Journal of Universal Computer Science, vol. 3, no. 2 (1997), 86-119
submitted: 16/12/96, accepted: 10/1/97, appeared: 28/2/97 [0 Springer Pub. Co.

Prototyping on the PC with Programmable Hardware

Jamaludin Omar
(Department of Electronic and Electrical Engineering, The University,
BRADFORD BD7 1DP, United Kingdom
jbomar@bradford.ac.uk)

James M. Noras
(Department of Electronic and Electrical Engineering, The University,
BRADFORD BD7 1DP, United Kingdom
jmnoras@bradford.ac.uk)

Abstract: This paper describes how to design and use a framework of hardware and software
for flexible interfacing and prototyping on the PC. The hardware comprises a card with
programmable hardware provided by FPGAs, with an interface including DMA block transfer
and interrupts. A library of hardware macros is described. Software routines are provided to
enable the FPGAs to be programmed and to allow communication between the host PC and the
peripheral card. Examples are given to show its use in building and testing designs, so that hew
applications can be prototyped quickly using a proven and reliable interface.

Keywords: Rapid prototyping, PC hardware, PC coprocessor, programmable logic

Category: B.6

1 Introduction

The Personal Computer (PC) environment is used in many application areas, with a
multitude of software tools for electronic designers, manufacturers and educators. As
the choice of available software grows, at the same time the power of hardware is
continually expanded by advances in silicon technology, with market forces driving
down prices. However, the performance of standard software platforms can be
surpassed by developers turning out low cost customised combinations of hardware
and software, as accelerators, coprocessors and preprocessors within PCs. The
availability of sophisticated but inexpensive programmable hardware is a major factor
in the affordable design and construction of such units. Thus the ability to design
reliable custom systems, with performance that would have seemed out of reach a
short time ago, is no longer an expensive and rare activity, but increasingly a basic
and essential skill.

In this paper we describe a flexible prototyping environment using Field
Programmable Gate Arrays (FPGAS), primarily directed at the development of PC-AT
peripheral hardware for testing and running high-level applications. The paper is

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 87

written for designers intending to build their own custom application cards, so the
hardware and software design is described in detail sufficient for it to be adopted
easily.

To validate our work we have designed and tested a PC-AT card, with a library of
configurable hardware elements which can be programmed into FPGAs, and a library
of software subroutines for data transfer and control. Together, the two libraries allow
standard 8-bit and 16-bit input-output and also Direct Memory Access (DMA) block
transfer and interrupt communication between the card and host PC. Because the
hardware has in-circuit reconfigurability, it is relatively easy to prototype electronic
designs: progress in testing is fast and reliable because the interface hardware and
software are known in advance to be correct.

1.1 Objectives

The system is proposed as a springboard for rapid prototyping, enabling users to go
straight to the heart of their particular problems without first having to study the
details of PC interfacing. Subsequent work, for example in optimising an application,
might call for deeper knowledge of the interface, but by then users would have some
confidence about the main task in hand. Designs are testable from the PC host in a
flexible way and at realistic clock and data rates, which is a major advance on static
testing.

There are existing hardware systems for the construction of simple designs using wire-
wrapping, some with programmable chips, and there are also software-oriented
systems for specialised applications such as preprocessing of data or images using
standard DSP chips. Here we present a development framework with a predetermined
but flexible hardware interface to the PC-AT Industrial Standard Architecture (ISA)
bus, setting out clearly defined mechanisms for adding in custom or commercially
available hardware and high-level software routines.

The framework provides:

A Printed Circuit Board (PCB) template with integral bus-lines, interfacing
and block addressing. Designers use the PCB template to produce a standard
version of a programmable card [see Section 3.2], or edit it to allow extra
hardware to be added.

Hardware macros, programmable onto the PC card, supporting all interface
functions for host-application communication. Some macros from the library
are essential for basic interfacing, and users may select others to support
activities like interrupts or DMA transfer, or to provide flag and status
registers [see Section 3.3.2].

88 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

Software sub-routines which link high-level programmes with applications,
described in [Section 3.4].

1.2 Structure of the Paper

First we review previous related work and existing systems. In [Section 3] we clarify
our system’s specifications and design details, both hardware and software. Next
construction and testing are described, and finally we discuss two applications.

2 Review

PC cards with data processing capability are extensively used for communications (fax,
compression or modem), in data capture applications (commonly with DSP hardware)
and in a wide range of available products. In this review first we cover briefly a range

of research into the potential of PC-based peripheral systems for design prototyping,
for computing and signal processing and for educational purposes. We then look at
existing commercially available systems, finally suggesting that our system fills a gap
in facilities for the high-level development of PC peripherals.

2.1 Application Areas

Although microprocessors are becoming cheaper and more powerful, many algorithms
do not map efficiently onto the architectures and instruction sets of standard
processors; for example, some problems lend themselves to pipelining. Thus in many
cases the greatest throughput of data requires custom hardware. Hardware built in the
past from discrete logic chips, using multi-layer boards to solve layout and timing
problems, nowadays can be mopped-up by single chips of programmable logic.
Efficient design and simulation tools make it possible to tackle complex problems, and
design errors need not result in expensive re-work, as logic is reprogrammable. The
following paragraphs offer examples of projects that have combined standard and
programmable chips in a range of research and development areas.

2.1.1 Prototyping

As the complexity of chips increases, designers are turning to programmable logic for
prototyping, to check functional behaviour and, equally critically, to find out if
interface requirements have been captured correctly in the design specification
[Quickturn Design Systems 1994], [Maliniak 1996], [Whiny 1996]. Often these
prototypes, which save time and money as they avoid the expense and delay of silicon
foundry work, are not as fast as the final hardware: however, continual improvements
in clock speed and available gate density allow FPGAs to displace standard gate array

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 89

chips in a range of products [Bursky 1995a], [Bursky 1995b], [Bursky 1996].

For the most rapid execution of specialised data-processing algorithms requiring
sequences of operations not available directly within standard DSP chips, custom chips
are sometimes essential; prototyping of novel DSP systems is an important area for
programmable logic [Isoaho et al. 1993], [Isoaho et al. 1994]. Communications
hardware is another where the rapid reconfiguration of prototypes is vital, especially
with complex or ill-defined interface protocols. Hardware may be for research, or for
testing before full-scale production [Kempa and Rieger 1994].

Large systems can be investigated using arrays of programmable hardware on multiple
boards. This method is used to explore hardware-software co-design of systems where
the initial requirements do not make clear whether the required functions can be most
efficiently achieved in hardware, or software, or a mix of both [vom Bdgel et al.
1994], [Benner et al. 1994], [Conner 1996], [Mclver 1996]. Further examples of rapid
prototyping by these means include FIR filter design [Njglstad et al. 1994], a vector
graphics controller and a bit-serial DSP processor [Turner and Graumann 1995].

2.1.2 Computing and Signal Processing

The above examples mainly concern single chip designs. Although their individual
functional testing is aided by development in a high-level environment, many complete
systems are likely to have more than one chip. Several authors have looked at the
prototyping of systems combining DSP chips and other hardware for logic and
memory functions, used for high-performance signal processing or specialised
computing. A list of FPGA-based computing machines is kept on the Internet
[Guccione 1996]. Some particular systems are mentioned below.

Parallelised applications requiring algorithm-specific architectures may map efficiently
onto FPGA arrays. Examples include an image preprocessor for a time-critical avionics
application [Lazarus and Meyer 1993] and a Monte Carlo processor to simulate
cellular automata systems for use in statistical physics calculations and image-
processing [Monaghan 1993].

Authors have also proposed flexible and powerful platforms for general coprocessors:
an Sbus workstation coprocessor [Koch and Golze 1994], a word-oriented
reconfigurable datapath processor for a Sun SPARCstation [Hartenstein et al. 1994],
a real-time image processor built on the SPLASH-2 Sbus attached processor [Athanas
and Abbott 1994], the CLP (Configurable Logic Processor) VMEbus machine vision
processor [Dunn 1995], the TERAMAC (Tera, or*3@nultiple architecture computer)
[Snider et al. 1995], and the WILDFIRE prototyping system [Bains 1996]. These
systems give some idea of the potential of reconfigurable computing hardware. Other
recent proposals include the GRAPE-II system with design entry by dataflow graph
[Lauwereins et al. 1995] and a review of the use of the latest SRAM-based

90 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

reconfigurable FPGAs (RFGPASs) for CISC and massively parallel computing [Seaman
1995].

2.1.3 Educational Uses

Since programmable devices first appeared they have been used as a fast and
inexpensive way of giving students hands-on experience. Because hardware can be
produced without the lengthy delays and expense of external silicon foundry services,
complete exposure to the design process from initial idea to hardware testing is
possible. The fast and sophisticated chips available now allow the rapid production of
complex systems, giving scope to study advanced systems with novel architectures,
even within the timescales and budgets of student projects. There is increasing use of
programmable logic to explore custom VLSI microprocessors, instruction set design
and hardware synthesis [Sandell 1993], [Mat and Noras 1994], [Boerno et al. 1994],
[Schubert et al. 1994], [Lam 1994], [Gehrig et al. 1994] and [Bouldin 1995].

2.2 Existing Systems

Users who wish to build and test their own systems with field programmable logic
now can benefit from a wide range of published ideas and from commercially
available products; for example, see [Camerota and Rosenberg 1994] and [Clapp and
Harman 1994]. The review above points out many systems that can be copied or
adapted for rapid prototyping. A brief discussion of some others, from the small-scale
single chip demonstrator board supplied by Xilinx to the Anyboard multiple FPGA
prototype card for system design projects, is given by [Pottinger and Eatherton 1994].
The following two sections describe available commercial prototyping products,
categorising them as sophisticated hardware for system development, or basic wire-
wrapping cards.

2.2.1 Commercial Prototyping Systems

FPGA technology, coupled with interconnect technology [Horng and Sathe 1994],
[Mohsen 1993], [Thame 1994a], [Thame 1994b], has made possible hardware
prototypes for efficient, high-speed emulation of large digital systems and ASICs, for
example during the INTEL Pentium development. FPGA-based hardware emulators
have evolved from the first generation which required some manual interconnection
through wirewrapping and cabling, to the current second generation using
programmable interconnection devices and variable hardware resources. RPM from
Quickturn, MARS from PIiE and VA-I from Integrated Circuits Application Limited
(INCA) are examples of early FPGA-based hardware emulators while ENTERPRISE
from Quickturn, VA-II from INCA and APTIX from Aptix are examples of the
current generation [Owen et al. 1994]. Virtual Computer is a framework of FPGAs

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 91

and programmable interconnect which, with software compilation tools to translate
algorithms into hardware, aims "to provide supercomputing performance to every
desktop workstation for a fraction of the cost of supercomputer prices" [Virtual
Computer 1994].

2.2.2 Breadboarding Systems

Several hardware aids are available for the development of cards to sit on PC (and
other) busses [Amplicon 1996], [Farnell 1995], [Fairchild 1995]. These require wire-
wrapping or other manual interconnection to join the bus signals on the card to custom
circuitry added by the user. In small or one-off projects, these are most useful in
coping with the initial difficulty of getting the basic card to host interface to work
correctly and reliably.

2.3 Present Design Objectives

The PC prototyping system described in this paper was developed as a framework for
rapidly prototyping PC-AT hardware. Designs, down-loaded into FPGAs, perhaps with
some modification to the PCB, can be prototyped and tested using the PC host at
realistic clock rates. This is not a new idea, but our paper attempts to make the
method accessible easily to a wide community of users, by exploring details of the
hardware and software required. Also, we suggest a reliable style of interfacing users’
designs based on handshaking. Thus, users can be spared the time required to clarify
interfacing details, instead being able to concentrate on their applications, and can have
more confidence in testing because the basic interface is viable.

Our system is not suitable for large circuits which would require more than the
hundreds of logic gates within a few FPGAs [see Section 6.1]. Also, we use manual
design partitioning and fixed interconnect on the PCB, with a "local" bus running
between the FPGAs: users must connect their internal FPGA modules to this bus by
wiring up to particular pads. These limitations are consistent with our aim that the
framework is mainly for the kind of small-scale application that an inexperienced
designer might consider taking on, for example in making the first moves away from
designing on PCB with discrete devices, en route towards large designs involving gate-
array or ASIC.

Previously we built PC prototyping cards to explore the use of FPGAs in replacing
many discrete digital IC components and supporting reliable and extensive student
projects [Mat and Noras 1994], [Trakas 1994]. With these we can transfer data
between card and PC in 8-bit or 16-bit word lengths, with 16 kBytes of static RAM
chips and a 40 MHz crystal oscillator clock on the board. Interface routines written
in C++ were menu-driven for easy demonstration and use in undergraduate projects.
For general prototyping use, a PCB template was provided. Users add new devices and

92 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

tracking into the template file and adapt the PC code supplied to implement and test
their own systems.

The work described here extends this to support the remaining AT bus interface
functions, namely DMA and interrupt functions, excluding only 8-bit DMA transfer.
We show below how to achieve all or any of these functions simultaneously. General
use requires libraries of software routines and hardware macros, from which designers
select those required for their application.

3 System Design

First the design requirements and a top-level outline are given and then a summary of
the use of Altera and Xilinx devices in the present project. After these initial
explanations of the processes and activities involved in the work, more detailed
accounts of the software and hardware design are set out. The hardware macro library
is fully described in [Section 3.6], and finally how users would build applications on
the framework is given in [Section 3.7].

3.1 Detailed Requirements
The card has the following basic features:
The 1/0O base address can be selected using a 4-bit DIP switch on the card.
The programmable logic can be reconfigured from the PC at any time by
software, with a provision for monitoring this activity.
The logic can be reset by a switch on the card, by a PC reset, or by software.
A 40 MHz crystal oscillator provides an internal clock on the card.
The card also allows all or any of the following features:
8-bit or 16-bit data transfer to and from the host PC.
16-bit data transfer using any of 3 DMA channels.
Communication using any of the four interrupt channels.
To test the functionality of the interface we include static RAM on our development
card. Also we include two FPGAs although only one is essential, as this allows us to
demonstrate how to build more extensive designs on this platform.

3.2 Outline Design

A prototype card was designed and developed, containing:

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 93

Two Xilinx XC3042 FPGAs.

One Altera EPM7032 EPLD.

Two 6264 & x 8 static RAM chips.

One 74LS221 monostable chip and associated timing components.
One 4-bit DIP switch.

MOND-
STABLE

T 1 ol

SWITCHES D Config Clock Argszgrsy5>
EPLD FPGA #1 FPGA #2 werory) Static
(Peripheral) (Slave> = RAM

o0a

PC-AT

Figure 1:Block diagram of the prototyping card

The EPLD, monostable and DIP switch handle address decoding and provide the
mechanism for configuring the FPGA chips. This is necessary because initially the
FPGA chips have no function until they are programmed. The Xilinx chips contain
the rest of the interface and also have uncommitted logic that can be used for
custom designs.

3.3 Field Programmable Technology

General information about the technology of field programmable logic, design
methods and applications are found in several helpful publications [Rose et al.
1993], [Bolton 1990], [Chan and Mourad 1994]. Internet information on particular
products is available at http://www.actel.com, http://www.altera.com and
http://www.xilinx.com. For more general information see
http://www.mrc.uidaho.edu. Two papers concentrating on Xilinx devices are
[Fawcett 1994a] and [Fawcett 1994b]. In the following, we assess the usefulness of
Altera EPLDs and Xilinx FPGAs for our required design functions.

3.3.1 EPLD Design

o4 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

The EPLD chip, Altera EPM7032 [Altera 1993], is an erasable CMOS EPLD that uses

EEPROM to set logic functions. It has 600 usable gates and up to 36 inputs or 32
outputs. Because it is involved in the card addressing, it must be programmed before
mounting on the PCB. Later, if design changes demand that the chip be

reprogrammed, this must be done during temporary removal from the PCB.

For address decoding, the chip is connected to nine address lines (A1-A9) and four
control lines (RSTDRV, AEN, /IOW and /IOR). AOQ is not used for addressing, but
together with SBHE it shows whether data being transferred is upper byte, lower byte,
or 16-bit [Eggebrecht 1990]. For configuring the FPGAs two outputs go to DONE and
/RESET of both FPGASs, while one line goes to READY of the lead FPGA only and
another connects with /INIT of the slave FPGA (see [Section 3.3.2] and [Section 3.5]
below). Other pins are connected to the 4-bit DIP switch, hard reset switch and the
monostable chip.

For design entry and realisation, we use Altera’s Multiple Array Matrix Programmable
Logic User System (MAX+PLUS II) development package [Altera 1992a]. This offers
a range of logic design capabilities: a variety of design entry methods, logic synthesis,
partitioning, functional and timing simulation, timing analysis, automatic error location
and device programming and verification. We chose text entry with AHDL (Altera
Hardware Description Language) [Altera 1992b], with a MAX+PLUS Il Programmer
to obtain a working EPLD containing the design.

Part of the circuit inside the EPLD allows the user to set the I/O base address of the
card with a 4-bit DIP switch. For designs with A9 = A8 = 1, with A7, A6, A5, A4 set

by the DIP switch positions, the 1/0O base address can be set anywhere between 300
and 3F0 Hex in increments of 16 address locations. A3, A2 and Al are used to set
addresses relative to the base address. The circuit definition in AHDL is given in
[Appendix 1].

3.3.2 FPGA Design

Unlike the EPLD, FPGA chips can be programmed in situ. We use the 3000 family
of FPGAs from Xilinx [Xilinx 1994], [Knapp 1996]. These Logic Cell Arrays (LCAS)
contain three types of configurable elements: a perimeter of input/output blocks
(I0Bs), a core array of configurable logic blocks (CLBs) and resources for
interconnections. The IOBs provide a programmable interface between the internal
logic array and the device’s package pins, while the CLBs perform user-specified logic
functions. Both 10Bs and CLBs contain flip-flops which can store data.

To implement a design requires first design capture, then verification by simulation
and then mapping to a physical layout. The configuration data representing the
physical structure can then be loaded (or "down-loaded") into the LCA.

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware o5

Circuit design consists of three basic steps: design entry, physical layout and routing,
and verification. Design entry can use high-level routes with schematic capture or text,
or low-level packages such as Xilinx’s XDE. Many designers prefer schematic capture
and Xilinx hardware is reachable from variety of systems such as Viewlogic, OrCAD,
FutureNet and Cadence: libraries of parts may be basic digital gates and customised
sub-circuits built up by the user, or parameterisable modules provided by vendors
[Carlstedt-Duke 1995]. Certain aspects of design are better done with a low-level
graphics editor, such as XDE, but normally only by experts. The Xilinx Netlist Format
(XNF) is an intermediate design description, inxaffile, connecting design capture

and software packages for verification and hardware programming.

Design implementation is the step where the desigmifile is converted by routines
XNFMAP and MAP2LCA, which translate the XNF logic representation into a
definition of how the hardware in an LCA will be programmed. It is often
advantageous to check critical timing and verify functionality of a design before the
design is placed and routed into the LCA configuration. This step is the first stage in
design verification, using functional and timing simulation, before down-loading and
testing the hardware.

LCAs are configured by loading data into their on-chip static memory during power-up
or when programme mode is enabled. The memory controls interconnection paths for
signal routing and logic functions. The memory is static RAM, so the chips are often
termed SRAM programmable. At power-up or upon reprogramming, configuration data
are loaded into the LCA from an external storage source such as EPROM, RAM or
a disk file. Each LCA configuration mode temporarily uses some user-programmable
I/O pins for the configuration interface.

To configure the FPGA chips on our card, three 1/0 addresses relative to the base
address of the board are used. There is also one address for a general logical software
reset, which does not affect the programme of the FPGASs, but restores all their
internal flip-flops to a known state. For monitoring of the configuration status of the
FPGAs, the READY/_BUSY pin of FPGA #1 connects to the PC through the EPLD.
These actions are carried out as follows:

Write, base address + 000 (/IOW =0, /IOR = 1) Reset FPGAs

Write, base address + 001 (/IOW =0, /IOR = 1) Reprogramme signal
Write, base address + 010 (/IOW =0, /IOR = 1) Send configuration data
Read, base address + 000 (/IOW =1, /IOR = 0) Read configuration status

More information about these routines is given in [Section 3.4.1] below. All flip-flops
within the FPGASs can also be reset by a switch on the card.

The FPGASs’ configuration memory can be rewritten to change circuit functions. To
initiate reconfiguration, a low pulse lasting at least 6 psec must be applied
simultaneously to the /RESET and DONE pins [Xilinx 1994]. In our card, we produce

96 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

this pulse signal by using a TTL monostable chip and appropriate external RC timing
components. The output pulse length, ¥ set by timing components: = 10 pF
and R,, = 1.5 kQ to provide T, = 0.7 x 10 pF x 1.5 R =~ 10.5 psec.

3.4 Software Design

All I/O addresses above 200 Hex can be used by cards in the PC interface expansion
slots [Eggebrecht 1990]. Address locations below 200 Hex are used for the base
system board, leaving address locations 200 - 3FF Hex available, with some dedicated
addresses for the printer port, serial port and so on [Shanley and Anderson 1995].
Although there could be 65,536 unique port addresses, only address lines Al - A9 are
used for 1/0 decoding, giving up to 512 port addresses. Apart from the three locations

mentioned above for device programming and any used by other cards in the PC, all
these addresses are available for decoding within the two FPGAs.

Two categories of interface software are required to make the card function as
required by the user. These are:

Utility software for configuring the FPGAs on the card.
Application or run-time software for designs after loading.

3.4.1 Utility Software for Configuring the FPGAs

The Xilinx design route produces 'abit file", ready to be down-loaded into each
target chip. Because our prototype board has two FPGAs and because we wish to have
explicit control over the card addressing and data transfer process, we do not use
proprietary Xilinx software for device programming. Instead we wrote a routine to
preprocess and merge data from sepalatdiles, representing the configuration data

for each of the two FPGASs, producing a single composite configuration data file called
the ".xbmfile". This allows users to make independent modifications to the internal
designs of either FPGA and then merge thiefiles after verification. The merged file

is used by our XIP-XBM programme to load the LCAs configuration data into both
FPGA #1 and FPGA #2 on the card, as explained in [Section 3.5] below. However,
users can load the configuration data from eithoéror .xbmconfiguration data files

using different software routines. Further details are given in [Section 4.2].

3.4.2 Application Software
We have developed a small library of routines which users may adopt in their

application software, which enable full communication between the PC and the
prototyping board. The routines are to enable

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 97

Programmed 1/O transfer,

DMA transfer,

Interrupt service routines and communication,
Card memory address generation and control and
Status register and flag register monitoring.

These routines must be used in conjunction with macros programmed into the FPGA
chips, taken from the hardware macro library described in [Section 3.6].

The software was developed with QuickC and its in-line Assembler. For fuller
information, refer to [Omar and Noras 1995]: an example of application software for
programmed /O transfer [Section 4.3.1] is given in [Appendix 2].

3.5 Hardware Design

For the two LCA devices we used the Xilinx XC3042, each of which has 144 CLBs
in a package with 84 pins. Ten pins are required for control and power functions,
leaving 74 uncommitted 1/O pins available to the user.

FPGA #1 operates in peripheral mode during programming. The PC addresses the
LCA and writes one byte of data to it, which is loaded into an internal buffer register.
A high on the LCA READY/_BUSY output pin shows that the input register is ready
for the next byte. The LCA generates a configuration clock for the internal timing
generator and serialises the parallel input data for internal framing and to allow chains
of devices to be programmed, data being passed on using the data out (DOUT) pin.

FPGA #2 was daisy-chained to FPGA #1 to operate in slave mode, which provides a
simple way of loading the LCA configuration data. In slave mode, a lead device
(FPGA #1) sends data serially to the slave LCA (FPGA #2) - and clocks its CCLK
pin. Most slave mode applications are daisy-chain configurations in which the data
inputs are supplied by the previous LCA data outputs, while the common clock is
supplied by a lead device in master or peripheral mode.

In the next two sections, the functions of the two LCAs are briefly described.

3.5.1 FPGA #1

This provides the interface between the card and the PC bus. Ten address lines (AO -
A9), sixteen data lines (DO - D15), five control lines (AEN, /IOW, /IOR, SBHE and
/I0CS16), four interrupt lines (IRQ10, IRQ11, IRQ12 and IRQ15) and seven DMA
lines (TC, DRQ5 - DRQ7 and /DACKS5 - /DACKY) are connected. If all possible
interfacing functions are enabled, then 14 out of 144 available CLBs are needed and
46 out of 74 available 1/0O pins are used. Many applications will require only a subset

o8 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

of these, but for testing we include them all. The remaining CLBs are available for
general use.

The 40 MHz clock is connected to FPGA #1, allowing users to test the interface or
to provide synchronisation on the card. In our prototype, FPGA #1 and FPGA #2 are
interconnected by 21 lines of Local Bus. This provides communication lines between
the two chips and enables large designs to be partitioned over both LCAs.

3.5.2 FPGA #2 and RAM Chips

Although the interface itself does not require a second FPGA, testing fully the
prototyping system means that its flexibility and potential for expansion have to be
checked. Thus a second FPGA and some RAM are included. These are used also to
prove the DMA interface. As shown in [Fig. 1], FPGA #2 is connected to the Local
Bus and to the RAM. It is also connected directly to the PC data lines (DO - D15).
The user can use these to transfer data directly between FPGA #2 and the PC data
bus, without going through FPGA #1.

The two RAM chips connected to FPGA #2 provide local storage for memory-
intensive design. They can provide 8k x 16-bit storage and all their addresses, data and
control lines are connected to FPGA #2. The user can control and use this RAM by
mapping an appropriate design onto FPGA #2.

When small amounts of RAM are required, it is possible to integrate this using either
FPGA [Xilinx 1994]. However, RAM-based programmable devices from Xilinx are
a very inefficient substitute for conventional memory when the amount required is
large.

3.6 Hardware Macro Library

We have developed a number of hardware modules for general addressing, control and
data bus interface, which can be programmed into the FPGAs. The Cadence design
system is used to place them within designs symbolically, subsequently compiling the
xnf files for each FPGA. Fuller details, including schematics of the parts described
are available [Omar and Noras 1995], but the verbal descriptions given below should
be enough to demonstrate the problems associated with interfacing hardware to the
ISA bus. Enough information is given for users to be able to reproduce or adapt our
solutions.

In the following paragraphs, we use the prefix "X" on signal names to identify the
primary bus signals; for example, XSBHE is a bus signal, while SBHE is the buffered
version to be found on the card. The presentation concerns single cycle 16-bit data
transfers; 8-bit single cycle or 16-bit double cycle transfers are not covered.

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 99

3.6.1 General Addressing and Control

The macros described next are essential for communication between the PC and
registers or devices on the card.

3.6.1.1 AddressBus

This module connects external signals XA0-XA9 and XSBHE from the PC Address
Bus to other user interfaces in the FPGA, such as the AddressDecoder module. The
outputs from this module, A0-A9 and SBHE, are buffered versions of the bus inputs
XAO0-XA9 and XSBHE.

3.6.1.2 AddressDecoder

This module decodes address lines from the PC Address Bus, via the AddressBus
module, to address I/O port locations. The users can set which base address they are
using between 300 to 3F0 Hex in steps of 16 address locations, by setting inputs
A7IN, A6IN, A5IN and A4IN of this module high or low. For example, if all four of

these signals are connected to ground, the select line CSO0 represents address 300 Hex.
Since the PC address line XAO is not used for decoding, CS7 represents address 30E
Hex. If A5IN and A4IN are connected to logic high while A7IN and A6IN are held

low, then CSO0 represents 330 Hex and CS7 represents 33E Hex.

All outputs from the module, CS0-CS7 and CS, are active high. CS is high if any
address is correctly decoded, that is if any one of CS0-CS7 is high. If more than one
of these blocks is used in order to permit more than eight port addresses, then the
separate CS signals from each block should be ORed to form a new global signal.

3.6.1.3 ClockSignal

This module connects the clock signal from the external 40 MHz crystal. It uses the
internal Xilinx clock buffer for minimum-skew clock distribution with no need for
further buffering. All synchronous elements should use this clock directly without
gating. Xilinx provide flip-flops in the XC3000 library with a reliable, glitch-
insensitive internal clock-enable for designs which require that feature.

3.6.1.4 ControlSignal

This connects XAEN, XIOW and XIOR signal lines from the PC Bus to logic within
the FPGAs. Output AEN from this module has the same sense as input XAEN while

100 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

outputs WR and RD are active high, rather than active low; we have preferred to keep
all card signals consistently active high as a convention.

3.6.1.5 I0CS16

This module supplies the XIOCS16 signal to the PC bus for any valid address decode,
to indicate that the card supports 16-bit data transfer.

3.6.1.6 MuxOutBus

This multiplexes two 8-bit signals from its AO-A7 and B0-B7 input to its DO0-DO7
output. Supplying logic high at its SELA input will connect A0-A7 to DOO0-DO7.
Xilinx XC3000 devices do not contain many internal tri-state drivers, so registers must
be multiplexed onto the output pins using such a module. To allow several registers
to be read, a tree structure of multiplexers must be used.

3.6.2 Data Transfer

Next we present modules to buffer the PC data bus for input or output and to provide
data registers. Also, we describe simple status and flag registers, which can be read
or set by the PC and which enable control and signalling.

3.6.2.1 DataBusHi and DataBusLo

These modules interface XD8-XD15 and XDO0-XD7 signals from the PC data bus.
Data is read from the PC data bus to DIO-DI15 lines of the modules while data is
written to the PC data bus from its DO0-DO15 lines. Logic high on DOHIENA or
DOLOENA input of the appropriate module enables DO8-D0O15 or DO0-DQO7 to the
PC. The enable signals should be formed in the following way:

DOHIENA
DOLOENA

CS . RD and
CS . RD,

where CS is the global enable (see the discussion about the AddressDecoder above).
See also the discussion about DMA modules in [Section 3.6.4].
3.6.2.2 DataRegHi or DataRegLo

These can be used to interface DI8-DI15 or DIO-DI7 from the DataBusHi or
DataBusLo module to other user interfaces or processes. Data written asynchronously

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 101

from the PC data bus is available synchronously at the DO8-DO15 or DO0O-DO7
outputs of the DataRegHi or DataRegLo module, being latched on the trailing edge
of the WR signal.

3.6.2.3 StatusRegister

This register can be used to interface status signals from any process to the CPU.
Inputs SNO-SN7 from a process or processes are clocked synchronously to
SOUTO-SOUTY outputs which in turn can be connected to the DataBus module. When
the status has been read by the CPU, the process can be notified using ACKO-ACK7
output of the module if the PC writes data asynchronously back through the module’s
DIO-DI7 input, so providing a simple handshaking mechanism.

3.6.2.4 ReadFlag and WriteFlag

These modules can be used as single flags to show when the CPU has read from or
written to an address selected by CSN. The output D_FLAG can be reset when the
operation is completed.

3.6.3 Interrupt handling blocks

For requesting a single interrupt through a particular interrupt line, we provide
modules Intl10, Intll, Intl2 and Intl5. Interrupt signal XIRQx is activated by

supplying a logic high to the module’s REQIx input. When the interrupt is serviced,

the initiating process can be notified using the module’s CLRIx output. This is done
by writing a logic high data to a particular 1/O port address, CSO. It is the

responsibility of the process to reset the interrupt request line after the interrupt is
serviced.

There are also modules to support multiple interrupts through a single XIRQXx interrupt
line (up to 8 per bus interrupt line), using Mint10, Mint11, MiInt12, or MInt15. Signals
for requesting interrupts through a particular interrupt line (XIRQ10, XIRQ11,
XIRQ12, or XIRQ15) are fed through the module’s REQx inputs. These signals,
clocked synchronously from the process to the module’s DO8-DO15 outputs, in turn
activate the XIRQx line or lines required. When the CPU recognises this interrupt
request, it must read the data on the module’s DO8-DO15 output to identify the
channel or channels requesting interrupt and then service the (multiple) interrupt
accordingly. When serviced, a particular channel causing the interrupt request can be
cleared by writing data asynchronously through the module’s DI8-DI15 input. This
data will be transferred synchronously to the module’s CLRO-CLR7 outputs.

102 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

3.6.4 DMA blocks

Here we describe some macros suitable to establish DMA facilities on a card. These
hardware elements are quite simple, the complexity of the process being in the
supporting PC software.

3.6.4.1 DMA-TC

This module connects the XTC signal line from the PC Bus to any user interface in
the FPGAs. The user can use this signal to monitor the end of a DMA operation.

3.6.4.2 DMAS DMAG6 and DMA7Y

Each of these interface the DMA signal lines (XDRQ5, XDRQ6 or XDRQ7, and
XDACKS5, XDACK®6 or XDACKTY) of a particular DMA channel. Together with the
XAEN signal and whichever of XIOR or XIOW is required at a given time, the block
addresses correctly the I/O port which initiated the DMA operation. A process can
initiate the DMA operation by supplying a logic high to a module’s REQDx input.
When a data transfer has occured, the module signals the process by using its RDMAX
or WDMAX output. It is the responsibility of the process to deactivate the DMA
request when all data are transferred, which is indicated by a logic high on output TC
of the DMA-TC module.

When DMA transfers are used, the definition of the output enables for the data bus
modules [Section 3.6.2] must be extended. For example, if channel 5 is used to
transfer data from the card to the PC, then the FPGA output buffers must be enabled
by logical high signals as follows:

DOHIENA
DOLOENA

CS . RD + RD . /DACK5 and
CS . RD + RD . /IDACKS5,

where the inverse of DACKS5 has to be used.

3.6.5 Local Bus

To allow for expansion we provide two FPGAs on the prototype PCB and supply a
local bus of connections between the two. The chip interface modules are
X1-LBusO_7, X1-LBus8 15, X1-LBusl16_ 20, X2-LBusO_7, X2-LBus8_ 15 and

X2-LBus16 20, which map to the correct pin locations on FPGA #1 and #2
respectively. Connections can be inputs, outputs or bidirectional.

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 103

3.6.5.1 X1-LBusO_7X1-LBus8_15 and X1-LBus16_20

These interface between FPGA #1 to the Local Bus LBO-LB20 on the card. This Local
Bus interconnects 21 wire lines between FPGA #1 and FPGA #2 on the card. The
direction of any Local Bus line is programmable. As input it connects signal from
X1LBx to LBIx. As output it connects signal to X1LBx from LBOX, in which case

a logic high must be supplied to a corresponding LBOENAX input.

3.6.5.2 X2-LBus0_7X2-LBus8_15 and X2-LBus16_20

These are used in a similar way but interface between FPGA #2 to the Local Bus
LBO-LB20 on the card.

3.6.6 Prototype PCB memory

For interfacing RAM on the card, we developed X2-MDataBusHi, X2-MDataBusLo,
X2-MAddressBus, X2-MControlSignal and X2-MAddressGen modules. These modules
are used within FPGA #2.

3.6.6.1 X2-MDataBusHi and X2-MDataBusLo

These modules interface signals from the RAM's Data Bus MD8-MD15 and
MDO-MD?7 to logic within FPGA #2. The function is similar to the DataBusHi and
DataBusLo modules mentioned in [Section 3.6.2].

3.6.6.2 X2-MAddressBus

This drives the RAM address lines XMAO-XMA12 from FPGA #2. Input to this
module, MAO-MA12, can be generated within FPGA #2, by using the
X-MAddressGen module or simply by using an output port to hold data written from
the CPU.

3.6.6.3 X2-MControlSignal

This module is used as an interface to supply XMCS1, XMRD and XMWR control

signals to the RAM. The input to this module can be generated within FPGA #2 as
relevant for the user application.

3.6.6.4 X2-MAddressGen

104 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

This can generate address signals required by the X2-MAddressBus module. This
address generator is programmable. The user can set this address generator by writing
to its IA0-IA15 inputs (for full 16-bit address), supplying logic high to its AGSET
input and then clocking its AGCLK input. The address can be incremented by
supplying logic pulses to the AGCLK input.

3.6.7 Application Hardware and Custom Design Blocks

Once the user has a clear idea of the signals available from the interface modules,
implementing a design is a matter of building up logic blocks which use these signals
for control and communication with the PC. The library elements presented above
suggest a design approach based on handshaking. The user should create modules or
hardware processes which send out flags when required, either to the PC via interrupt
or DMA request lines, or to other processes. The basic structure acknowledges receipt
of the signal: the initiating process may or may not pause while waiting for this
response, just as the user wishes. This interface is simple and unrestricting and easily
supports connections with standard chips, such as DSP or RAM.

3.7 Extendability and Prototyping

With the standard PCB template containing the interface components predefined and
the pin-outs of the standard FPGA devices fixed as far as the PC bus interface and
internal Local Bus are concerned, building a prototype requires three stages:

PCB modifications:
Adding to the PCB template file any additional connections and device
footprints required.

Hardware design:
CAD design capture for the FPGAS, choosing predefined hardware macros
for the interface functions and adding custom elements as required.

Software production:
Writing the host control and communication programme, using standard
routines for 1/0 to match the hardware macros chosen for the FPGAs.
Addresses must agree with the hardware elements programmed onto the card.

We use Boardmaker for PCB design [Boardmaker 1992]. Aspects of the hardware and
software design and test are covered in [Section 4.2] below.

4 Implementation and Testing

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 105

This section runs quickly through the main practical tasks that are required to build
a system and to check that it is working correctly.

4.1 Support Hardware

The PCX-795 PC/XT/AT Bus Expansion System [Fairchild 1995] provides multiple
slots in a separate powered expansion chassis. With completely untested cards we also
use a PCL-757 ISA Bus Switch/Extension Card [Advantech 1991], which buffers the
card electrically from the rest of the system. This is to avoid the possibility of the PC
crashing during testing, because of software or electrical wiring faults. A logic probe
and an oscilloscope, together with PC code for producing test signals, were sufficient
for debugging the PCB and checking basic device behaviour.

4.2 Implementation Details

Putting a circuit design in a LCA requires going from the design idea, to entering
(capturing) the design on computer and then using CAD software to produce a
physical circuit description. This configuration file is then loaded into the LCA and
the design is live, ready to be used.

Design for
FPGA #1

Design for
FPGA #2

Cadence Design Framework 11 DESIGN
Schematic Editor ENTRY

FPGA #1 FPGA #2

ASIC Kit within
Codence Design Fromework 11

‘ Schematic for

Schematic for ‘

DESIGN
bit file for kit file For IMPLEMENTATION
FPGA #1 FPGA #2
BIT files merging
XIM-BIT
Progran
xbm file for
designs in DESIGN
FPGA #1 VERIFICATION
and FPGA #2
XIP-BIT2 XIP-XBN XIP-BIT2
Program Progran Program
Configuring
FPGA #1
> followed by ¢
FPGA #2

Application
Progran

Figure 2:The main steps required to prototype a design

4.2.1 Hardware

106 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

To map onto the card using both FPGA #1 and FPGA #2, first draw the circuit
schematics using Cadence Design Framework Il [Cadence 1991], where required
connecting the inputs and outputs of FPGA modules to the pre-assigned pads which
permit access to the PC bus or the local bus on the card. Then use an ASIC kit
targeted at Xilinx, producing separatst files for the two devices. This also produces
Verilog files for verification by simulation of functionality and timing.

4.2.2 Software

To down-load configuration data into LCAs we use either data from.hitdfiles or

data from a previously mergesbmfile; see [Fig. 2]. Timings for configuration are

as follows: on a 286 PC-AT compatible computer with 12 MHz processor speed,
transferring separatit files took about 0.82 seconds whibébmfiles went over in
about 0.33 seconds. Thus, for regular use, preprocessing stable desiias into

a .xbmfile saves time. Note that the configuration time is independent of the FPGAS’
design complexity; as all CLBs, I0Bs and interconnections have to be configured to
a stable state whether they are required in the design or not, the volume of
configuration data in evenpit file for a given device is the same.

Note that the preparation of .xnf files and the allocation of interconnections between
FPGAs and any additional chips on the PCB has to be done in advance and manually
in our system. With more powerful tools the partitioning of a design to multiple
programmable logic chips, often using programmable interconnect, is carried out
automatically within the design compilation stages; see [Gokhale and Marks 1995],
[Herpel et al. 1995], [Lauwereins et al. 1995], [Schulz 1995] and [Snider et al. 1995].

4.3 Testing

For initial testing of prototype casda C routine generates patterns of signals on the
PCB, verifying correct addressing and electrical connectivity with the aid of a logic
probe and oscilloscope. Once the PCB template is proven, these checks become
routine as new applications are developed and the focus switches to using the host PC
as test-bed to check for functionality. We developed interface circuits to go in FPGA
#1 and FPGA #2, to check data transfers between the PC and registers on the FPGAs
and to check transfers between PC memory and the 8k by 16-bit static RAM.

There were three main areas to be tested:
Programmed 1/O data transfer.

Interfacing to RAM on the card.
Interrupt and DMA operations.

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 107

4.3.1 Programmed I/O Data Transfer

This circuit is used to test a simple 1/0 design in FPGA #1 and FPGA #2. Inside each
chip we put a 16-bit register to allow the PC to first write and then read back 16-bit
or 8-bit data. Inputs of one register are connected to the PC data bus through FPGA
#1, while its outputs are connected to the inputs of a second 16-bit tri-state buffer in
FPGA #2 via the Local Bus. Outputs of the 16-bit tri-state buffer are connected to the
PC data bus through FPGA #2. By sending an I/O read enable signal to this tri-state
buffer, any data previously sent to the register can be read back. In FPGA #1 this
design used 14 of a possible 144 CLBs and required 50 of a possible 74 1/O pins; in
FPGA #2 it took 1 CLB and 35 I/O pins.

Software testing showed that this interface circuit functions as expected.

4.3.2 Interface for RAM

This circuit is used to test the RAM chips on the card and verify that the memories
are functioning. We address the RAM by writing 13 bits of data from the PC data bus
to a 13-bit register within FPGA #2. The chip enable line and read/write control lines
are decoded from the PC address and control busses within FPGA #1 and passed
through to the RAM via the Local Bus. The data lines of the RAM chips are
connected to the PC data bus through FPGA #2. To use the RAM, we have to supply
the memory address through the interface circuit within FPGA #2 before writing and
reading data to and from the RAM.

This design needed 6 CLBs and 20 I/O pins of FPGA #1, and 11 CLBs and 53 I/O
pins of FPGA #2. A software routine proved that the circuit functions as required and
verified that the RAM can be used correctly.

4.3.3 Interface for Interrupt and DMA Operations

This circuit is used as an interface between the PC memory and the RAM on the card
in which the data transfer between them can be done by programmed 1/O transfer, or
using DMA or interrupts. DMA requests are generated by writing a command word
from the PC to an output port designed within FPGA #1. Data transfer for the DMA
operation is done 16 bits at a time. Interrupt requests can be triggered in a similar
way, by writing a command word from the PC to another location within FPGA #1.

For the DMA operation, all related signals for 16-bit DMA transfers to and from the
PC bus are used in this trial, namely DRQ5 - DRQ7, DACK5 - DACK7 and AEN.
For the interrupt operation, we tested IRQ10, IRQ11, IRQ12 and IRQ15 signal lines
from the PC-AT bus. We can access the card’s RAM by programmed I/O operations
or using the DMA method. During programmed I/O operation we supply the address

108 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

signals to the memory by sending 13 bits of data from the PC to an output port within
FPGA #2. During DMA operations, the address signals to the RAM on the card is
supplied by a 13-bit counter within FPGA #2. The circuit decodes all necessary signals
during the DMA activity and clocks the counter. The counter can also be reset or set
to specific outputs by writing data to an output port within FPGA #2.

This design needed 14 CLBs and 46 /O pins of FPGA #1, and 34 CLBs (26
flip-flops) and 59 1/O pins of FPGA #2. We developed a routine using QuickC to test
this interface circuit, using in-line assembler for the interrupt service routines. The
functionality of this interface circuit is tested by making a DMA transfer when the

interrupt is serviced and looking at both DMA transfer from PC memory to the RAM

on the card and from the RAM to the PC, for all DMA channels. We also tested all
interrupts. The circuit functions as required.

5 Application Examples

As explained in [Section 3.7], prototyping using the card can be done in two ways: use
the card as it is and prototype the design using available logic elements in the FPGAs
and on-board RAM, or modify the card by adding to the template PCB any additional
components required for the new prototype. We describe application examples for
these two methods below.

5.1 Using the Unmodified Card

Below two application examples are described, using a 286 PC-AT compatible
computer with 12 MHz processor speed. To measure the interface performance, a
performance meter was built inside FPGA #1. This is a programmable binary counter
driven by the 40 MHz crystal and started and stopped by software commands. Its
contents can be written to and read from by the PC, allowing timings for various
activities to be measured accurately.

5.1.1 Interrupt and DMA Interface

The interface for interrupts and DMA, described in [Section 4.3.3], allows the transfer

of data between PC memory and on-board RAM in either direction, using interrupt

and/or DMA. This is an example of an I/O interface to FPGA #2. In another example

the RAM could be replaced by an ADC and the supporting components needed to
build a data acquisition system.

Depending on the requirement for the design that we put onto the FPGAs, we may not
need to include the circuit for interrupt and DMA, but in this application we used an
interrupt to initiate a DMA transfer between the host PC memory and RAM on the

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 109

PCB. Using the performance meter, we find that 8k 16-bit words of data transfer in
16.59 msec. This is equivalent to 980 kBytes per second. Using programmed 1/O takes
96.22 msec, a rate of 170 kBytes per second.

5.1.2 2k-block 16-bit Adder

This simple application demonstrates a design of a coprocessor using the card in
combination with application software. We use a 16-bit parallel adder [Lenk 1977],
controlled by the PC programme. On a START signal initiated by software, the adder
carries out 2048 16-bit additions on data located in card RAM. These data are
organised in 4 address locations: the first and second locations contain the operand
data, the third and fourth locations contain the result of the addition. Data are
transferred from the PC memory to the card and then the results are sent back, using
programmed I/O or DMA operation. This design used 44 CLBs (42 flip-flops) and 52
I/O pins of FPGA #1 and 109 CLBs (65 flip-flops) and 58 1/0 pins of FPGA #2.

Memnory
—®1 Address

FPGA #1 FPGA #2
—*#| Performance | —
G Meter —

f Merory Static

ontro
RAM
—F Address —F>| Control emory
e =
Crystal A 47

Address
Generator

Interrupt
e and DMA &
Interface

=1 i

sng oyoq
sng vyog

> a
s
g |5
5 E
o S
0 o
0 !
w
Zl <
& &

sjoubis 3dnduagul

PC-AT BUS

Figure 3:A block diagram of a 2k-block 16-bit adder

The operating speed of the 16-bit adder can be controlled, using a divider to reduce
the 40 MHz clock. With a 10, 5 and 2.5 MHz signal clocking the adder, it takes 832,
1651 and 3283 usec respectively to process the block, in agreement with calculations
that the addition should take approximately 819, 1638 and 3276 psec respectively. The
speed of the adder is independent of the PC processor speed. The same 16-bit addition
using software on the 12 MHz 286 PC takes 7,276 psec. With 20 MHz clocking the
adder failed to obtain correct results because the RAM had 35 ns access time.

110 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

5.2 Prototyping with a Modified PCB

Using the PCB template of the card, we built a coprocessor card containing a
TMS320C25 DSP chip, 8k x 16-bit RAM for DSP program memory, and 8k x 16-bit
RAM for DSP data memory, as shown in [Fig. 4]. A relatively simple harness of glue-
logic within FPGA #2 is needed to control the DSP and to load and unload its
program and data memory. We have used this coprocessor card for processing
computed tomography data, using the back-projection algorithm, downloading
frequently executed portions of the algorithm into DSP memory for execution by the
DSP. Here we used the DSP C compiler to compile the original C code on PC into
DSP machine code. For interfacing, i.e to control the DSP and manage data transfer
between PC memory and DSP memory, we used many of the hardware macros and
software routines previously mentioned.

FPGA #1 FPGA #2

DSP_Status
DSP_Control

@ TMS320CeS

[Memory Address

7

Cantrol
Circurt

Crystat |)

Menory Dato

UU

Static
RAM

PC-AT BUS

Figure 4:A block diagram of a DSP coprocessor card

The improvement in computational speed is as expected for numerically intensive code
running on the DSP chip rather than on the host PC, but overall performance is limited
by the amount of RAM on the PCB, with delays due to data transfer bottlenecks. We
are looking at the improvements to be got with larger memory on the PCB, and also
we are redesigning the system to use dual port RAM for higher throughput.

6 Conclusions
We have developed a card suitable for prototyping on the PC with programmable

hardware provided by FPGAs. A development framework with a predetermined but
flexible hardware and software interface is provided. The functionality of hardware

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 111

with appropriate application software has been tested. The card’s interfacing features
using DMA block transfer and interrupt communication have been shown to work as
required. Using various examples, we have shown that it is easy to make a new design
and to map it into the FPGAs. The card is ready to be adopted by users to download
and test their designs; by modifying it or adding new components, new FPGA-based
cards with the same proven interface can be built.

6.1 Limitations of Present System

The rapid prototyping tools described in this paper are suitable for small designs [see
Section 5.1]. A total of 288 CLBs are provided by two XC3042 FPGAs, with some
of these needed for interfacing with the PC bus. However, other FPGAs with higher
CLBs per chip, such as the XC3195 with 484 CLBs per chip, can readily be used with
slight modification of the PCB template, and FPGAs from later families such as the
XC4000 would allow significantly larger designs to be prototyped.

More FPGA chips could be added to the card, although the inflexibility of a fixed
interconnection scheme and manual partitioning of design onto FPGAs might then start
to cause difficulties. Large designs requiring several FPGAs will require design entry
using a higher level method such as logic synthesis from hardware description
language, rather than schematic capture, and automated design mapping and
partitioning tools such as described by [Van den Bout et al. 1992]. The construction
of arrays of FPGAs or multi-modules on extensive busses or systolic structures is not
feasible with our system: see [Section 2.1.2] and [Section 2.2.1] for references to work
in this area.

A constraint of the present card, which would inhibit exploitation as a coprocessor, is
the small amount of single-port RAM which we incorporated, imposing a bottleneck
on data transfer. In principle this limitation can be alleviated by editing the PCB to
extend the RAM size; also we are looking at dual-port designs [see Section 5.2].
Further enhancing the data throughput requires moving beyond the ISA bus, as
discussed next.

6.2 Further Work

For applications requiring fast transfer of data, the 16-bit ISA bus has been overtaken
by other systems. The most straightforwardly related Extended ISA (EISA) bus has
a 32-bit architecture and a different bus-cycle design, which together allow a

maximum data-transfer rate of 33 Mbytes/s compared with 8.33 Mbytes/s with ISA.

ISA cards can be used with EISA systems. To augment our system to allow full EISA
performance is quite feasible, but would require careful consideration. Although the
electrical and timing constraints are easy to satisfy with FPGA and EPLD chips, the
extended bus has 90 additional contacts - 198 compared with 98 for ISA, and

112 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

requiring a more complex bus adapter. Where the EISA standard was required the
additional work on the PCB design would probably require more than a two layer
board, whereas ISA needs only two layers. The PCB layout would change extensively,
and additional and modified components would be needed in the hardware macro
library.

The latest system which is receiving great attention at present is the Peripheral
Component Interconnect (PCI) bus, which has 32-bit or 64-bit architecture, permitting
maximum data transfer rates of 133 Mbytes/s or 266 Mbytes/s respectively [Messmer
1995]. To interface an application board to this bus requires adherence to exacting
specifications, both for functionality and timing. At present hard chip-sets are
available, and programmable logic manufactures are offering designs for down-loading
to FPGA or EPLD which claim to comply with the standard; see references in
[Section 3.3] for vendor information. If these are satisfactory, then it would be
possible to extend our system to hang onto the end the raw interface devices, using
our mechanisms of handshaking, or extending the approach to the use of buffer
memory and FIFOs to allow higher data throughput. The sophistication of the PCI
standard would make self-design of the basic interface a serious task [Choy 1996].
Again higher density of PCB tracking would be needed, perhaps demanding the use
of sub-boards attached to a motherboard. In any case, the details of the software and
much of the hardware macros would need to be completely re-cast. However, our
general approach should be successful here, as it will be increasingly important to
have a secure prototyping framework when working with more exacting and high
performance systems. In looking at designing for this interface, we should reformat
our libraries to emphasise the elements relating to processes on the PCB and within
the FPGAs which are independent of the particular bus employed.

Finally, our system could be extended without too much difficulty to allow
development and testing of PCMCIA (Personal Computer Memory Card International
Association) hardware [Messmer 1995], [Won 1995]. The signals of this interface
system are easy to handle once they have been made available at the external socket,
that is using a built-in internal PCI/ISA/EISA interface. This is the same strategy as
advised in the last paragraph for attaching to the PCI bus.

References

[Advantech 1991] Advantech Company Limited: "Model PCL-757 ISA Bus Switch/Extension
Card: User's Manual"; Advantech Company Limited / Taiwan (1991)

[Altera 1993] Altera Corporation: "Altera Data Book"; Altera Corporation / San Jose (1993),
83-88.

[Altera 1992a] Altera Corporation: "MAX+plus II: User Guide"; Altera Corporation / San Jose
(1992)

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 113

[Altera 1992b] Altera Corporation: "MAX+plus II: AHDL"; Altera Corporation / San Jose
(1992)

[Amplicon 1996] Amplicon Liveline: "Data acquisition, industrial communications"; catalogue
(1996), 6-99.

[Athanas and Abbott 1994] Athanas, P. M., Abbott, A. L.: "Image processing on a custom
computing platform”; in "Field-programmable logic" edited by Hartenstein, R. W., Servit, M.
Z., Springer-Verlag Lecture notes in computer science, 849 (1994), 156-167.

[Bains 1996] Bains, S.: "Boards make smarter connections"; New Scientist, 151, 2047 (1996),
21.

[Benner et al. 1994] Benner, T., Emst, R., Kénenkamp, I., Holtmann, U., Schiler, P., Schaub,
H-C., Serafimov, N.: "FPGA based prototyping for verification and evaluation in hardware-
software cosynthesis”; in "Field-programmable logic" edited by Hartenstein, R. W., Servit, M.
Z., Springer-Verlag Lecture notes in computer science, 849 (1994), 251-258.

[Boardmaker 1992] Boardmaker 2.23: "Boardmaker guide to release 2.23", Tsien Ltd.,
Cambridge Research Laboratories / Cambridge (1992)

[Boerno et al. 1994] Boemo, E., Meneses, J., Gonzalez de Rivera, G., Barbero, F.: "Field-
programmable logic in education: a case study"; in "More FPGAs" edited by Moore, W. R.,
Luk, W., Abingdon EE&CS Books / Oxford (1994), 452-457.

[Bolton 1990] Bolton, M.: "Digital systems design with programmable logic"; Addison-Wesley
Publishers Ltd. (1990)

[Bouldin 1995] Bouldin, D. W.: "VLSI designer’s interface"; IEEE Circuits and Devices,
January (1995), 6.

[Bursky 1995a] Bursky, D.: "Gate arrays face onslaught of dense and flexible FPGAs";
Electronic Design, June 26th (1995), 85-96.

[Bursky 1995b] Bursky, D.: "FPGAs and dense EPLDs challenge gate arrays"; Electronic
Design, July 10th (1995), 69-80.

[Bursky 1996] Bursky, D.: "Enhanced FPGA family delivers 125,000 gates"; Electronic Design,
January 26th (1996), 141-142.

[Cadence 1991] Cadence.: "Design Framework Il Reference Manual"; Cadence Design Systems
(1991)

[Camerota and Rosenberg 1994] Camerota, R., Rosenberg, J.: "Data acquisition design with
cache logic"; Electronic Product Design, February (1994), 55-56.

[Carlstedt-Duke 1995] Carlstedt-Duke, T.: "LPMs cut cost of high level design"; Electronic
Product Design, October (1995), 30-39.

114 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

[Chan and Mourad 1994] Chan, P. K., Mourad, S.: "Digital design using field programmable
gate arrays"; PTR Prentice Hall / New Jersey (1994)

[Choy 1996] Choy, G.: "The PCI wait state challenge"; Components In Electronics, October
(1996), 24-25.

[Clapp and Harman 1994] Clapp, A. E., Harman, T. L.: "Combining microcontroller units and
PLDs for best system design"; IEEE Micro, April (1994), 70-78.

[Conner 1996] Conner, D.: "Reconfigurable logic: hardware speed with software flexibility";
Electronic Design News Europe, July (1996), 15-23.

[Dunn 1995] Dunn, P.: "A configurable logic processor for machine vision"; in "Field-
programmable logic and applications"; edited by Moore, W., Luk, W., Springer-Verlag Lecture
notes in computer science, 975 (1995), 68-77.

[Eggebrecht 1990] Eggebrecht, L. C.: "Interfacing to the IBM Personal Computer: Second
Edition"; SAMS / Indiana (1990)

[Fairchild 1995] Fairchild Limited: "Total solution for PC-based industrial and lab automation”;
Advantech catalogue, 31 (1995)

[Farnell 1995] Farnell Components: "IBM compatible hardware expansion”; October '95 to
March '96 catalogue (1995), 165-171.

[Fawcett 1994a] Fawcett, B. K.: "Tools to speed FPGA development"; IEEE Spectrum,
November (1994), 88-94.

[Fawcett 1994b] Fawcett, B. K.: "System-integration features and development tools key to
FPGA design"; Microprocessors and Microsystems, 18, 9 (1994), 547-560.

[Gehrig et al. 1994] Gehrig, S., Ludwig, S., Wirth, N.: "A laboratory for a digital design course
using FPGASs"; in "Field-programmable logic" edited by Hartenstein, R. W., Servit, M. Z.,
Springer-Verlag Lecture notes in computer science, 849 (1994), 385 -396.

[Gokhale and Marks 1995] Gokhole, M., Marks, A.: "Automatic synthesis of parallel programs

targeted to dynamically reconfigurable logic arrays"; in "Field-programmable logic and

applications" edited by Moore, W., Luk, W., Springer-Verlag Lecture notes in computer science,
975 (1995), 399-408.

[Guccione 1996] Guccione, S.: "List of FPGA-based computing machines"; to be found at
http://www.io.com/~guccione/HW_list.html (1996)

[Hartenstein et al. 1994] Hartenstein, R. W., Kress, R., Reinig, H.: "A new FPGA architecture
for word-oriented datapaths”; in "Field-programmable logic" edited by Hartenstein, R. W.,
Servit, M. Z., Springer-Verlag Lecture notes in computer science, 849 (1994), 144-155.

[Herpel et al. 1995] Herpel, H-C., Ober, U, Glesner, M.: "Prototype generation of application
specific embedded controllers for microsystems"; in "Field-programmable logic and

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 115

applications" edited by Moore, W., Luk, W., Springer-Verlag Lecture notes in computer science,
975 (1995), 341-351.

[Horng and Sathe 1994] Horng, C-S., Sathe, S.: "Programmable interconnect in FPGA-based
prototyping"; Electronic Product Design, February (1994), 39-43.

[Isoaho et al. 1993] Isoaho, J., Pasanen, J., Vainio, O., Tenhunen, H.: "DSP system integration
and prototyping with FPGAs"; Journal of VLSI Signal Processing, 6, (1993), 155-172.

[Isoaho et al. 1994] Isoaho, J., Jantsch, A., Tenhunen, H.: "DSP development with full-speed
prototyping based on HW/SW codesign techniques"; in "Field-programmable logic" edited by
Hartenstein, R. W., Servit, M. Z., Springer-Verlag Lecture notes in computer science, 849
(1994), 318-320.

[Knapp 1996] Knapp, S.; See http://www.xilinx.com/products/fpgaspec.htm#XC3000 and
http://www xilinx.com/products/fpgaspec.htm#XC4000

[Kempa and Rieger 1994] Kempa, G. J., Rieger, P.: "MARC: a Macintosh NUBUS-expansion
board based reconfigurable test system for validating communication systems"; in "Field-
programmable logic" edited by Hartenstein, R. W., Servit, M. Z., Springer-Verlag Lecture notes
in computer science, 849 (1994), 409-420.

[Koch and Golze 1994] Koch, A., Golze, U.: "A universal co-processor for workstations"; in
"More FPGAs" edited by Moore, W. R., Luk, W., Abingdon EE&CS Books / Oxford (1994),
317-328.

[Lam 1994] Lam, D.: "Educational use of field programmable gate arrays"; in "Field-
programmable logic" edited by Hartenstein, R. W., Servit, M. Z., Springer-Verlag Lecture notes
in computer science, 849 (1994), 277-279.

[Lauwereins et al. 1995] Lauwereins, R., Engels, M., Adé, M., Peperstraete, J. A.: "Grape-II:
A system-level prototyping environment for DSP applications”; IEEE Computer, February
(1995), 35-43.

[Lazarus and Meyer 1993] Lazarus, R. B., Meyer, F. M.: "Realization of a dynamically
reconfigurable preprocessor”; IEEE National Aerospace and Electronics Conference / Dayton
(1993), 74-80.

[Lenk 1977] Lenk, J. D.: "Logic Designer's Manual"; Reston Publishing Company / Reston
(1977), 263-273.

[Maliniak 1996] Maliniak, L.: "Pin multiplexing yields low-cost logic emulation"; Electronic
Design, January 22nd (1996), 65-69.

[Mat and Noras 1994] Mat, ., Noras, J. M.: "A development framework for hardware-software
codesign, evaluation and rapid prototyping"; Malaysian Journal of Computer Science, 7, (1994),
95-105.

[Mclver 1996] Mclver, A.: "Software, who needs it?"; New Scientist, 2nd November (1996),

116 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

40-43.

[Messmer 1995] Messmer, H-P.: "The indispensable PC hardware book: Your hardware
questions answered"; Addison-Wesley / Wokingham (1995), 2nd edition.

[Mohsen 1993] Mohsen, A.: "Programmable interconnects speed system verification"; IEEE
Circuits and Devices, May (1993), 37-42.

[Monaghan 1993] Monaghan, S.: "A gate-level reconfigurable Monte Carlo processor"; Journal
of VLSI Signal Processing, (1993), 139-153.

[Njolstad et al. 1994] Njglstad, T., Pihl, J., Hofstad, J.: "ZAREPTA: a zero lead-time, all
reconfigurable system for emulation, prototyping and testing of ASICs"; in "Field-programmable
logic" edited by Hartenstein, R. W., Servit, M. Z., Springer-Verlag Lecture notes in computer
science, 849 (1994), 230-239.

[Omar and Noras 1995] Omar, J., Noras, J. M.: "A practical guide to prototyping on the PC
with programmable hardware"; Department of Electronic and Electrical Engineering Internal
Report Number 584, University of Bradford, UK (1995)

[Owen et al. 1994] Owen, H. L., Khan, U. R., Hughes, J. L. A.: "FPGA-based emulator
architectures"; in "More FPGAs" edited by Moore, W.R., Luk, W., Abingdon EE&CS Books
/ Oxford (1994), 398-409.

[Pottinger and Eatherton 1994] Pottinger, H. J., Eatherton, W.: "Using a multi-FPGA based
rapid prototyping board for system design at the undergraduate level"; Proceedings of the 37th
Midwest Symposium on Circuits and Systems, IEEE / New Jersey (1994), 437-439.

[Quickturn Design Systems 1994] Quickturn Design Systems.: "Rapid prototyping systems for
early hardware verification"; Electronic Product Design, October (1994), 59-61.

[Rose et al. 1993] Rose, J., El Gamal, A., Sangiovanni-Vincentelli, A.: "Architecture of field-
programmable gate arrays"; Proceeding of the IEEE, 81, 7 (1993), 1013-1029.

[Sandell 1993] Sandell, J.: "Field programmable gate arrays in the undergraduate curriculum®;
Proceedings of the 11th Australian Microelectronics Conference / Queensland, October 5-8
(1993), 41-46.

[Schubert et al. 1994] Schubert, E., Kebscull, U., Rosentiel, W.: "The use of FPGAs for
educational purposes in VLSI microprocessor design”; in "More FPGASs" edited by Moore,
W.R., Luk, W., Abingdon EE&CS Books / Oxford (1994), 458-465.

[Schulz 1995] Schulz, P.: "Extending DSP-boards with FPGA-based structures of
interconnection”; in "Field-programmable logic and applications” edited by Moore, W., Luk, W.,
Springer-Verlag Lecture notes in computer science, 975 (1995), 78-85.

[Seaman 1995] Seaman, G.: "Dynamically reprogrammable FPGAs and parallel computing";
in the British Computer Society’s Parallel Processing Specialist Group newsletter "Parallel
Update”, 18 (1994), 29-37.

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 117

[Shanley and Anderson 1995] Shanley, T., Anderson, D.: "ISA system architecture Third
edition"; Addison-Wesley Publishing Company, (1995), 476-489.

[Snider et al. 1995] Snider, G., Kuekes, P., Culbertson, W. B., Carter, R.J., Berger, A.S.,
Amerson, R.: "The Teramac configurable compute machine"; in "Field-programmable logic and
applications" edited by Moore, W., Luk, W., Springer-Verlag Lecture notes in computer science,
975 (1995), 44-53.

[Thame 1994a] Thame Components Ltd.: "FPID-based communications switching"; part number
#D-22-004, May (1994).

[Thame 1994b] Thame Components Ltd.: "Programmable switching devices data sheet"; I-Cube
document #D-11-004, December (1994).

[Trakas 1994] Trakas, P.: "Hardware library for PC interfacing"; Final year project report,
Bradford University, UK (1994).

[Turner and Graumann 1995] Turner, L. E., Graumann, P. J. W.: "Rapid hardware prototyping
of digital signal processing systems using field programmable gate arrays"; in "Field-
programmable logic and applications" edited by Moore, W., Luk, W., Springer-Verlag Lecture
notes in computer science, 975 (1995), 129-138.

[Van den Bout et al. 1992] Van den Bout, D. E., Morris, J. N., Thomae, D., Labrozzi, S.,
Hallman, D.: "AnyBoard: An FPGA-Based, Reconfigurable System”; IEEE Design & Test of
Computers, 9, 3 (1992), 21-30.

[Virtual Computer 1994] Virtual Computer Corporation.: "Virtual computer'; P series
information sheet 1infol.1, Reseda / California (1994)

[vom Bogel et al. 1994] vom Bégel, G., Nauber, P., Winkler, J.: "A design environment with
emulation of prototypes for hardware/software systems using Xilinx FPGA"; in "Field-
programmable logic" edited by Hartenstein, R. W., Servit, M. Z., Springer-Verlag Lecture notes
in computer science, 849 (1994), 315-317.

[Whiny 1996] Whiny, H.: "Design experiences on a 41.5 million-gate project”; Electronic
Product Design, October (1996), 21-25.

[Won 1995] Won, M. S.: "Programmable logic simplifies PCMCIA interface"; Electronic
Design, July 24th (1995), 124-126.

[Xilinx 1994] Xilinx: "The Programmable Logic Data Book"; Xilinx Corporation / San Jose
(1994)

Appendix 1

SUBDESIGN PLDecod

(
AEN, A[9..1], IORn, IOWn, PSTA : INPUT ;

118 Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware

PGRSTn, RDB00, RSTDRYV, SINITn T INPUT ;
SWRSTn, SW[4..1] T INPUT ;
DO, GRPSELN, PGXILn, PRSTn,RDB00Nn : OUTPUT,;
SRSTn, WRB02n, WRB04n, WRBO06nN : OUTPUT,;
)

VARIABLE

N[10..0], GRPSEL1, WRB000 : NODE ;

%_Symbols: | NOT, & AND, !& NAND, # OR, # NOR, $ XOR, !$ XNOR_%
BEGIN

% Address comparator %

N4 = AEN # A3;

N5 = SW1 !$ A4,

N6 = SW2 !$ A5;

N7 = SW3 !$ A6;

N8 = SW4 1$ A7,

N9 = A8 & A9;

GRPSEL1 = N4 & N5 & N6 & N7 & N8 & N9;
GRPSELnN = IGRPSEL1;

% Address decoding %

NO = NOT(!A2 & !Al & GRPSEL1);

N1 = NOT(!A2 & A1 & GRPSEL1);

N2 = NOT(A2 & |IA1l & GRPSEL1);

N3 = NOT(A2 & Al & GRPSEL1);

% Write signals %

WRBO000 = NO OR IOWn;

WRB02n = N1 OR IOWn;

WRB04n = N2 OR IOWn;

WRBO06n = N3 OR IOWn;

% Read signal %

RDBO0ONn = NO OR IORn;

% For Xilinx Status Reading %

DO = TRI(PSTA, 'RDBO00);

% For Xilinx Configuration %

PGXILn = TRI(GND, !PGRSTn);

% For Resetting Xilinx Chips %

N10 = WRBO000 & PGRSTn & SWRSTn & IRSTDRYV;
PRSTn = N10 & SINITn;

SRSTn = N10;
END;
Appendix 2

/* I0TE-nb.C: Testing Programmed 1/O design */
#include <io.h>

#include <dos.h>

#include <stdio.h>

#include <conio.h>

Noras J.M., Omar J.: Prototyping on the PC with Programmable Hardware 119

/* Global vars */

#define BaseAdd 0x0370
int PortOut = BaseAdd;
int Portln = BaseAdd;

[* WritePort(): Function to write word data to output port */
void WritePort(int DataOut)

printf(" Value %4x is sent to port number %x \r\n",
DataOut, PortOut);

outpw(PortOut , DataOut);

return;

}

/* ReadPort():Function to read word data from input port */
void ReadPort(void)
{
int Dataln;
Dataln = inpw(Portln);
printf("* Value %4x is received from port number %x \r\n",
Dataln, Portln);
return;

}

/* main(): Main programme */
void main(void)
{ . .
int i;
for(i=0; i<30000; i+=5555)
{
WritePort(i);
ReadPort();
}
}

