors(q).

2.2 Semantics

Consider a �xed ow chart C.
A (total) con�guration (q; x; t) in C is a triple with a program point q, a

store x and a stack t of values. If Vq = fv1; . . . ; vng then x is a tuple from the
Cartesian product Rv1 � . . . � Rvn . The initial con�guration (q0; (); []) consists
of the entry point, the empty store and the empty stack.

The computation with C is the sequence of con�gurations that starts with
the initial one and continues according to the standard interpretation of ow
chart symbols.

A more formal presentation may be found in [Andersen and Jones (1994)],
but a few special features are noted here:

Reaching a pop-instruction with an empty stack is an error.
When a value has been pushed onto the stack it becomes completely invisible

to the program until (if ever) it is popped from the stack again. Not even the
stacktop is available in expressions or conditions (which is in contrast to the usual
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start

�
�

�
�?a q0 Vq0 = ;

(a) Designation of the ow chart entry point.

?
a q

enter v := expr

?a q0
v =2 Vq

vars(expr) � Vq
Vq0 = Vq [ fvg

?
a q

enter v := pop

?a q0
v =2 Vq

Vq0 = Vq [ fvg

?
a q

exit v

?a q0
v 2 Vq

Vq0 = Vq n fvg

?
a q

result expr

�
�

�
�vars(expr) � Vq

?
a q

cond
��
�

HH
H

HHH
���?a qT ?a qF

T F
vars(cond) � Vq
Vq

T
= Vq

F
= Vq

?
a q

v := expr

?a q0
v 2 vars(expr) � Vq

Vq0 = Vq

?
a q

push expr

?a q0
vars(expr) � Vq

Vq0 = Vq

?
a q

pop

?a q0 Vq0 = Vq

(b) The eight kinds of ow chart symbols.

Table 1: Flow chart symbols and the corresponding requirements
on the set of live variables at each program point.

automata-theoretic formulation). We do, however, permit a test on whether the
stack is empty or not (designated by \empty"), rendering superuous a speci�c
stack bottom marker.

There is no ow chart element for output. When (if ever) execution stops at
a node \result expr", the outcome of the computation is the value of expr in
the present store.

2.3 Variabilities

There is no ow chart element for input either, so each ow chart has a unique
(�nite or in�nite) computation. What would normally be thought of as a \pro-
gram" (taking input) is here a family of ow charts (where the values of certain
constants vary).

For each program point q 2 Q with Vq = fv1; . . . ; vng we let Sq denote the
subset of Rv1 � . . . � Rvn consisting of those stores that actually occur at q
during computation. The size of Sq plays an important rôle in this research and
is called the variability of q, denoted vq .

In the ordinary model where complexity of computation is measured as a
function of the size of the input, large input gives rise to large variations in the
values of variables during execution. In our model, variations in the values of
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variables are mirrored in the variabilities vq . We therefore form u =
P

q2Q vq ,

and a preliminary answer to the question about the sense of the term \linear
time" is \time proportional to u". A more precise answer is given in [Section 5].

Constants don't contribute to vq or u, and [Mogensen (1994)] has explained
how one might even permit WORM tapes (Write Once Read Many arrays, a kind
of constant arrays with deferred initialization) in the program without a�ecting
the results presented in this paper.

A surface state is a triple (q; x; isEmpty) where q 2 Q; x 2 Sq and isEmpty
is a boolean indicating whether the stack is empty. Stack discipline means that
from a particular con�guration (q; x; t), the subsequent part of the computation
is determined by the surface state (q; x; t = []) only, until (if ever) the stack
becomes lower than t.

Let Qpsh denote the set of program points of push symbols, and de�ne upsh =P
q2Qpsh

vq . It may be of some interest to note how the quantities u and upsh
enter into estimates of the maximum running time of a program.

Proposition1. During the computation of a halting program, the stack height
never exceeds upsh.

Proof. Associate with each element of the stack during a computation the (q; x)-
part of the con�guration in which it was pushed. If this set of pairs contained a
duplicate, the program would continue in a loop. ut

Let  denote the size of the stack alphabet.

Proposition2. A computation with more than u(1+  + 2 + . . . + upsh) con-
�gurations will compute forever.

Proof. According to [Prop. 1] the number of di�erent stacks in a terminating
program is at most 1++2+. . .+upsh , but repeating a con�guration combining
a speci�c surface state with a speci�c stack would make the computation loop.

ut

In other words, the worst case running time of a non-looping stack program
is O(u � (upsh + 1) � upsh).

2.4 Special Case: 2DPDA

A 1-head 2-way deterministic push-down automaton (de�ned in [Cook (1972)]
or [Aho, Hopcroft and Ullman (1974)]) consists of a �nite state control attached
to a push-down stack and an input tape with a read-only head con�ned between
endmarkers ` and a. The input string to be recognized is located between the
two endmarkers, and operation is begun with the head scanning ` and a bottom
marker ?? on the stack.

In one move the machine may, depending on the internal state, the symbol
scanned by the head, and the top of the push-down store: change internal state,
let its input head remain stationary or move it left or right, and push or pop
a symbol 6= ?? (or leave the stack unchanged). Alternatively, the machine may
either accept or halt without accepting.

This device is easily modelled by a ow chart of the kind we use here: The
input is a constant array a1 . . .an (let a0 = `, an+1 = a), V consists of the input
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pointer i and the symbol top on top of the stack, and moves are imitated using
the following ideas:

{ Does the head scan a particular symbol a?
ai = a��
�

HH
H

HHH
���

{ Have we reached the bottom marker of the push-down stack?
empty��
�

HH
H

HHH
���

{ Is symbol A 6= ?? on top of the push-down stack?
top = A��
�

HH
H

HHH
���

{ Move the head left/right i := i� 1

{ Pop the stack: exit top- enter top := pop

{ Push symbol A onto the stack: push top- exit top- enter top := A

Ri is f0; 1; . . . ; n; n+1g, and Rtop is the set of stack symbols. Each vq is bounded
by (n + 2), and if only the string a1 . . . an is varied but the ow chart and its
symbols are otherwise kept �xed, the quantity u is O(n).

3 Example: The Longest Overlap Problem

To reconstruct a long string from the knowledge (or even sometimes only par-
tial knowledge) of some of its substrings is a practical problem that appears in
numerous disciplines including the biochemical determination of gene-sequences
and dendrochronology. To illustrate our transformation we shall use an ideal-
ization of that problem, called the Longest Overlap Problem(LOP): Two strings
x = x1x2 . . .xm and y = y1y2 . . . yn of characters from an alphabet � are given,
and we want to determine the largest k, 0 � k � minfm;ng, such that the
k-su�x of x equals the k-pre�x of y [see Fig. 1].

x1 x2 . . . xm�k+1 xm�k+2 . . . xm

y1 y2 . . . yk yk+1 . . . yn

. . .

maxfk; 0 � k � minfm;ng j xm�k+1 . . .xm = y1 . . . ykg

Figure 1: The Longest Overlap Problem.

Equivalently, this may be rephrased as a search for m� i where i is the least
index (maxf0;m� ng � i � m) such that xi+1 . . .xm = y1 . . . ym�i.

Let us express xi+1 . . .xi+j = y1 . . . yj by saying that \i anchors a match of
length j". Since we are looking for the least i that satis�es a certain condition
(that of \anchoring a match reaching to the end of the x-string"), an obvious
procedure would be to try the possible values of i in increasing order and for
each anchor i try increasing values of the length j.
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start

�
�

�
�?

enter i := maxfm� n; 0g

? invariant P?
enter j := 0

? invariant P ^Q
?

i+ j = m��
��

HH
HH

HHHH
����

T

F?
j := j + 1

?

xi+j = yj��
��

HH
HH

HHHH
����

T

F

-

6

exit j

6

i := i+ 1

-

- exit i

?
result j

�
�

�
�

P : No index h preceding i anchors a match of lengthm�h:
8h;maxfm� n; 0g � h < i : xh+1 . . . xm 6= y1 . . . ym�h

Q : The present index i anchors a match of length j:
xi+1 . . .xi+j = y1 . . . yj

Figure 2: A na��ve program for LOP.

A program with this behaviour, written in our ow chart language, is shown
in [Fig. 2]. Note that x, m, y and n are constants in the program.

The worst case running time of this program is O(minfm;ng2) (try for in-
stance x = am�1b; y = an). Unfortunately, although the program is expressed in
the right source language, our method is not able to improve it. The ranges of i
and j both have length minfm;ng+1, and for this program u = O(minfm;ng2).
One may observe that the program also doesn't use a stack at all; the key to an
improvement is to reduce u by using the stack in a clever way.

A fruitful observation is (we shall later [see Section 6] suggest how this idea
might be automated): When during the computation xi+j is compared to yj ,
the preceding elements xi+1; . . . ; xi+j�1 have been found equal to y1; . . . ; yj�1.
It would therefore be possible to keep the x-elements on a stack and pop each
xi+j passing the test xi+j = yj since the popped elements could be recovered
from y.

The program in [Fig. 3] is based on this idea. The running time still is
O(minfm;ng2) but for this program u = O(minfm;ng � j�j) (where j�j de-
notes the number of characters in the alphabet), and our transformation may
now be applied.
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start

�
�

�
�?

enter i := m

?
?

i > maxfm� n; 0g���
���

��

XXX
XXX

XX

XXXXXXXX

��������

T

?
push xi

?
i := i� 1

�

?F

exit i

?
?

enter j := 0

? invariant P?

empty��
��

HH
HH

HHHH
����

T
?

result j

�
�

�
�

F

?
enter t := pop

?
j := j + 1

?

t = yj��
��

HH
HH

HHHH
����

T

- exit t -

-F

6

j := j � 1

6

j = 0��
��

HH
HH

HHHH
����

6
T

exeunt j; t

�

F
?

push t

?

exit t

?
enter t := yj

�

P : The stack (from top to bottom) contains a su�x xi+j+1; . . . ; xm
of x, and for the value of i de�ned in this way it is the case that

{ No index h preceding i anchors a match of length m� h:
8h;maxfm� n; 0g � h < i : xh+1 . . . xm 6= y1 . . . ym�h

{ The present index i anchors a match of length j:
xi+1 . . .xi+j = y1 . . . yj

Figure 3: A stack program for LOP.

4 Transformation

Cook's crucial observation to improve the running time is that during a compu-
tation the progress from a particular program point is completely determined by
the surface state at that point, until (if ever) the top of the stack is popped. For
each surface state it is therefore su�cient to generate the ensuing computation,
until the stack is popped, in detail once; the transition may then be entered into
a table, and if the same surface state is ever met again, a direct jump to the pop
symbol may be performed.
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start

�
�

�
�?

enter i := m

?
?

�:
shortcut

?

?

i > maxfm� n; 0g���
���

��

XXX
XXX

XX

XXXXXXXX

��������

T

?
push xi

?
i := i� 1

�

?F

exit i

?
?

enter j := 0

? invariant P?

empty��
��

HH
HH

HHHH
����

T
?

result j

�
�

�
�

F

?
enter t := pop

?
j := j + 1

?

t = yj��
��

HH
HH

HHHH
����

T

- exit t -

-F 6

�:
shortcut

�

6

j := j � 1

6

j = 0��
��

HH
HH

HHHH
����

6
T

exeunt j; t

�

F

?
push t

?

exit t

?
enter t := yj

�

P : Same invariant as in [Fig. 3]

Figure 4: The transformed program for LOP.

By the following observation it is legal to omit the stack emptiness bit:
If the stack is empty there is no need to memorize the state, waiting for a pop,

since a pop operation would be illegal. If the stack is not empty, it remains so
until the �rst pop operation. We may therefore imply for all memorized surface
states that the stack is non-empty, and information to that extent need not be
stored.

To avoid keeping track of every single program point as computation proceeds
we select only some of the arcs in the ow chart, breaking them by inserting a new
kind of one-entry one-exit ow chart symbol, a shortcut. A shortcut doesn't
alter the set of live variables but just invokes the bookkeeping necessary for
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Cook's improvement.
[Fig. 4] shows a program for LOP where shortcuts (double-boxed) have been

inserted at program points � and �. (Please, for the moment, disregard the fact
that one of the boxes is dashed, and also disregard the dashed arrows.)

Let Qpop and Qsht denote the set of program points of pop symbols and of
shortcut symbols, respectively, and introduce globally three new variables:

trace: to hold a list of pairs (q; x), q 2 Qsht, x 2 Sq
dest: a table from pairs (q; x), q 2 Qsht, x 2 Sq to pairs (r; y), r 2 Qpop, y 2 Sr
dump: a stack of lists of the kind contained in trace, driven in lock-step with

the original program stack

Flow chart symbols changing the stack are encumbered with some bookkeep-
ing, employing the three new variables, and an interpretation is given to the
shortcut symbol. The new semantics should be as shown in [Tab. 2].

?
a r

enter v := pop

?a

Function: Pop the stack to initialize v.
Bookkeeping: Let y 2 Sr denote the present set of values;

augment the table dest with an entry (q; x) 7! (r; y) for
each pair (q; x) present in the list trace .
Afterwards assign the previous trace list, popped from
dump, to trace.

?
a r

pop

?a

Function: Pop the stack (and discard the popped value).
Bookkeeping: As above.

?
a

push expression

?a

Function: Push the value of expression on the stack.
Bookkeeping: Push the present value of trace on dump, and

continue with an empty list in trace.

?
a q

shortcut

?a q0

Bookkeeping: If the stack is empty don't do anything, just
continue from q0. Let us say, in this case, that \the short-
cut symbol skipped".
Otherwise, look up (q; x) in dest where x 2 Sq is the
present store. If an entry (q; x) 7! (r; y) is found, jump
directly to the pop symbol r and change store to y. We
shall use the terminology that \the shortcut jumped".
If there is no such entry, add the pair (q; x) to trace

and continue from q0. We shall say that \the shortcut
fell through".

Table 2: Operations involving trace , dump and dest

The new interpretations may mean a drastic change in program performance:
Computation is delayed by the bookkeeping operations but may also be short-
ened by jumping shortcuts. Note that an arrow in the diagram is no longer the
only possibility for transfer of control: potentially, a shortcut may jump directly
to a pop symbol found via table-lookup.
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In [Fig. 4] the added possibilities for ow of control are shown as dashed
arrows.

When notation Q, Vq , u, etc. is used below it refers to the values before the
three new bookkeeping variables were introduced.

The net e�ect of the program doesn't change: If program P 0 is obtained from
P via the insertion of shortcuts and the new semantics, then since transitions
in dest are obtained during an imitation of P , and P 0 only deviates from P by
sometimes jumping according to the information in dest, we have

Theorem3. The simulation of P by P 0 is faithful in the sense that

1. for each con�guration reached during the computation with P 0 a similar
con�guration (with global variables trace, dump and dest removed) will be
reached during computation with P .

2. any computation with P may be continued to a con�guration similar (in the
above sense) to a con�guration reached during computation with P 0.

A formal proof of this (although for a di�erent program syntax) may be found
in [Andersen and Jones (1994)].

Corollary 4. P 0 loops if and only if P does so.

5 Running Time

Assume, as above, that P 0 is obtained from the ow chart program P via in-
sertion of shortcuts and the new semantics. We �rst �nd some bounds on the
number of ow chart symbols executed by P 0 and afterwards estimate the book-
keeping overhead.

Lemma5. If P doesn't loop, shortcut operations will, during computation with
P 0, skip at most once and fall through at most once with the same store.

Proof. If some shortcut skipped twice with the same store, then obviously the
program would loop. Similarly, if we arrived at shortcut point q with store x, and
the pair (q; x) was already present in trace or dump, then the program would
loop.

We may thus assume that during computation with P 0 all the pairs in trace
and dump are di�erent; but when a pair during a pop operation is removed, a
corresponding entry is made in dest, preventing this pair from being reentered
into trace later. We therefore conclude that during the whole computation each
of the pairs (q; x), q 2 Qsht, x 2 Sq, is inserted in trace at most once, so that
the shortcut at q may at most once fall through with store x. ut

To avoid unnecessary recomputation we must break critical loops: Shortcuts
should be inserted in such a way that

a. Each path from a pop symbol or a push symbol to a push symbol is broken
by a shortcut.

b. Each loop in the ow chart not containing a pop symbol contains a shortcut.

De�ne usht =
P

q2Qsht
vq , the sum of variabilities at shortcuts.

158 Andersen N.: Linear Time Simulation of Invertible Non-Deterministic Stack Algorithms



Lemma6. If a. has been observed, and if no shortcut during computation with
P 0 skips or falls through twice with the same store, then P 0 executes at most
2usht + 1 push operations and also at most that many pop operations.

Proof. Consider the push and the shortcut operations met during the compu-
tation with P 0, and in particular associate with each push operation the most
recently executed shortcut (if any). Because of a. only the �rst push may not
have a preceding shortcut, and otherwise the associated shortcut is unique and
cannot have jumped. Now apply Lemma 5.

By the nature of a stack, the number of pops cannot exceed the number of
pushes. ut

The main result of this section is that if P 0 doesn't loop, it executes O(usht)
ow chart symbols:

Theorem7. If a. and b. have been observed, the following conditions on the
execution of P 0 are equivalent:

i) P 0 loops
ii) Some ow chart symbol is executed more than 4usht + 2 times
iii) Some shortcut symbol skips or falls through twice with the same store

Proof. i) ) ii) is obvious.
ii) ) iii): Let q be a symbol in the ow chart. With every occurrence of q

during the computation with P 0 except the last one associate the �rst subsequent
pop or shortcut. If it is a jumping shortcut, associate this occurrence of q with
the pop operation that is the destination of the jump instead. Because of b. the
indicated shortcuts or pops exist and are unique. Assume that there were more
than 4usht+2 occurrences of q but that no shortcut skipped or fell through twice
with the same store. In that case more than 2usht + 1 pop operations would be
executed, contradicting Lemma 6.

iii) ) i) by Lemma 5. ut

By Theorem 7 iii) it would be easy to extend the bookkeeping with a detec-
tion of looping.

Preceding each push operation with a shortcut will assure requirement a.,
but it is desirable to obey a. and b. with a minimum of shortcut operations, or
rather: with a minimum value of usht.

The two shortcuts in [Fig. 4] observe a. and b.; the values are V� = fig,
maxfm� n; 0g � i � m, v� = 1 +minfm;ng, V� = fj; tg, 1 � j � minfm;ng,
t 2 �, v� � minfm;ng � j�j, usht = v� + v� = O(minfm;ngj�j).

Inspection of [Fig. 4] reveals that the initializing loop is executed once for
each value of i and never reentered. The shortcut at � may therefore never jump
and is in fact unnecessary (which is why its box was dashed), but leaving out v�
does not change the order of the bound on usht.

5.1 Bookkeeping Overhead

Using linked lists it is easy to represent trace and dump in such a way that each
of the following operations can be done in constant time:
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{ Adding a pair (q; x) to trace
{ Testing whether trace is empty
{ Removing the front pair from trace (if not empty)
{ Pushing trace onto dump
{ Popping a trace list from dump

If the program doesn't loop, the total number of pairs in trace and dump will
never exceed usht.

The table dest contains at most usht entries. We shall assume that this table is
implemented with hashing techniques in such a way that the following operations
also take constant time:

{ Inserting an entry (q; x) 7! (r; y) into dest
{ Looking up a pair (q; x) in dest (whether or not an entry (q; x) 7! (r; y)
exists)

Under these assumptions, if P 0 doesn't loop it follows from Theorem 7 and
Lemma 6 that the time spent in bookkeeping operations [see Tab. 2] is O(usht).

5.2 LOP May Be Solved in O(minfm;ng) Time

In general, the transformation will improve the running time, but the result may
not be optimal.

For LOP we conclude that the transformed program will, in the worst case,
run in time proportional to minfm;ng � j�j. Since the overlap may be as long as
minfm;ng the dependency of the running time for any algorithm solving LOP
on this value seems unavoidable; the dependency on the size of the alphabet
is less obvious. The reader may have noted the similarity between LOP and
the well-known problem of searching a pattern in a string of characters. Using
the so-called KMP algorithm [Knuth, Morris and Pratt (1977)] occurrences of
an n character pattern among a string of m characters may be found in time
proportional to m + n. The device used in the string searching problem may
in fact also be employed in LOP: �rst, based only on y, compute its so-called
\next-table", identifying for each pre�x of y the longest overlap (other than the
identical mapping) of this pre�x with itself. This table can be computed in time
proportional to the length of y, and afterwards the problem can be solved in
time also proportional to the length of y.

LOP is not altered, if x and y are reversed and interchanged; we may therefore
choose to compute and use the next-table for the shorter of the two strings,
giving a running time proportional to minfm;ng, independent of the size of the
alphabet.

Historically (see [Knuth, Morris and Pratt (1977)]), Knuth used Cook's the-
orem on languages recognizable by 2DPDAs to derive linear algorithms for
pattern-matching problems whose running time also depended on the size of
the alphabet. Pratt's (and Morris') improvement to an algorithm with time in-
dependent of alphabet size doesn't seem available via Cook's construction.

6 Inversion

We have seen how any stack program may be transformed so that it doesn't
repeat states during execution. A crucial point in obtaining a good execution
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time, however, was to use the stack in a clever way, giving the original program
a low value of usht. This section contains a suggestion as to how such a stack
program might be obtained.

In one of the �rst descriptions of backtrack programming [Floyd (1967)] in-
troduces an auxiliary stack to ensure correct unravelling from blind alleys in a
non-deterministic program. It seems natural to make this stack available right
from the beginning, thus permitting the user to construct an invertible non-de-
terministic stack program, as explained below.

We now also permit the extra ow chart symbols shown in [Fig. 5].

?
a

�
�

�
�

@
@
@
@

choice
1 2�a - a ?

a
failure

�
�

�
� no result

�
�

�
�

Figure 5: New non-deterministic ow chart symbols.

The semantics of the new symbols is as follows: Computation should never
reach \failure". At a choice symbol computation continues along the exit marked
\1", if that is possible without ever reaching \failure". Otherwise computation
continues along the exit marked \2". This description presupposes that at least
one series of choices exists that will not reach \failure"; otherwise the program
immediately halts without result.

6.1 Invertible Non-Deterministic Flow Charts

The above description of the semantics has been \teleological", with choices be-
ing made depending on future events. A direct deterministic meaning is obtained
if we arrange for each symbol in the diagram to be invertible, so that its e�ect
may be undone. The alternative equivalent semantics then is as follows: At a
choice branch always take the exit marked \1". If \failure" is reached, follow
the arrows backwards and reverse the computation until the most recent choice
branch where exit \2" has not been tried; then take that exit, continuing now
in the direction of the arrows. If \start" is reached during backtracking, halt
without result.

To permit a computation to be reversed some rewritings of the ow chart
might be necessary:

{ A plain pop operation that just discards the stack top cannot be permitted:
a popped value must always be assigned to some variable.

{ At an exit operation where the use of a variable ceases, the ultimate value
of that variable must be recreatable. If it is not deducible from the program,
a push v could precede the exit v operation.

{ If the right hand side of an assignment v := . . . is not a one-one-function of
v, the old value of v could be saved on the stack.

{ Finally, if some q appears in successors(q0) for several program points q0,
it might not be obvious where to backtrack from q; in that case it may be
necessary to let each of the q0 push a distinguishing mark.
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Table 3: Invertible non-deterministic ow chart symbols with their direct and reverse
deterministic counterparts.
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In the remainder of this paper we shall modify the ow chart symbolism by
letting (binary) \join" be a proper ow chart symbol. A join has no computa-
tional e�ect (and does not alter the set of live variables), but formally some new
requirements are added for the program points of a ow chart:

{ the entry point q0 is not in successors(q0) for any program point q0, and
symbol(q0) is not join

{ if symbol(q) is join, then q is in successors(q0) for precisely two program
points q0

{ every remaining q is in successors(q0) for precisely one program point q0

A join is just depicted as a pair of converging arrows.

6.2 Unravelling Non-Determinism

The invertible non-deterministic symbols are shown along with their determin-
istic counterparts in [Tab. 3].

By means of this table a non-deterministic source program may be trans-
formed into a deterministic one. In the main, this transformation copies the
source program and adds a kind of reected image, with transversals between
the copy and the image where the source program had a failure or a choice
symbol. In the reection each arrow is reversed, and a symbol with a in-going
and b out-going arrows is reected into a symbol with b in-going and a out-going
arrows.

A result symbol creates an anomaly under his transformation: its mirror
image is a symbol with no in-going arrows, denoted dead start in [Tab. 3].

Remark. Under a di�erent semantics, with no ranking among the two exits of a
choice symbol so that the goal was to �nd all possible solutions, the determin-
istic interpretation of a non-deterministic result symbol should be to record the
solution and then backtrack (as for a failure symbol).

The anomaly would then disappear: the deterministic computation would (if
at all) stop with a complete list of solutions at the mirror image of the start
symbol \no result" (which ought to be renamed).

Inversion of structured programs (with assignments and compound, condi-
tional and repetitive statements) is also discussed in Chapter 21 in [Gries (1981)].

Solving LOP in the new non-deterministic notation is very simple: just push
the desired su�x of x onto the stack, and afterwards check it against the char-
acters of y. We obtain the longest overlap by marking the choice of push with
\1" and check with \2", as in [Fig. 6].

It has been possible to annotate exits and joins as required for inversion, with
one exception, marked \i = ?" in the �gure. Inverting \push xi", however, can
be done without referring to i, so not knowing i does not block backtracking.

[Fig. 7] shows the result of applying the rules of [Tab. 3] to the non-determi-
nistic program [see Fig. 6].
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Figure 6: Non-deterministic program for LOP.

6.3 Linear Notation

A mechanical application of the rules leaves the un�nished statement \enter i
:= ?" in [Fig. 7], but keeping in mind that i is not needed during backtracking
it is possible to complete the program. In fact, a few local transformations will
recreate exactly the program of [Fig. 3]. The required transformations are:

1. Move \push t; exit t" forward through the two arms of the test \j = 0"
2. Let the copy of \push t" going in the \T" direction and \pop" cancel each

other
3. Move the \exit i" preceding \enter j := 0" back through the preceding join
4. Omit the creation and increment of i during backtracking, also deleting one

of the copies of \exit i" from the previous step and the \exit i" preceding
\no result"

Instead of unravelling the non-deterministic program �rst and then annotate
it with shortcuts it is possible to use the non-deterministic formulation directly.
To test out the examples of this paper a small experimental non-deterministic
linear imperative programming language has been de�ned and implemented.
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Figure 7: Non-deterministic LOP-program unravelled.

Shortcuts now come in two kinds, denoted by cutfore (active in the direction of
program ow) and cutback (active during backtracking) in the language.

[Fig. 8] shows our program for LOP in this syntax (\\/" is the in�x maximum
operator). Each exit must be annotated with the last value of the variable and
each label de�nition must be annotated with a condition that is true when
the label is passed from the statement above it but false when a jump to it is
performed. We use double braces ff. . . gg for these annotations. Furthermore,
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there must be exactly one go to-statement leading to each label. A question
mark denotes the unde�ned value, which has been added to the range of values
of variables (thereby permitting the trick necessary to invert our LOP-program).
Arithmetic operations on the unde�ned value continue to be unde�ned, whereas
a test involving \unde�ned" always yields \true".

The experimental language is completely desribed in [Appendix A].

enter i := M;

ffemptygg augment:

choose

begin

if i = (M-N) \/ 0 then failure;

cutfore;

push X[i];

i -:= 1;

go to augment

end

or

begin

exit ff?gg i;

enter j := 0;

ffj = 0gg reduce:

if empty then result j;

enterpop t;

cutback;

j +:= 1;

if t <> Y[j] then failure;

exit ffY[j]gg t;

go to reduce

end

Figure 8: Non-deterministic annotated program for LOP in linear notation.

If, as is the case here, every loop in the unravelled program contains a push
or a pop operation, a safe way of securing conditions a. and b. is to let a cutfore
precede every push and a cutback follow every pop in the non-deterministic
program. This has been done in [Fig. 8] (but actually the \cutfore" is superuous,
since the loop hidden in the �rst alternative of the non-deterministic choice is
only executed once).

Experiments con�rm that this program �nds the longest overlap between
0n�11 and 0n in linear time.

Many other fast pattern-matching algorithms (matching a pattern in a string,
length of longest palindromic pre�x of a string, determining whether one string
is a substring of another) may be described in a similar fashion. [Fig. 9] shows,
in the same notation, an algorithm that will locate a pattern of length n in a
string of length m in time O(m+ j�j �n) where j�j is the size of the underlying
alphabet.
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enter i := M;

ffemptygg guess:

choose

begin

if i = 0 then failure;

cutfore;

push X[i];

i -:= 1;

go to guess

end

or

begin

exit ff?gg i;

enter j := 0;

ffj = 0gg verify:

if j=N then begin

exit ffNgg j;

result 1

end;

if empty then failure;

enterpop t;

cutback;

j +:= 1;

if t <> Y[j] then failure;

exit ffY[j]gg t;

go to verify

end

Figure 9: Non-deterministic annotated program for string matching.

7 Conclusion

We have exhibited a program notation for stack programs (with explicit allo-
cation and deallocation of variables) and two rules for annotating them with
\shortcut-points" in such a way that annotated programs may be given a new
semantics under which they will run in time bounded by a constant times the
sum of the variabilities at shortcut-points. It is therefore important for the util-
ity of the method to start out with an annotated stack program with a low value
of this sum.

The e�cient semantics uses certain tables very similar to the tables used
by Cook in his linear time 2DPDA simulation, but rather than being precom-
puted our tables are constructed on line so that only entries corresponding to
con�gurations actually occurring during computation are ever �lled in.

As a possible source of stack programs we have suggested an extension of the
notation with non-deterministic elements, but restricted in such a way that all
elements become invertible.

For many string processing algorithms this extended notation combines a
straight-forward description with the improved execution time implied by Cook's
transformation.
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A The Experimental Non-Deterministic Language

Input is presented via constant parameters. This language was speci�cally de-
signed to deal with the string processing algorithms mentioned in the article;
it therefore contains as constants two integral values M and N and two integer
arrays X[1..M] and Y[1..N]. Furthermore, to accomodate the examples, the
value domain has been extended with an explicitly unde�ned value (denoted ?).

A.1 Syntax

A.1.1 Context-Free Rules

varble = identi�er
label = identi�er
const = one or more digits (non-negative integer)
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expr4 = varble j const j \?" j \M" j \N"
j \X" \[" expr \]" j \Y" \[" expr \]" j \(" expr \)"

expr3 = expr4 j expr3 \*" expr4
expr2 = expr3 j expr2 \+" expr3 j expr2 \-" expr3
expr1 = expr2 j expr1 \/\" expr2
expr = expr j expr \\/" expr1
cond1 = \false" j \true" j \empty" j \not" cond1 j \(" cond \)"
cond = cond1 j expr \=" expr j expr \<" expr j expr \>" expr

j expr \<>" expr j expr \<=" expr j expr \>=" expr
revbl = \enter" varble \:=" expr j \exit" \ff" expr \gg" varble

j \enterpop" varble j \push" expr j \pushexit" varble
j varble \+:=" expr j varble \-:=" expr
j \cutfore" j \cutback"

stmnt = \result" expr j \failure" j \choose" stmnt \or" stmnt
j \go to" label
j \begin" stmnts \end"

stmnts = stmnt j revbl \;" stmnts
j \if" cond \then" stmnt \;" stmnts
j \ff" cond \gg" label \:" stmnts

program = stmnts

A.1.2 Additional Syntactic Requirements

Variables are allocated and deallocated explicitly as indicated by the enter-,
exit-, enterpop- and pushexit-statements. The set of variables live at each
statement entry may therefore be computed statically, and expressions and con-
ditions may, of course, only contain live variables. Similarly, only live variables
may be exited, and only new variables may be entered.

In constructions that contain an expression as well as a variable (enter- and
exit-statements and the two accumulating assignment statements) the expres-
sion may not contain the variable.

Binary joins in the ow of control are expressed linearly by means of labels.
Each label used in the program must therefore be uniquely de�ned and must
have exactly one go to-statement leading to it.

A.2 Semantics

The meaning of a program is explained via its preprocessing into a list of state-
ments in pseudo-C. Compared to C, our target language has the following pe-
culiarities:

{ Input is assumed to be loaded into the arrays int x[m], y[n]; in advance.
{ The function lookup(a,i,limit) checks that i is in the range 1 � i � limit
and if so has as its value a[i-1] (thereby simulating 1-origin indexing).

{ The range of variables declared with the type-speci�er int? is the set of
integers extended with an extra \wild" value, denoted wildcard.

{ Functions max (min) with two parameters compute the maximum (minimum)
of their arguments.
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{ These functions as well as the binary arithmetic operators +, - and * work
for extended integers, producing wildcard as a result whenever an operand
(or both operands) is wildcard.

{ The binary relational operators ==, !=, <, <=, > and >= produce 1 (true) if
an operand (or both operands) is wildcard.

{ The functions enter and exit update a list of live variables. (Declarations
in our source program are not assumed to be properly nested.)

{ This list is used by the function shortcut to manage three auxiliary variables
trace, dest and dump as described in [Tab. 2].

{ The program also manipulates a stack; push(n) pushes n on top of this
stack, and pop() pops the stack and has the popped element as its function
value. These functions also manage the necessary additional bookkeeping
[see Tab. 2].

{ The value of a function call empty() is 1 or 0 according to whether the stack
is empty or not.

{ Each label ` in the source program is duplicated to labels denoted ` and `0

in the target program.
{ In addition to ordinary integral results return is also permitted to transmit
the message "no result".

A.2.1 Translations

E : expr! expressions in pseudo-C
E [[v]] = v for a variable v
E [[n]] = n for a constant n
E [[?]] = wildcard
E [[M]] = m
E [[N]] = n
E [[X[e]]] = lookup(x,E [[e]],m)
E [[Y[e]]] = lookup(y,E [[e]],n)
E [[(e)]] = E [[e]]
E [[e1 � e2]] = E [[e1]] � E [[e2]] where � is one of the operators +, - or *
E [[e1=ne2]] = min(E [[e1]],E [[e2]])
E [[e1n=e2]] = max(E [[e1]],E [[e2]])

C : cond! expressions in pseudo-C (using 0 and 1 as the truth values)
C[[false]] = 0
C[[true]] = 1
C[[empty]] = empty()
C[[not c]] = !C[[c]]
C[[(c)]] = C[[c]]
C[[e1 / e2]] = E [[e1]] / E [[e2]] where / is <, <=, > or >=
C[[e1=e2]] = E [[e1]]==E [[e2]]
C[[e1<>e2]] = E [[e1]]!=E [[e2]]

R : revbl! a pair of mutually inverse pieces of program text in pseudo-C
R[[enter v := e]] = (fint? v = E [[e]]; enter(v); ; exit(v);g)
R[[exit ff e gg v]] = (exit(v); ; v = E [[e]]; enter(v);)
R[[enterpop v]] = (fint? v = pop(); enter(v); ; push(v); exit(v);g)
R[[push e]] = (push(E [[e]]); ; pop();)
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R[[pushexit v]] = (push(v); exit(v); ; v = pop(); enter(v);)
R[[v +:= e]] = (v += E [[e]]; ; v -= E [[e]];)
R[[v -:= e]] = (v -= E [[e]]; ; v += E [[e]];)
R[[cutfore]] = (shortcut(); ; /* nothing */)
R[[cutback]] = (/* nothing */ ; shortcut();)

S : stmnts! a statement-list in pseudo-C
S[[result e]] = return E [[e]]; /* dead start: */
S[[failure]] = /* nothing */
S[[choose s1 or s2]] = S[[s1]] S[[s2]]
S[[go to `]] = goto `; `0:
S[[begin ss end]] = S[[ss]]
S[[r;ss]] = let (�; �0) be R[[r]] in � S[[ss]] �0

S[[if c then s; ss]] = if (C[[c]]) fS[[s]]g else fS[[ss]]g
S[[ff c gg `: ss]] = `: S[[ss]] if (!(C[[c]])) goto `0;

P : program! the list of statements in the body of function main() in pseudo-C
P [[ss]] = S[[ss]] return "no result";
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