
On the Weaknesses of Gong's Collisionful Hash Function

S. Bakhtiari
(Centre for Computer Security Research
University of Wollongong, Australia

shahram@cs.uow.eud.au)

R. Safavi-Naini
(Centre for Computer Security Research
University of Wollongong, Australia

rei@cs.uow.eud.au)

J. Pieprzyk
(Centre for Computer Security Research
University of Wollongong, Australia

josef@cs.uow.eud.au)

Abstract: This paper presents an attack on Gong's proposed collisionful hash func-
tion. The weaknesses of his method are studied and possible solutions are given. Some
secure methods that require additional assumptions are also suggested.

Key Words: Safety/security in digital systems, Guessing attack, Collisionful hash
functions, Message authentication.

Category: D.4.6, K.6.5.

1 Introduction

Collision Resistant Hash functions, or simply Hash functions, have been used for
producing secure checksums since the 1950's. A hash function maps an arbitrary
length message into a �xed length message digest, and can be used for mes-
sage integrity [Bakhtiari et al. 95a, Damg�ard 89, Preneel 93]. For this purpose,
a sender calculates the message digest of the message and sends it appended
to the message. The receiver veri�es the checksum by recalculating it from the
received message and comparing it with the received checksum (traditional hash-
ing). It is assumed the the probability of �nding a collision | two messages that
result in the same checksum | is less than a small number.

Before hash functions, encryption algorithms were used to provide authen-
ticity. Using encryption algorithm, one can ensure both con�dentiality and au-
thenticity of a message. However, encryption algorithms are not e�cient and
meanwhile some of them fall into the export restriction. Hence, hash functions
are demanded when only authenticity is required.

Ordinary hash functions are not secure against an active intruder who can
modify both message and its checksum. Protection against spoo�ng can be ob-
tained by Message Authentication Code (MAC), in which the checksum depends
on both message and a secret key. Berson, Gong, and Lomas [Berson et al. 93]
have introduced the new term Keyed Hash Functions, where the MAC is con-
structed from an existing hash function, by adding the key to the hash function
inputs. A keyed hash function uses a symmetric key and the checksum can only
be calculated and veri�ed by the insiders | people who know the key.

Journal of Universal Computer Science, vol. 3, no. 3 (1997), 185-196
submitted: 15/2/96, accepted: 8/3/97, appeared: 28/3/97 Springer Pub. Co.

Berson et al. [Berson et al. 93] have also introduced Collisionful Hash Func-
tions, in which many keys result in the same checksum of a given message, and
hence, the probability of determining the correct key, used by the communicants,
is reduced.

Gong [Gong 95] has given a construction of collisionful hash functions to be
used for software protection. This paper analyzes this construction and shows
how an enemy can modify a message and its corresponding checksum. The weak-
nesses of other variations of his method are also studied and experimental results
that support our approach are included.

Gong's method is described in Section 2. Section 3 examines the problems
of Gong's hashing scheme and demonstrates how to attack the system. Practi-
cal experiments which support our claims (attacks) are presented in Section 4.
Two secure methods that require additional assumptions are given in Section 5.
Finally, we conclude the paper in Section 6.

2 Gong's Collisionful Hash Function

A keyed hash function is a class of one-way and collision resistant hash func-
tions, indexed by a key [Bakhtiari et al. 95b, Berson et al. 93]. The hash value
depends on the key, and the computation of the key should be infeasible when
a reasonably large number of [message, digest] pairs are available.

Collisionful hash functions provide an additional property which is the pos-
sibility of having the same hash value of a given message under several keys.
This property reduces the chance of uniquely determining the correct key, for
the opponent [Berson et al. 93].

Gong [Gong 95] used polynomial interpolation to construct a collisionful hash
function with the collision accessibility property. This property allows a user to
choose a set of keys that satisfy a given [message, digest] pair, and is desirable
when the key belongs to a distinguishable subset of the key space (eg. meaningful
words).

A similar approach is used by Zheng et al. [Zheng et al. 93] in construction of
Sibling Intractable Function Family (SIFF). It is used for providing secure and
e�cient access in hierarchical systems and has proven security properties. We
show that Gong's construction, which is insecure for protection against modi�-
cation, can be turned into a SIFF. This results in a proof of the security of that
construction when a large password space is used.

2.1 Notations and Assumptions

{ A and E are the user (Alice) and the intruder (Eve), respectively.
{ M is a message (a system binary code) to be authenticated by A.
{ P is the set of all possible passwords (publicly known).
{ K is a small subset of P , so that an attacker can perform an exhaustive
search [Gong 95, Sections 1 and 4] (publicly known).

{ k1 2 K is A's password.
{ k2; : : : ; kn 2 P , n 2 N , are selected password collisions.
{ � = fk1; k2; : : : ; kng.
{ GF (p) is the Galois Field of p elements, where p is a prime.

186 Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

{ K is a random key chosen by Alice from a large space (eg. GF (p), for a large
prime p).

{ g() is a secure keyed hash function, where g(k; x) denotes the hash value of
a message x under a key k.

{ jX j denotes the size of a set X .
{ `k' denotes string concatenation.

In this scheme, Alice intends to protect a binary code or �le (referred to as a
message). She calculates a checksum, derived from the message and her password,
and appends it to the message. She will verify the checksum whenever she wants
to use the message. An example of such scheme is to safe-guard executable �les
against viruses.

It is assumed that g() produces integer hash values and g(ki;M) > n, 8ki 2
�. Furthermore, g(ki;M) 6= g(kj ;M), 8ki 6= kj , where ki; kj 2 �. Note that,
K � P is the set of passwords that are commonly used by the users. In general
jPj may not be small, but K, the set of passwords that are often used by the
users (called poorly chosen passwords), is usually small, and therefore, weak
against dictionary attack (cf. Section 3). It should be emphasized that Gong's
construction assumes a small password space that can be exhaustively searched:

\ : : : collisionful hash functions are useful in generating integrity check-
sum from user passwords, which tend to be chosen from relatively small
space that can be exhaustively searched." [Gong 95, Section 4]

2.2 Computing the Checksum

Alice (A) chooses a random keyK and de�nes w(x) = K+a1�x+� � �+an�x
n (mod

p), where p is a suitable large prime number, and the n coe�cients a1; : : : ; an are
calculated by solving the following n equations. (Equation `i' is w(g(ki;M)) = ki,
and all calculations are performed in GF (p).)

8>><
>>:

K + a1 � g(k1;M) + � � �+ an � g(k1;M)n = k1
K + a1 � g(k2;M) + � � �+ an � g(k2;M)n = k2

...
...

K + a1 � g(kn;M) + � � �+ an � g(kn;M)n = kn

(1)

Using K and w(x), the checksum will be:

w1 k w2 k � � � k wn k g(K;M); (2)

where wi = w(i) is a (log2 p)-bit number for i = 1; : : : ; n. Alice does not need K
and w(x), and may forget them after producing the above checksum.

2.3 Verifying the Checksum

To verify the checksum, Alice needs to remember only k1 (assuming that p is
publicly known). She solves the following (n+ 1) equations in GF (p) and �nds

187Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

the (n+ 1) variables b0; b1; : : : ; bn.8>><
>>:

b0 + b1 � g(k1;M) + � � � + bn � g(k1;M)n = k1
b0 + b1 � 1 + � � � + bn � 1

n = w1

...
...

...
b0 + b1 � n + � � � + bn � n

n = wn

(3)

Then, she calculates g(b0;M) and compares it with g(K;M) in the checksum.
In the case of a match, she will accept the checksum as valid.

3 Attacking Gong's Method

E exhaustively searches K (cf. Gong's assumption in Section 2.1) and for each
candidate password k 2 K solves Equation 3 in GF (p), by replacing k1 with k,
and �nds b0; b1; : : : ; bn. The complexity of solving this equation depends on both
n and jKj (O(jKjn3)). (We have practically examined our attack for n = 5 and
jKj = 220. The probability of our attack increases for larger n's (cf. Section 3.1).)
If g(b0;M) is the same as that in the checksum, she keeps k as an applicable
password. After exhaustively testing K, Alice will �nd m applicable passwords
� = fkr1 ; : : : ; krmg.

Theorem1. (� \ K) � � , and therefore, m is greater than or equal to the
number of passwords chosen from K. (Proof is given in the Appendix.)

In the following, we consider Gong's basic and extended constructions and
give our attack in each case. Alternative methods with higher security are also
suggested. It is important to notice that our attack is aimed at forging a valid
checksum without requiring the speci�c value of k1.

3.1 Attacking the basic scheme (m � n)

It is not unexpected to have m � n. When K;a1; : : : ; an, and M are given, it
is improbable to �nd a password k 62 � such that K + a1 � g(k;M) + � � �+ an �
g(k;M)n = k, because jKj is usually much smaller than jGF (p)j and there is no
guarantee one can �nd a K 0 (6= K) such that g(K 0;M) = g(K;M). (Note that,
g() is not a collisionful hash function. For instance, de�ne g(k; x) = h(kkxkk),
where h() is a collision resistant hash function.) Furthermore, k2; : : : ; kn are
selected from P (� K), and an exhaustive search on K might not give all pass-
words k2 to kn. This decreases m, the number of applicable passwords. (Note
that, k1 2 K.)

If m < n, the attacker E randomly selects (n � m) passwords (62 �) and
adds them to � . Using the resulting n (= m) passwords (which include k1), the
opponent uses the procedure given in Section 2.2 to calculate the checksum for
an arbitrary message M 0 and a randomly chosen key K0. Contrary to Gong's
claim that the chance of a successful guess is as most 1

n
[Gong 95, Page 169], the

probability of a successful attack is 1, when m � n.
As mentioned before, choosing ki's, 2 � i � n, from P will reduce the number

of resulting applicable passwords (�), which is more desirable in our attack.
However, we consider a more secure version of Gong's method, by assuming
that ki 2 K, i = 1; : : : ; n. With this assumption, Theorem 1 results in:

188 Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

Corollary 2. If ki 2 K, i = 1; : : : ; n, then � � � , and therefore, m � n.

The case (m = n) falls into the basic scheme, which is already considered.
Now we examine the case when (m > n).

3.2 Attacking the extended scheme (m > n)

Gong [Gong 95, Page 170] extends his method by calculating the checksum as,

w1 k w2 k � � � k wn k g(K mod q;M); (4)

for a suitable q 2 N . Employing modular reduction increases m, the size of � ,
if q < jKj. Gong does not disclose the state of n (= j�j), and therefore, we
consider two cases in which n is either �xed (always the same n being used) or
it is an arbitrary integer (which may vary every time). Note that, for a given
message M , Alice may �x the number of password collisions (n) and publicize
it such that the corresponding hash value will be accepted only if it is veri�ed
by n password collisions. This is not discussed in the original paper, however.

If n is not �xed, E can construct a fraudulent checksum by solving the
following m equations in GF (p), for a1; : : : ; am,8><

>:
K0 + a1 � g(kr1 ;M

0) + � � � + am � g(kr1 ;M
0)m = kr1

...
...

...
K0 + a1 � g(krm ;M

0) + � � � + am � g(krm ;M
0)m = krm

(5)

where K 0 is a randomly chosen key and M 0 is an arbitrary message; and calcu-
lating the new checksum as,

w(1) k w(2) k � � � k w(m) k g(K 0 mod q;M 0); (6)

where w(x) = K 0+a1 �x+ � � �+ am � xm (mod p). In this case, when A wants to
verify the above checksum for the forged messageM 0, she takes g(K0 mod q;M 0)
o� the checksum and divides the size of the remaining part by dlog2 pe to �nd the
number of chosen password collisions. She follows the procedure in Section 2.3
which will result in the acceptance of M 0 as a genuine message.

If n is �xed, the attack will still succeed with signi�cant probability. Let
m = n+1. Then E can solve the following (n+1) equations for (n+1) variables
a0; a1; : : : ; an,8><

>:
a0 + a1 � g(kr1 ;M

0) + � � � + an � g(kr1 ;M
0)n = kr1

...
...

...
a0 + a1 � g(krn+1 ;M

0) + � � � + an � g(krn+1 ;M
0)n = krn+1

(7)

where M 0 is an arbitrary message. The valid checksum for M 0 will be,

w(1) k w(2) k � � � k w(n) k g(a0 mod q;M
0); (8)

where w(x) = a0 + a1 � x+ � � �+ an � x
n (mod p).

189Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

If m > n+ 1, since � � � (cf. Corollary 1), E can randomly choose (n+ 1)
passwords fkt1 ; : : : ; ktn+1g from � and have A's password (k1) among them, with
the probability of:

Pr[k1 2 fkt1 ; : : : ; ktn+1g] =

�
m� 1
n

�
�

m
n+ 1

� =
n+ 1

m
;

which is a high probability if m is not much larger than n.
Now, E can use fkt1 ; : : : ; ktn+1g to solve Equation 7 for a0; : : : ; an, and cal-

culate a valid checksum for an arbitrary message M 0 (Equation 8). That is, E
can generate a valid checksum with the probability of n+1

m
.

For example for n = 9, A should ensure that the number of the applicable
passwords (m) will be at least 105 to decrease the probability of attack to 10�4,
which is the probability of guessing a 4-digit number | typically the size of
the password used by bank Automatic Teller Machines (ATM). This would be
a di�cult task due to the fact that m is not controllable | it depends on jKj,
p, and q.

3.3 Attack by discarding some of the applicable passwords

Another attack on Gong's method is to reduce the size of � , the set of all
applicable passwords, by discarding the inappropriate passwords.

We have already proved that if n is not �xed or m � n+1, there are attacks
in which E succeeds with the probability of 1 (100%). Now, assume n is �xed and
m > n+ 1, and denote by � = fKkr1

; : : : ;Kkrm
g the collection of the resulting

keys that correspond to the passwords in � = fkr1 ; : : : ; krmg (cf. Section 3).
Note that, if at least two password collisions are chosen from K, � will have
some repeated elements. This is true because Kki = Kkj , 8ki; kj 2 � � � . We
partition � into l sub-collections �1; : : : ; �l corresponding to the distinct values
of �. That is, K� = K�, 8K�;K� 2 �t, t = 1; : : : ; l.

On one hand, it is obvious that there exists a �t such thatKki 2 �t, 8ki 2 �.
On the other hand, to derive Kk� 2 � from k� 2 � , we used Equation 3 which
maps the small password space K into the large key space GF (p). Therefore,
one cannot expect to come up with many (more than n) distinct passwords
(62 �) that are mapped to the same key K 2 �. Hence, the above �t, where
fKk1 ; : : : ;Kkng � �t, can be easily distinguished among the other portions,
and the claim is emphasized when n, the number of password collisions, is large
(cf. the experimental results in Table 2).

Consequently, we can select �t as the portion that includesKk1 ; : : : ;Kkn , and
use the techniques in the previous sections to attack the method. In particular,
even if n is �xed and j�tj > n + 1, the probability of successful attack is n+1

j�tj

(� n+1
m

).
To decrease the probability of an attack, Alice should use a collisionful hash

function in Equation 1, not a keyed hash function g(). Also, if she can �nd one
more key collision set of at least n elements which result in a di�erent key K 0,
she can halve the success probability. However, this is a very di�cult task due
to the di�culty of solving Equation 3 for b1; : : : ; bn, and k1, when b0 is a given

190 Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

jKj j� j
210 5
212 5
214 5
216 5
218 5
220 5

Table 1: Basic scheme, where the checksum is w1 k � � � k wn k g(K;M) and � � K.
For n = 5, the number of resulting applicable passwords (j� j) was exactly equal to 5,
in all cases. Therefore, � = � (m = n).

�xed key. In other words, since g() is generally not invertible, it is hard to �nd s
(� n) key collisions kt1 ; : : : ; kts that result in a �xed b0 (6= K), using Equation 3.

3.4 Attack by using t pairs of [message, checksum]

One restriction to Gong's method is that whenever k1 (A's password) is used
to calculate checksums for other messages, the same password collisions should
be used. Otherwise, the intruder can guess k1 from the intersection of di�erent
password collision sets, with a high probability. Suppose t pairs of [message,
checksum] are available and enemy has found the corresponding t sets of accept-
able passwords. If the size of the intersection of these sets is less than n + 2,
the techniques given in Section 3.2 can break the system (100%). Otherwise,
this intersection can be partitioned, similar to the way described in the previ-
ous section, to select the appropriate set with a high chance. This probability
will signi�cantly increase when t, the number of the given pairs, increases. In
fact, the chance of reducing the number of guessed passwords to k1; : : : ; kn will
signi�cantly increase.

Also, Alice should be careful when k1 is used for other purposes, since some
information about k1 is always leaked from Gong's method. For instance, if k1
is also used for logging into a system, the enemy can use our attack, guess all
possible password collisions, and try them one by one until she logs into the
system.

4 Practical Results of the Attack

Authors have implemented Gong's method and the corresponding attacks on
a SUN SPARC station ELC. The experiments completely coincide with the
previously mentioned theories and support our claims about the weaknesses of
the proposed selectable collisionful hash function.

Table 1 illustrates the results of our attack on the basic scheme. In all cases,
the number of password collisions (n) was chosen to be 5. It shows that in all
cases we could exactly �nd the �ve password collisions and forge the checksum
based on Section 3.1.

Table 2 is the results of our attack on the extended scheme. Di�erent modulo
reductions are examined, where in all cases we could select the exact valid pass-
word collisions based on Section 3.3. It is important to notice that Section 3.4

191Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

Partition of �
jKj q j� j j�1j j�2j j�3j j�4j j�5j j�6j j�7j j�8j j�9j j�10j j�11j j�12j

210 127 14 5 1 1 1 1 1 1 1 1 1
212 511 16 5 1 1 1 1 1 1 1 1 1 1 1
214 2047 14 5 1 1 1 1 1 1 1 1 1
216 8191 13 5 1 1 1 1 1 1 1 1
218 32767 12 5 1 1 1 1 1 1 1
220 131071 13 5 1 1 1 1 1 1 1 1

210 511 7 5 1 1
212 2047 8 5 1 1 1
214 8191 7 5 1 1
216 32767 5 5
218 131071 8 5 1 1 1
220 524287 8 5 1 1 1

Table 2: Extended scheme, where the checksum is w1 kw2 k � � � k wn k g(K mod q;M)
and � � K. For n = 5, the number of resulting applicable passwords (j� j) was usually
larger than 5, but after partitioning �, in each case, there was only one partition (�1)
with 5 elements (�1 = �). This table is part of our extensive experimental results.
Two di�erent modulo reductions (q) are examined for every instance of K.

gives even a more powerful attack when several checksums are available. How-
ever, we could break the scheme without assuming multiple available checksums.

The results show that with Gong's assumptions (especially the small pass-
word space), it is possible to attack his method. In the next section, we present
methods which are secure if additional assumptions are met.

5 Securing the Method

In this section we show that the security of Gong's method under certain re-
stricting assumptions is related to the security of Sibling Intractable Function
Families (SIFF) [Zheng et al. 93]. This ensures the security of the scheme for a
large password space. However we note that assuming a large password space
might not be realistic in practice and hence propose alternative methods that
reduce the probability of a successful attack.

5.1 Gong's Construction and SIFF

In this section, we want to show that Gong's construction can be turned into
SIFF [Zheng et al. 93]. Suppose a message M , a randomly chosen key K 2

GF (p), and n password collisions k1; : : : ; kn are given. De�ne h(x) = g(x;M),
where g() is a secure keyed hash function. We note that h() is one-way, be-
cause g() is one-way on both parameters. We further assume that h() is col-
lision resistant. An example of h() which satis�es these assumptions can be
obtained if we start from a collision resistant hash function H(), and de�ne g()
as g(k;M) = H(k k M). It can be seen that g(k;M) is collision resistant on
both parameters and hence h(x) = g(x;M) will be collision resistant.

192 Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

Now calculate xi = h(ki), i = 1; : : : ; n and solve the n equations,

8>><
>>:

a1 � x1 + � � �+ an � x
n
1 = k1 �K

a1 � x2 + � � �+ an � x
n
2 = k2 �K

...
...

a1 � xn + � � �+ an � x
n
n = kn �K

for a1; : : : ; an. The above is the rearrangement of Equation 1. Therefore, one
may use the same technique, given by Gong, to calculate the checksum of a
given message M . We claim that if u() is de�ned as,

u(k; y) = k � a1 � y � � � � � an � y
n;

then (u � h) de�ned as u(k; h(k)) is an n-SIFF, when h() is chosen to be a one-
to-one and one-way function family. This is true because of the way we de�ned
u() and h() (cf. [Zheng et al. 93]). Note that u(ki; xi) = K, for i = 1; : : : ; n, and
therefore, u(ki; h(ki)) = K, for i = 1; : : : ; n. That is, (u � h) will map all keys
k1; : : : ; kn to the same value K. The reader is referred to [Zheng et al. 93] for a
more detailed description of SIFF.

The above ensures the security of Gong's construction if g() is properly chosen
and, in practice, implies that for a large password space the method resists all
possible attacks.

5.2 Small Password Space

As noted in section 5.1, the security of Gong's construction can only be guaran-
teed for large password spaces. Also, the whole idea behind the construction of
collisionful hash functions, and in particular Gong's method, is to take advantage
of small key space. These assumptions might not be realistic in practical cases.
In the following, we propose alternative solutions by relying on more reasonable
assumptions which can provide smaller chance of success for an intruder.

1. Suppose A always uses n passwords k1; : : : ; kn to calculate the checksums
(they can be words chosen from a phrase). She can solve,

8><
>:
a0 + a1 � g(k1;M) + � � �+ an�1 � g(k1;M)n�1 = k1

...
...

a0 + a1 � g(kn;M) + � � �+ an�1 � g(kn;M)n�1 = kn

for a0; : : : ; an�1, and calculate the checksum as g(a0;M). This will be ap-
pended to the message M and can be veri�ed only by solving the above
equations.
An adversary (E) should guess n passwords from K and check whether the

resulting a0 satis�es the checksum (there are

�
jKj

n

�
possible selections). A

proper choice of n will prevent E from �nding the correct selection which
results in the genuine g(a0;M).
Moreover, if g() is collisionful on the �rst input parameter (cf. [Berson et al. 93]),
E will not be sure that she has found the right passwords. In fact, E may

193Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

�nd an a00 such that g(a00;M) = g(a0;M), but it does not necessarily result
in g(a00;M

0) = g(a0;M
0), for another message M 0.

A disadvantage of this method is the di�culty of memorizing n passwords,
when n is large. However, we do not need a very large n in this method. One
may consider a short sentence or phrase as the password.

2. Let c be the least integer such that 2c computations are infeasible. Fur-
ther assume a user password has on average d bits of information. (Clearly,
d < c and 2d computations are feasible.) The checksum of a given message
M is calculated as h(k1 k R k h(M)), where k1 is A's password, R is a
randomly chosen (c � d)-bit number, and h() is a collision resistant hash
function [Bakhtiari et al. 95a, Preneel 93].
To verify the checksum, A exhaustively tests 2c�d possible values of R and
calculates h(k1 k R

0 k h(M)) for each candidate R0 2 GF (2c�d). A match
indicates that the checksum is valid, because h() is collision resistant. Since
both k1 and R, which have in total d+(c�d) = c bits of uncertainty, should
be guessed by an enemy to verify the checksum, a random guessing attack
is thwarted.
Note that, this veri�cation has a maximum overhead of 2c�d computations,
but instead, selectable password collisions are not demanded. Furthermore,
one may use h((h(k1) mod 2b) k R k h(M)), for a suitable integer b (� d),
to provide password collisions. In this case, R should be (c� b) bits.
For example, assume c = 64, d = 50, and h() results in 128-bit digests. A
can verify the checksum h(k1 k R k h(M)) by computing h() for at most 214

candidate R's. This takes about 2 seconds on a SUN SPARC station ELC,
when h() is MD5 [Rivest 92]. Veri�cation time is almost independent of the
message length, since h(M) needs to be calculated only once (not 214 times).
Disadvantage of this method is the di�culty of �nding a constant c which
suits all users. In practice, di�erent computing powers result in di�erent
values of c. Therefore, the largest amount should be chosen, which is not
desirable on slow machines, because 2c�d computations may become time
consuming.

6 Conclusion

We showed that Gong's collision-selectable method of providing integrity is not
secure, and an attacker with reasonable computing power can forge a checksum
of an arbitrary message (or binary code). Assuming extra properties for the un-
derlying hash function, it is possible to prove the security of Gong's construction
under all attacks, when the password space is large.

Finally we have proposed alternative methods that require additional as-
sumptions and meanwhile provide higher security (smaller chance of success for
the enemy).

194 Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

A Proof of the Theorem

For any ki 2 (� \ K), Equation 3 becomes,

8>><
>>:

b0 + b1 � gi + � � � + bn � gi
n = ki

b0 + b1 � 1 + � � � + bn � 1
n = w1

...
...

...
b0 + b1 � n + � � � + bn � n

n = wn

where gi = g(ki;M), wi = w(i), for i = 1; : : : ; n. Similarly, the Equations 1 and
2 can be summarized as,

8>><
>>:

a0 + a1 � gi + � � � + an � gi
n = ki

a0 + a1 � 1 + � � � + an � 1
n = w1

...
...

...
a0 + a1 � n + � � � + an � n

n = wn

where a0 = K and gi = g(ki;M), wi = w(i), for i = 1; : : : ; n. From the above
two equations, we have:

8>><
>>:

(b0 � a0) + (b1 � a1) � gi + � � � + (bn � an) � gi
n = 0

(b0 � a0) + (b1 � a1) � 1 + � � � + (bn � an) � 1
n = 0

...
...

...
(b0 � a0) + (b1 � a1) � n + � � � + (bn � an) � n

n = 0

(9)

This results in:��������

1 gi � � � gi
n

1 1 � � � 1n

...
...
. . .

...
1 n � � � nn

��������
6= 0 =) aj = bj ; j = 0; 1; : : : ; n

In other words, aj = bj , j = 0; 1; : : : ; n, if and only if the determinant of Equa-
tion 9 is non-singular. Since we have gi > n, i = 1; : : : ; n, and because p (the
modulo reduction) is prime, the above determinant is non-singular, and there-
fore, aj = bj , j = 0; 1; : : : ; n. This proves that b0 = K is the real key which
was chosen by Alice. Hence, ki is an applicable password, and so, (� \ K) � � .
This implies that m (= j� j) is greater than or equal to the number of passwords
chosen from K (= j� \ Kj). ut

References

[Bakhtiari et al. 95a] Bakhtiari, S., Safavi-Naini, R., and Pieprzyk, J.: Cryptographic
Hash Functions: A Survey; Technical Report 95-09, Department of Computer Sci-
ence, University of Wollongong, 1995.

[Bakhtiari et al. 95b] Bakhtiari, S., Safavi-Naini, R., and Pieprzyk, J.: Keyed Hash
Functions; Cryptography: Policy and Algorithms Conference, vol. 1029 of Lecture
Notes in Computer Science (LNCS), pp. 201{214, Springer-Verlag, July 1995.

195Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

[Berson et al. 93] Berson, T. A., Gong, L., and Lomas, T. M. A.: Secure, Keyed, and
Collisionful Hash Functions; Technical Report (included in) SRI-CSL-94-08, SRI In-
ternational Laboratory, Menlo Park, California, 1993; The revised version (Septem-
ber 2, 1994).

[Carter and Wegman 79] Carter, J. L. and Wegman, M. N.: Universal Class of Hash
Functions; Journal of Computer and System Sciences, 18(2):143{154, 1979.

[Damg�ard 89] Damg�ard, I. B.: A Design Principle for Hash Functions; In Advances in
Cryptology, Proceedings of CRYPTO '89, pages 416{427, 1989.

[Gong 95] Gong, L.: Collisionful Keyed Hash Functions with Selectable Collisions;
Information Processing Letters, 55:167{170, 1995.

[M. Naor and M. Yung 89] M. Naor and M. Yung: Universal One-Way Hash Functions
and Their Cryptographic Applications; In Proceedings of the 21st ACM Symposium
on Theory of Computing, pages 33{43, 1989.

[Preneel 93] Preneel, B.: Analysis and Design of Cryptographic Hash Functions; PhD
thesis, Katholieke University Leuven, 1993.

[Rivest 92] Rivest, R. L.: The MD5 Message-Digest Algorithm; RFC 1321, Apr. 1992.
Network Working Group, MIT Laboratory for Computer Science and RSA Data
Security, Inc.

[Wegman and Carter 81] Wegman, M. N. and Carter, J. L.: New Hash Functions and
Their Use in Authentication and Set Equality; Journal of Computer and System
Sciences, 22:265{279, 1981.

[Zheng et al. 93] Zheng, Y., Hardjono, T., and Pieprzyk, J.: The Sibling Intractable
Function Family (SIFF): Notion, Construction and Applications; IEICE Trans. Fun-
damentals, E76-A(1), 1993.

196 Bakhtiari S., Pieprzyk J., Safavi-Naini R.: On the Weaknesses of Gong’s Collisionful ...

