
MONSTR V — Transitive Coercing Semantics
and the Church-Rosser Property

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk)

Abstract: The transitive coercing semantic model for the execution of the MONSTR generalised
term graph rewriting language is defined. Of all the operational semantics for MONSTR that one
might consider, this one has the cleanest properties. Under intuitively obvious conditions for
executions involving redexes permitted to overlap sufficiently to allow the programming of
deterministic synchronisations, and despite the failure of exact subcommutativity, a Church-
Rosser theorem is proved to hold up to markings and garbage.

1 Introduction

In the first MONSTR paper ([Banach (1996b)], hereafter referred to asM-I), we intro-
duced the MONSTR generalised term graph rewriting language, together with its oper-
ational semantics, and the architectural rationale behind its design. We also briefly
described some other semantic models for MONSTR and the correctness problems that
they engender when soundness with respect to the original semantics is desired. In sub-
sequent papers (M-II [Banach (1997a)],M-III [Banach (1997b)],M-IV [Banach
(1997c)]), we treated such correctness problems in detail, concentrating on issues con-
nected with serialisability properties of finegrained operational semantic models, such
as might reflect the behaviour of actual implementations on distributed architectures.

In this paper we introduce the transitive coercing semantic model. Because the model
is already coercing, it enjoys the good serialisability properties of coercing models for
finegrained implementation as discussed inM-IV . The addition of transitivity of redi-
rections ([Banach (1996a)]) gives the model better subcommutativity properties, and so
the emphasis in this paper is on the Church-Rosser property. (In truth, for the models
considered earlier in this series, analogous Church-Rosser theorems hold, but because
of the weaker subcommutativity properties of those models, collections of rather ugly
side conditions have to be included in the hypotheses, and this makes such theorems of
less interest. Some indication of what is involved here may be gleaned from Section 6
of M-II where subcommutativity results are worked out for the standard (suspending)
semantics, as an aid to the verification of systems implemented in MONSTR, without
proceeding to a full Church-Rosser theorem.)

MONSTR is worth studying for number of reasons. First it is a graph rewriting frame-
work deliberately cast close to the capabilities of real implementations. Its expressive-
ness therefore combines the abstractness of graphs and their arbitrary interconnectivity,
with very pragmatic considerations, and translations of other systems into MONSTR
describe both potential implementation routes, and something of the naturalness or oth-
erwise of the primitives offered by such systems. MONSTR has with some justification
been called an abstract assembly language, and a wider ranging discussion setting
MONSTR in context and with suitable references to earlier work can be found inM-I .

Journal of Universal Computer Science, vol. 3, no. 12 (1997), 1283-1336
submitted: 25/9/97, accepted: 13/10/97, appeared: 28/12/97  Springer Pub. Co.

Secondly, MONSTR provides a model for concurrent computations that combines the
abstractness of graph structure and of the potential to encode arbitrary information with-
in the labels of the graphs, with a very specific rewrite strategy control mechanism,
based on considerations of concrete machine design. MONSTR is also sensitive to the
particular feature of many real computing systems, whereby some parts of the current
computational state are active and others are passive, the latter being manipulated by
the former; and in a real system the active may in time become passive and vice versa.
Often the nondeterminism in a real system finds expression in the competition between
active parts to perform incompatible manipulations on the passive parts. Ideally, and in
a clean model of computation, this would be the only source of nondeterminism as re-
gards the final answer computed by the system. However most low level models of
computation that are as operational as MONSTR, do not have such pleasant semantic
properties, at least not in an elegantly expressible form. And the same is true of the se-
mantic models for MONSTR considered earlier in this series of papers. However, the
model presented here, the culmination of the series, possesses particularly strong prop-
erties in this respect. Provided synchronisations are deterministic, i.e. provided there is
a (locally) unique outcome whatever the order of arrival of interested processes at a par-
ticular piece of passive computational state, the local determinism extends to a global
determinism, resulting in a Church-Rosser property. This is what we prove here.

The rest of the paper is as follows. Section 2 defines transitive term graphs, and gives
the (abstract) syntax of MONSTR rules and systems. Though the treatment is mathe-
matically self contained, no attempt is made to motivate the definitions. The reader who
is left uneasy by Section 2 should consultM-I which is largely concerned with such mo-
tivational issues. For future reference, notation such asM-I .11.4 refers to the fourth
listed item of Section 11 ofM-I . Section 3 defines transitive coercing semantics pre-
cisely, and contains additional motivational remarks at the end. Then Section 4 covers
the fundamental invariants of MONSTR, balancedness and state saturatedness, while
Section 5 discusses garbage, an issue which plays a significant role in the Church-Ross-
er theorem subsequently.

Typical MONSTR systems feature a lot of sharing and thus a lot of overlapping redexes,
in order to express the synchronisations that concurrent systems need. Thus a Church-
Rosser theorem that merely deals with the obvious analogue of orthogonal systems in
which redexes may not overlap at all (or hardly at all) yields a relatively weak result,
with little applicability to practice and to the situations described previously. So Section
6 deals with overlapping redexes, identifying cases in which redexes may overlap in a
benign manner. The paper would be of less value were it not for the fact that the syn-
chronisation situations these cases allow us to reason about are in fact just the ones that
turn out to be practically useful in typical real MONSTR systems. Section 7 sets out
the subcommutativity results on which the main theorem is based. We see there, that
the elementary atomic actions of transitive coercing MONSTR do not actually subcom-
mute in all the desired situations. This adds some technical spice to the Church-Rosser
theorem of Section 8, where we see that the discrepancies in subcommutativity cause
the expected filling in of the Church-Rosser diamond to flake into distinct sheets. For-
tunately, a careful analysis reveals that the discrepancies are sufficiently benign that
they do not actually block the construction, and all relevant sheets can be filled in as
desired. It is perhaps worth mentioning that not all systems with the Church-Rosser
property satisfy the hypotheses of the main theorem, though these are fairly rare. An
interesting case in point is the efficient translation of untyped interaction nets into

1284 Banach R.: MONSTR V - Transitive Coercing Semantics ...

MONSTR ([Banach and Papadopoulos (1997)]), where more drastic overlapping of re-
dexes than permitted here nevertheless leads to confluent results. Section 9 concludes.

2 Transitive Term Graphs and the Syntax of MONSTR Systems

In this section we deal with basic syntactic matters. For readers familiar withM-I , the
graphs of this paper contain “bottom-nodes” whose nature will become clear in the next
section.

We assume we are given an alphabetS = {S, T, …} of node symbols and in addition,
two further special symbolsAny and⊥ (bottom) which are not inS. When we wish to
refer to specific symbols we will write them thusS, T; but when we speak about sym-
bols in general in the meta-language we will use italics thusS, T.

Definition 2.1 A transitive term graph (or just graph)G, is a quintuple (N, σ, α, µ, ν)
where

(1) N is a set of nodes.

(2) σ is a mapN → S ∪ {⊥}, which labels each node.

(3) α is a mapN → N*, which maps each node to its sequence of children.

(4) µ is a mapN → { ε, ∗, #, ##, ###, … #n (n ≥ 1)}, which maps each node to its
node marking (idle, active, once, twice… n times suspended).

(5) ν is a mapN → { ε, ^}*, which maps each node to the sequence of arc markings
on the arcs to its children (each either the normal or notification marking).

Clearly we must have for allx ∈ N, dom(α(x)) = dom(ν(x)), where the domain of a se-
quence is the set of its indices. And furthermore,⊥-labelled nodes (⊥-nodes), satisfy

(BOT) σ(x) = ⊥ ⇒ α(x) = ν(x) = ∅

i.e. ⊥-nodes are always childless.

We writeA(x), the arity of a nodex, for dom(α(x)) = dom(ν(x)). Note thatA(x) is a set
of consecutive natural numbers starting at 1, or empty. When dealing with more than
one graph (or pattern — see below), we subscript the objects defined in (1) – (5) above
with the name of the graph in question to avoid ambiguity. Also we allow ourselves to
write x ∈ G instead ofx ∈ N(G) or x ∈ NG etc. Each child nodec of some nodep de-
termines an arc of the graph, and we will refer to arcs using the notation (pk, c) to indi-
cate thatc is thek’th child of p; i.e. thatc = α(p)[k] for somek ∈ A(p). The mapsµ, ν
are referred to as the markings and are mainly concerned with encoding execution strat-
egies, whileN, σ, α are referred to as the graph structure and provide the main informa-
tion content of the graph.

For ease of use, the names are meant to be reasonably alliterative:σ for symbols,α for
arcs,µ for markings,ν for notifications.

Fig. 1 below shows a term graph, in which each node is depicted by its symbol followed
by its sequence of out-arcs in brackets, and only non-idle markings are shown. Obvi-
ously transitive term graphs are directed graphs. We use standard digraph terminology
below where necessary without further comment; eg. path, semipath, and accessibility
of one node from another. (Recall a semipath ignores the orientation of arcs.)

1285Banach R.: MONSTR V - Transitive Coercing Semantics ...

For rewriting, we will need a notion of pattern, and a sufficiently flexible notion of pat-
tern matching.

Definition 2.2 A pattern is defined as in definition 2.1 except that the signature ofσ is
N → S ∪ {Any}, andAny-labelled nodes must satisfy

(ANY) σ(x) = Any ⇒ α(x) = ν(x) = ∅

In patterns and graphs, among the non-⊥-nodes,Any-labelled nodes (Any-nodes) are
also called implicit whereas other nodes are explicit.

Homomorphisms relate patterns to graphs. Apart from the expected preservation of
structure, readers should note the asymmetry of the roles of theAny-nodes and⊥-nodes.

Definition 2.3 Let P be a pattern andG be a graph (and letP have a rootr). A node
maph : P → G is a homomorphism, or matching, toG (at t ∈ G) iff (h(r) = t and) for
all nodesx ∈ P such thatσ(x) ≠ Any andσ(h(x)) ≠ ⊥

(1) σ(x) = σ(h(x)), i.e.h is label-preserving.

(2) A(x) = A(h(x)), i.e.h is arity-preserving.

(3) For allk ∈ A(x), h(α(x)[k]) = α(h(x))[k], i.e.h is order-preserving.

A homomorphism is proper iff⊥ ∉ {σ(h(x)) | x ∈ P andx is explicit}.

Suppose in addition the following hold:

(4) µ(x) = µ(h(x)), i.e.h is node-marking-preserving.

(5) For allk ∈ A(x), h(ν(x)[k]) = ν(h(x))[k], i.e.h is arc-marking-preserving.

In such a case we say thath preserves markings. (To emphasise the converse when re-
quired, we call ordinary homomorphisms, graph structure homomorphisms.)

Omitting mention of roots, definition 2.3 serves just as well for homomorphisms be-
tween graphs and homomorphisms between unrooted patterns, as it does for rooted pat-
terns and graphs.

∗F[• •]

Cons[• •] Var

2

#Q[•]

^

Fig. 1 A graph.

Root[•]

1286 Banach R.: MONSTR V - Transitive Coercing Semantics ...

Definition 2.4 A ruleD is a quadruple (P, root, Red, Act) where

(1) P is a pattern, called the full pattern of the rule.

(2) root is an explicit node ofP called the root, and all implicit nodes ofP are acces-
sible from the root. Ifσ(root) = S, thenD is a rule forS. The subpattern ofP
of nodes and arcs accessible from (and including)root is called the left patternL
of the rule, and nodes ofP not inL are called contractum nodes.L is unmarked,
i.e. for allx ∈ L, µ(x) = ε, andν(x)[k] = ε for all k ∈ A(x).

(3) Red is a set of pairs of nodes, (called redirections) such thatRed⊆ L × P, and
Red satisfies the invariants (RED-1), (RED-2) and (RED-3) below:

(RED-1) Red is the graph (in the set theoretic sense) of a partial function.

(RED-2) (a, b) ∈ Red⇒ a is an explicit node ofL.

(RED-3) {(a, b), (a′, b′)} ⊆ Red anda ≠ a′ ⇒ σ(a) ≠ σ(a′).

For (a, b) ∈ Red, a is called the LHS andb the RHS of the redirection, and we
say that the rule redirectsa.

(4) Act is a set of nodes (called activations) ofP such thatAct ⊆ L.

Fig. 2 is a picture of a rule, withroot indicated by the short stubby arrow,Red indicated
by the dashed arrows, andAct indicated by adorning the relevant nodes ofL with a∗
(these are unmarked according to definition 2.4.(2)).

Definition 2.5 A ruleD = (L ⊆ P, root, Red, Act) matches (or is applicable to) a graph
G at t iff µ(t) = ∗ and there is a proper matchingg : L → G at t. We call the image of
such a matching a redex.

It is not hard to see that the rule of Fig. 2 matches at theF-labelled node of Fig. 1.

For reasons discussed at length inM-I , it is necessary from a distributed implementa-
tion standpoint, to circumscribe the generality permitted by definition 2.4. The deliber-
ations inM-I distil down to the following combinatorial properties, quoted (almost)
verbatim fromM-I , which define the abstract syntax of MONSTR systems.

Restriction M-I.11.1 The alphabet of symbolsS, is the disjoint union of three subal-
phabets

F[• •]

Cons[• •] Var

∗Any ∗Any

##G[• •]

^

Fig. 2 A rule.

^

1287Banach R.: MONSTR V - Transitive Coercing Semantics ...

S = F ∪ C ∪ V

F is the alphabet of function symbols. A function symbol may label the root of the left
patternL of a rule, but not any subroot node ofL. Function symbols may label the LHS
of a redirection.

C is the alphabet of constructor symbols. A constructor symbol may label a subroot
node of the left pattern of a rule, but not the root. Constructors may not label the LHS
of a redirection.

V is the alphabet of stateholders, or variables. A stateholder symbol may label a subroot
node of the left pattern of a rule, but not the root. Stateholders may label the LHS of a
redirection.

The functions act as instigators of rewrites, the constructors encode immutable values,
while the stateholders are able to model notions of updatable state, and to play a central
role in the coding of synchronisation primitives.

Restriction M-I.11.2

(1) For eachS ∈ S, there is a set of natural numbersA(S), in every case an initial
segment of the naturals from 1, or empty.

(2) For eachF ∈ F, there is a subset ofA(F), Map(F).

(3) For eachF ∈ F, there is a subset of Map(F), State(F), in every case either a sin-
gleton or empty.

(4) Root ∈ C.

The above maps each symbolS to its arityA(S). The intention is that allS-labelled
nodes are to have the same arity. For functionsF, Map(F) is the set of argument posi-
tions at which all normal rules forF (see below), will always need to pattern match.
Similarly State(F), if non-empty, contains the position at which any stateholder argu-
ment ofF must occur in a normal rule forF. Clause (4) states thatRoot is a constructor,
a fact used in the theory of garbage collection.

Definition M-I.11.3 LetF ∈ F. A rule forF such that each child of the root is a distinct
implicit node is called a default rule forF. Otherwise the rule is a normal rule.

Note that with fixed arities, a default rule forF will always succeed in matching its left
pattern to any activeF-labelled node of a graph, precisely because no-non trivial con-
ditions need to be satisfied by the children of the root of the redex.

Restriction M-I.11.4 LetD = (P, root, Red, Act) be a rule with left patternL. Then

(1) Each node has the arity dictated by its symbol, i.e.

For allx ∈ P, A(x) = A(σ(x))

(2) Each normal rule for a symbol matches the same set of arguments of the root, i.e.
if σ(root) = F, andD is a normal rule then

α(root)[k] is explicit ⇔ k ∈ Map(F)

(3) A rule for a function may match at most one stateholder, and then only in a fixed
position (the stateholder position); all other explicit arguments must be construc-

1288 Banach R.: MONSTR V - Transitive Coercing Semantics ...

tors (occurring in constructor positions), i.e. ifσ(root) = F, andD is a normal rule
then

σ(α(root)[k]) ∈ V ⇒ k ∈ State(F)

(4) All grandchildren of the root are implicit, i.e. for allk ∈ A(σ(root)), andj ∈
A(σ(α(root)[k]))

α(α(root)[k])[j] is implicit

(5) Implicit nodes of the left pattern have only one parent in the left pattern, i.e. if
y ∈ P is implicit, there is precisely onex ∈ L such that for somek ∈ A(x), y =
α(x)[k].

(6) Everyx ∈ P is balanced, i.e.

µ(x) = #n (for n ≥ 1) ⇔ |{ k | ν(x)[k] = ^} | = n

(7) Every arc (pk, c) of P is either state saturated or activated, i.e.

ν(p)[k] = ^ andµ(c) = ε ⇒ σ(c) ∈ V or c ∈ Act

(8) The root is always redirected, i.e. for someb ∈ P

(root, b) ∈ Red

(9) No arc can lose state saturatedness through redirection, i.e.

(a, b) ∈ Red andµ(b) = ε ⇒ σ(b) ∈ V or b ∈ Act

(10) A node which is the LHS but not the RHS of a redirection should be garbaged
by a rewrite whenever possible, i.e.

(b, c) ∈ Red andb ∈ Act ⇒ there is ab ≠ a ∈ L such that (a, b) ∈ Red

Restriction M-I.11.6 For eachF ∈ F there is a pair of sets (N F, DF), whereN F con-
sists of normal rules forF, andDF is non-empty and consists of just default rules forF.
An assignment of such pairs to eachF ∈ F constitutes a MONSTR system.

The above gives the syntax of MONSTR systems. In addition,M-I defines a couple of
builtins for testing pointer equality, but we will not be concerned with these in this pa-
per.

3 Transitive Coercing Semantics

Definition M-I.3.13 An initial graph is one which consists of a single node with empty
arity, with the active node marking, and labelled by the symbolInitial.

Definition M-I.3.14 A preexecutionG of a systemR is a sequence of graphs [G0,
G1…] such thatG0 is initial and for eachi ≥ 0 such thati+1 is an index ofG, Gi+1 results
from Gi by some execution step at some arbitrarily selected active nodeti of Gi (i.e. a
nodeti for whichµ(ti) = ∗). If the sequence is of maximal length, it is called an execu-
tion. Graphs occuring in (pre)executions are called execution graphs.

Though the above is (essentially) taken fromM-I , it applies equally well here. All that
remains is to define execution steps, and the rules which state how one chooses between
them at any particular active node. Transitive coercing execution steps are of three

1289Banach R.: MONSTR V - Transitive Coercing Semantics ...

kinds: notifications, rewrites and suspensions. The next definition states the circum-
stances under which each kind of action is performed.

Definition 3.1 LetG be a graph andt an active node ofG, the chosen root. For tran-
sitive coercing semantics, the kind of execution step to be performed att is determined
as follows.

If σ(t) ∈ C ∪ V
Then Perform a notification att
Else If For allk ∈ Map(σ(t)), µ(α(t)[k]) = ε (andν(t)[k] = ε),

and for allk ∈ State(σ(t)), σ(α(t)[k]) ∈ C ∪ V,
and for allk ∈ (Map(σ(t)) – State(σ(t))), σ(α(t)[k]) ∈ C

Then Perform a rewrite using a rule chosen
nondeterministically fromSel where

If some rule fromN σ(t) matches the chosen roott
Then Sel = {D ∈ N σ(t) | D matches att}
Else Sel = Dσ(t)

Else (If For somek ∈ Map(σ(t)), µ(α(t)[k]) ≠ ε,
or for k ∈ State(σ(t)), σ(α(t)[k]) ∉ C ∪ V,
or for somek ∈ Map(σ(t)) – State(σ(t)), σ(α(t)[k]) ∉ C

Then) Perform a suspension att

We note incidentally that if the conditions for a rewrite hold, then either a normal or a
default rule will definitely match according to the criterion of definition 2.5.

Now we define the individual types of step. We start with the simplest cases. Notifica-
tion causes the chosen root to be quiesced (i.e. to have its active marking removed), and
for most notification in-arcs of the chosen root, their notification marking is removed
and parent nodes of such in arcs have any non-zero suspension marking decremented.
“Most” in the preceding sentence refers to all notification arcs which do not connect
functions to stateholder children occuring in matched but not stateholder position.

Fig. 3 shows a notification in a fragment of a graph, (assuming2 is a constructor).

More formally we have the following.

Definition 3.2 Let t be the chosen root in a graphG with σ(t) ∈ C ∪ V. Let the graph
H be given by

(1) NH = NG.

∗2

##G[• •]

Fig. 3 A notification.

^
⇒

2

#G[• •]

1290 Banach R.: MONSTR V - Transitive Coercing Semantics ...

(2) σH = σG.

(3) αH = αG.

(4) µH(x) = If µG(x) = #n (with n ≥ 1) and
 0≠ m = |{ k ∈ A(x) | αG(x)[k] = t andνG(x)[k] = ^ and

 not[σG(x) ∈ F andk ∈ (Map(σG(x)) – State(σG(x)))
 andσG(t) ∈ V] } |

Then #n–m (where#0 = ∗, and#–p = ε for p ≥ 1)
Else If x = t Then ε
Else µG(x).

(5) νH(x)[k] = If αG(x)[k] = t andνG(x)[k] = ^ and not[σG(x) ∈ F and
k ∈ (Map(σG(x)) – State(σG(x))) andσG(t) ∈ V]

Then ε
Else νG(x)[k].

The result of the notification is the graphH.

Suspensions occur when not all the matched arguments of a function at the chosen root
are in the required form, by virtue of being non-idle, or of being⊥-nodes, or of being
functions, or of being stateholders in a non-stateholder position. The suspension makes
the chosen root suspended on all such arguments till the required state of affairs obtains,
activating any idle functions thus encountered. Fig. 4 shows a suspension step for a
fragment of term graph rooted at anF-labelled chosen root. The assumption is that all
four arguments ofF are in Map(F), thatG is a function, thatS is a stateholder, and that
State(F) = {2}.

More formally we have the following.

Definition 3.3 Supposet is a chosen root in a graphG, σ(t) ∈ F and there is at least
onek ∈ Map(σ(t)) such that eitherα(t)[k] is a⊥-node, orα(t)[k] is non-idle, orα(t)[k]
is an idle function, orα(t)[k] is an idle stateholder withk ∉ State(σ(t)). Let

Susp(t) = {k ∈ Map(σG(t)) | αG(t)[k] is non-idle, or
αG(t)[k] is idle andσG(αG(t)[k]) = ⊥, or

∗F[• • • •] ⇒ ####F[• • • •]

#H[•]

∗A

∗G S

^

^^

Fig. 4. A suspension step.

^

⊥

^

#H[•]

∗A

G S

^

⊥

1291Banach R.: MONSTR V - Transitive Coercing Semantics ...

αG(t)[k] is idle andσG(αG(t)[k]) ∈ F, or
[k ∈ (Map(σG(t)) – State(σG(t))) and
αG(t)[k] is idle andσG(αG(t)[k]) ∈ V] }

n = | Susp(t) |

Define the graphH as follows.

(1) NH = NG.

(2) σH = σG.

(3) αH = αG.

(4) µH(x) = If x = t

Then #n

Else If x = αG(t)[k] andk ∈ Susp(t) andαG(t)[k] is idle and
 σG(αG(t)[k]) ∈ F

Then ∗
Else µG(x).

(5) νH(x)[k] = If x = t andk ∈ Susp(t)
Then ^
Else νG(x)[k].

ThenH is the result of the suspension.

We define the mapsiG,H = rG,H as the identity on nodes for notification and suspension
steps, in order to be able to track the fate of nodes through executions using a notation
uniform with that for the relevant maps for rewrite steps, which are introduced as we
proceed with the definition of the latter now.

Once a redex has been identified, a rewrite consists of four phases, namely contractum
building, bottom analysis, redirection and activation. AssumeG, t, D = (P, root, Red,
Act) andg given as necessary, in the notation of Section 2. We will use the matching of
Fig. 2 at theF-labelled node of Fig. 1 as a running example.

Contractum building adds a copy of each contractum node ofP to G. Node markings
for such nodes are taken fromP. Copies of arcs ofP from contractum nodes to their
children are added in such a way that there is a graph structure homomorphism (called
the extended matching)g′ : P → G′ from the whole ofP to the graph being created,
which agrees withg onL. Arc markings are again taken fromP.

Doing this for our running example yields Fig. 5. We see that copies of exactly the con-
tractum nodes and arcs, suitably marked, have been added, and that this enables the ex-
tended matchingg′ of the whole ofP to be constructed.

More formally we have the following.

Definition 3.4 Assume the preceding notation. Let the graphG′ be given by

(1) NG′ = NG ∪+ (NP – NL) where∪+ is disjoint union.

1292 Banach R.: MONSTR V - Transitive Coercing Semantics ...

(2) σG′(x) = σG(x) if x ∈ G,
σG′(n) = σP(n) if n ∈ P – L.

(3) αG′(x)[k] = αG(x)[k] if x ∈ G, for k ∈ A(x),
αG′(n)[k] = αP(n)[k] if both n andαP(n)[k] ∈ P – L, for k ∈ A(n),

g(αG(n)[k]) if n ∈ P – L andαP(n)[k] ∈ L, for k ∈ A(n).

(4) µG′(x) = µG(x) if x ∈ G,
µG′(n) = µP(n) if n ∈ P – L.

(5) νG′(x)[k] = νG(x)[k] if x ∈ G, for k ∈ A(x),
νG′(n)[k] = νP(n)[k] if n ∈ P – L, for k ∈ A(n).

Note the use of disjoint union above. In constructive definitions of disjoint union, the
members of such a union are tagged so that one can discern their origin. Definition 3.4
omitted to do this. This is not normally a source of difficulty unless one is interested in
more “global” issues. In fact we will be confronted by some of these later in this paper,
and so a proper definition needs to take this into account. In such a case, a nodex in G
and its representative inG′ after contractum building, are no longer the same thing, and
there is a natural injectioniG,G′ : G → G′ that takesx to its representative inG′. We let
rG,G′ be another name foriG,G′, as for notifications and suspensions.

Bottom analysis does nothing to the structure of the graph itself, but prepares the ground
for the details of the next phase. It consists of the following observations. Let

Red′ = {(x, y) | for some (a, b) ∈ Red, g′(a) = x, g′(b) = y}

View Red′ as a relation onNG′, writing Red′+, Red′∗ for its transitive, reflexive transi-
tive closures.

We writex ~ y iff there is az∈ NG′ such thatx Red′∗ z andy Red′∗ z. Then ~ is clearly
an equivalence relation, becauseRed is a partial function onP and because (RED-3) en-
suresg and henceg′ is injective on the LHS nodes of redirections. We write [x] to rep-
resent the equivalence class containingx as usual. Further, we will write [x]° iff there
is ay ∈ [x] such thaty Red′+ y (i.e. we write [x]° to indicate that [x] contains a non-
trivial Red′-cycle). We write [x]- otherwise.

∗F[• •]

Cons[• •] Var

2

#Q[•]

^

Root[•]

##G[• •]

^

Fig. 5 Contractum Building.

^

1293Banach R.: MONSTR V - Transitive Coercing Semantics ...

Lemma 3.5 With the preceding notation, for all [x]- there is a uniquey- ∈ [x]- such that
for all x ∈ [x]-, x Red′∗ y-.

Proof. Basically trivial once one notes that all rules are finite objects, whence each [x]-

equivalence class is a tree inNG′ and has a unique rooty-.

When the context makes the class [z]- clear, we will use the- notation to refer to this
root element without further comment.

Redirection takes each arc (pk, c) such thatc = g′(a) for some (a, b) ∈ Red and replaces
it with (pk, d), whered is determined by interpreting the redirections inRed transitively.
Thus ifc is a member of a [–]- class, [x-]- say, thend is the unique root elementx- of that
class. Otherwisec is in a [–]° class, andd is a freshly introduced⊥-node for the class.

Performing the redirections on our example yields Fig. 6. Note the new⊥-node, intro-
duced because of the self-redirection onVar.

More formally we have the following.

Definition 3.6 Assume the preceding notation. Let the graphG′′ be given by

(1) NG′′ = NG′ ∪+ B whereB = {[x]° | [x]° ⊆ NG′} .

(2) σG′′(x) = σG′(x) if x ∈ NG′,
 ⊥ if x ∈ B.

(3) αG′′(x)[k] = y- ∈ NG′ if αG′(x)[k] = y andy ∈ [y-]-, for k ∈ A(x),
 [y]° ∈ B if αG′(x)[k] = y andy ∈ [y]°, for k ∈ A(x),

 αG′(x)[k] for k ∈ A(x), otherwise.

(4) µG′′(x) = µG′(x) if x ∈ NG′,
ε if x ∈ B.

(5) νG′′(x) = νG′(x) if x ∈ NG′,
∅ if x ∈ B.

Fig. 6 Redirection.

∗F[• •]

Cons[• •]
Var

2

#Q[•]

^

Root[•]

##G[• •]

^^

⊥

1294 Banach R.: MONSTR V - Transitive Coercing Semantics ...

On G′′ the mapg′ induces a mapg′′ : P → G′′ which is now just a symbol preserving
node map, rather than a homomorphism. Furthermore, there is an obvious injection
iG′,G′′ : G′ → G′′ that takes each node ofG′ to its representative inG′′ as we discussed
above. We also define the maprG′,G′′ : G′ → G′′ which identifies redirection targets as
follows.

rG′,G′′(x) = x- ∈ NG′ if x ∈ [x-]-,
[x]° ∈ B if x ∈ [x]°,
iG′,G′′(x), otherwise.

The above is the only place where thei–,– andr–,– maps differ.

Activation makes active the (rG′,G′′ g′)-images of idle non-⊥-nodes inAct, and also
makes theg′′-image oft idle (root quiescence). Doing this for our running example
yields Fig. 7. Note that despite there being two activations in the rule (the two children
of Cons), only one is performed as the second ofCons’s children is a⊥-node.

More formally we have the following.

Definition 3.7 Assume the preceding notation. Let the graphH be given by

(1) NH = NG′′.

(2) σH = σG′′.

(3) αH = αG′′.

(4) µH(x) = ∗ if ∃ a ∈ Act with (rG′,G′′ g′)(a) = x andσG′′(x) ≠ ⊥ andµG′′(x) = ε,
ε if x = t,
µG′′(x) otherwise.

(5) νH = νG′′.

One can easily check that byM-I.11.4.(8), quoted above, and definition 3.6, the first two
clauses of definition 3.7.(4) are always disjoint.

Fig. 7 Activation.

F[• •]

Cons[• •]
Var

∗2

#Q[•]

^

Root[•]

##G[• •]

^^

⊥

1295Banach R.: MONSTR V - Transitive Coercing Semantics ...

OnH, g′′ induces a maph : P → H which is of course another symbol preserving node
map. We also define the mapsiG′′,H = rG′′,H : G′′ → H as the identity on nodes by anal-
ogy with previous cases.

Definition 3.8 The result of the rewrite of the redexg : L → G according to the ruleD
= (P, root, Red, Act) is the graphH produced by applying definitions 3.4 – 3.7.

By composing the various mapsiG,G′, iG′,G′′ or rG′,G′′, etc., we can track the history of
a node through a rewrite. ThusiG,H(x) = (iG′′,H iG′,G′′ iG,G′)(x) is the node which is
the copy inH of x ∈ G, andrG,H(x) = (rG′′,H rG′,G′′ rG,G′)(x) is the node ofH thatx got
redirected to. In future we will need to keep a close track of nodes through the phases
of a rewrite, particularly when relevant properties of nodes change from one phase of a
rewrite to another, so the above notation is a useful alternative to theg, g′, g′′, h maps,
and is also applicable to nodes not directly affected by the particular rewrite.

Composing a sequence ofiG,H maps or ofrG,H maps, allows us to track the history of a
node through an execution of the system. The former tracks a node’s identity, and the
latter tracks what a node “becomes” via redirection. Generically, any such composition
will be callediX,Y or rX,Y whereX andY are the first and last graphs in the sequence. An
arc (pk, c) is evidently tracked by (iX,Y(p)k, rX,Y(c)). A last but very important property
of these notations is that they are portable to situations in which one wishes to define
operations on graphs “universally”, i.e. up to (marking preserving) isomorphism. In
such approaches one defines the semantics by listing properties that the collection of
functionsg, g′, g′′, h, iG,G′, iG′,G′′, rG′,G′′, etc. possesses, and any graphH* related to the
input data of the rewrite (or other execution step) by such a collection of maps is an ac-
ceptable answer. Of course the list of properties must be such that anyH* satisfying
them is guaranteed to be marking preserving isomorphic toH as we constructed it
above. We will need some of this below, when we have to say precisely in what manner
the two graphs at the ends of the two paths round a cell in the Church-Rosser diamond
are “the same”.

The above operational semantics is a bit complicated, to say the least. The reasons for
this arise from the desire to make the implementation on a certain kind of architectural
model relatively straightforward, and thus efficient. In reality, the model divides into
the graph structure part (which is intended to encode the actual computation), and the
markings, which guide the sheduling policy of any implementation (via activations,
suspensions and notifications, and definition 3.1). Thus the essence of the rewriting
process is redirection, a digraph version of substitution. Since the RHS of such a “sub-
stitution” must connect with the rest of the graph in general, it is more convenient to
insist that contractum building comes first. Activations then allow the execution of a
rule to influence future rewriting strategy. The specific versions of activations, suspen-
sions, and redirections used in this paper (compared with those of other papers in this
series) ensure both a good serialisability theory (seeM-IV), and a clean Church-Rosser
theorem, properties which are not altogether unrelated.

4 Fundamental Properties — Balancedness and
State Saturatedness

In this section we treat two rather basic invariants in the context of our operational se-
mantics.

1296 Banach R.: MONSTR V - Transitive Coercing Semantics ...

Definition 4.1 A nodex in a graphG is balanced iff forn ≥ 1,

µ(x) = #n ⇔ |{ k | ν(x)[k] = ^} | = n

We say that a pattern or graph is balanced iff every node is balanced.

Theorem 4.2 LetR be a MONSTR system. Then every execution graph ofR is bal-
anced.

Proof. By induction on executions. An initial graph is balanced. Furthermore, notifi-
cations preserve balancedness, since for each notification marking removed from an
arc, a suspension marking is removed from the parent node. Suspensions preserve bal-
ancedness by doing the opposite. We check that the phases of a rewrite do not affect
balancedness. Contractum building preserves balancedness, as all new nodes added to
the graph are balanced by restrictionM-I.11.4.(6) quoted above. Redirection only af-
fects the heads of some arcs and introduces balanced⊥-nodes, so preserves balanced-
ness. Finally, activation only affects the node markings on non-suspended nodes, thus
preserving balancedness.

Definition 4.3 An arc (pk, c) of a graphG is state saturated iff

ν(p)[k] = ^ andµ(c) = ε ⇒ σ(c) ∈ V ∪ {⊥}

A node of a graph is state saturated iff all of its in-arcs are state saturated. Likewise, a
graph or pattern is state saturated if all of its nodes and arcs are.

Theorem 4.4 LetR be a MONSTR system. Then every execution graph ofR is state
saturated.

Proof. By induction over executions. An initial graph is state saturated. A notification
step clearly preserves state saturatedness, since for the only node which becomes idle,
all notification in-arcs become idle unless the node is a stateholder, in which case certain
of them are allowed to remain as notification in-arcs according to definition 3.2. A sus-
pension step does the opposite, creating notification arcs, but where these have idle
nodes as children, then such children are always stateholders or⊥-nodes by inspection
of definition 3.3, preserving state saturatedness. We argue that rewrites preserve state
saturatedness as follows.

Let Gi be rewritten toGi+1, using a ruleD = (P, root, Red, Act), and a redexgi : L → Gi.
Assume the usual notation for the pieces of a rewrite (eg. mapsgi, gi′, gi′′, andgi+1 :
P → Gi+1). Consider contractum building. It is easy to check that all new nodes intro-
duced inG′i are state saturated by restrictionM-I.11.4.(7) sinceAct⊆ L. Obviously the
nodes ofGi′ – gi′(P) are state saturated since they continue to have (iGi,Gi′ copies of)
just the same arcs they had inGi, andGi is state saturated by the induction hypothesis.
This leaves the nodes ofgi′(L). Nodes ingi′(L) –gi′(Act) are state saturated because any
new in-arcs they acquired are state saturated byM-I.11.4.(7). This leaves a set of nodes
gi′(χ) ⊆ gi′(Act) ⊆ gi′(L) ⊆ Gi′ which fail to be state saturated as they acquired a non-
zero number of notification in-arcs during contractum building, but were idle, not⊥-
nodes, notV-labelled, and without notification in-arcs inGi. ThereforeGi′ may fail to
be state saturated, but just for this reason.

Now consider redirection and activation. All arcs ofGi+1 are copies, or redirected cop-
ies of arcs ofGi′. We check that all arcs ofGi′ end up state saturated inGi+1 which is
sufficient. Leaving aside the phenomenon of root quiescence for the moment, there are

1297Banach R.: MONSTR V - Transitive Coercing Semantics ...

three cases. Case (a): in-arcs of nodes ingi′(χ) ⊆ gi′(Act) which are not redirected.
These are unchanged by redirection, and have their child nodes activated during activa-
tion, restoring state saturatedness to case (a) nodes. Case (b): in-arcs of nodesy which
are redirected. Let (xk, y) be a redirected arc, withgi′(a) = y, (a, b) ∈ Red, and redirec-
tion targetrGi′,Gi′′(y). If σ(rGi′,Gi′′(y)) ∈ V orµ(rGi′,Gi′′(y)) ≠ ε, orrGi′,Gi′′(y) is a⊥-node,
then (iGi′,Gi′′(x)k, rGi′,Gi′′(y)) is state saturated. In case not, we knowb ∈ Act by restric-
tion M-I.11.4.(9). NowrGi′,Gi′′(y) = rGi′,Gi′′(g′(b)) by definition of redirection, and we
are assuming thatµ(rGi′,Gi′′(g′(b))) = ε. Therefore the activation phase, makingGi+1,
will make µ(rGi′,Gi+1

(y)) = µ(rGi′,Gi+1
(g′(b))) = ∗ by definition 3.7.(4). This restores

state saturatedness to all case (b) nodes. Case (c): in-arcs of all other nodes. These are
state saturated inGi′ and do not suffer redirection. They remain state saturated through-
out the redirection and activation phases.

Finally we return to the root, to deduce that root quiescence cannot destroy state satu-
ratedness. But this is immediate sincegi′′(root) has no in-arcs. This in turn holds by
restrictionM-I.11.4.(8) and because no LHS of a redirection is a redirection target (i.e.
the destination of a redirected arc) by definition 3.6. We are done.

5 Liveness and Garbage

In all of the preceding, no node or arc was ever destroyed, which is not really acceptable
for a reasonable model of computation. In this section we introduce a suitable notion
of liveness, which turns out to be a proof theoretic business. This leads to the appropri-
ate notion of garbage which we prove sound.

Definition 5.1 LetG be a graph, andx a node ofG. Thenx is live iff it can be proved
so on the basis of the following rules of inference:

(1) If σ(x) is a special symbolRoot, thenx is live.

(2) If µ(x) = ∗, thenx is live.

(3) If p is live and (pk, x) is an idle arc, thenx is live.

(4) If c is live and (xk, c) is a notification arc, thenx is live.

Definition 5.1 is nothing more than a proof system. Thus clauses (1) and (2) form base
cases of proofs of liveness; and liveness is propagated down normal arcs and up notifi-
cation arcs, which makes clauses (3) and (4) into analogues of modus ponens. It is ev-
ident that the structure of a proof of liveness follows the structure of a certain kind of
semipath in the graph.

Definition 5.2 LetG be a graph. The set of live nodes ofG is denoted Live(G), and
NG – Live(G) is denoted Gar(G), the garbage set ofG. An arc (pk, c) of G is live iff both
p andc are live; otherwise it is garbage.

Note that the inference rules in definition 5.1.(3) and 5.1.(4) give “local” means of prov-
ing the liveness of any given live arc (pk, c). Connectivity properties of the graphG
may also give rise to other, completely unrelated proofs for (pk, c).

Definition 5.3 The live subgraph of a graphG, LSG(G), consists of the live nodes and
live arcs ofG.

1298 Banach R.: MONSTR V - Transitive Coercing Semantics ...

Note that the live subgraph need not be a graph in the sense that it satisfies all the invar-
iants implied by definition 2.1, since a live node may have a garbage notification out-
arc to a garbage child node. Live nodes may also have garbage normal in-arcs from gar-
bage parent nodes, though this does not threaten the invariants of definition 2.1.

The most important thing about garbage is its persistence. Once a node of an execution
graph is proclaimed garbage, no execution step should cause it to be capable of being
proved live ever again. This is the main result of this section.

Theorem 5.4 LetR be a MONSTR system. LetG be an execution graph ofR, and let
G → H be an execution step. Then

(1) If x is a garbage node ofG, theniG,H(x) is a garbage node ofH.

(2) If (pk, c) is a garbage arc ofG, then (iG,H(p)k, rG,H(c)) is a garbage arc ofH.

Proof. We must check that each possible execution step does not involve any garbage
node or arc in any harmful way. In order, we examine notifications, suspensions, and
finally rewrites. For each execution step we define theexecution step redex to consist
of all nodes and arcs mentioned in the definition of execution steps of that kind in Sec-
tion 3.

In all three cases, the structure of the proof is the same. First of all we prove that the
execution step redex is live. Then we identify the redex-emergent arcs as those arcs,
precisely one of whose nodes is in the execution step redex, and which are capable of
progressing a liveness proof out of the redex. Fig. 8 shows how this happens in sequent
notation. Finally we show that the transformation that generates the graphH cannot
make any hypothesised garbage nodex live, by reasoning about the properties of the
redex-emergent arcs. The proof for garbage arcs (pk, c) then follows quickly.

Notifications. For a notification fromt ∈ G, the notification redex consists of all noti-
fication arcs (zl, t) and their constituent nodes manipulated by the notification, i.e. all
notification in-arcs (zl, t) of t such thatt is not a stateholder child in (Map – State) posi-
tion of the function parent nodez. The redex-emergent arcs are therefore: normal arcs
(tm, q); other notification in-arcs (wm, t) of t (such thatt is a stateholder child in (Map –
State) position of the function parent nodew); normal arcs (zm, q) (for the relevant
nodesz); and notification arcs (qm, z) (for the same relevant nodesz). All such arcs are
evidently live inG sincet is active inG.

q live

z live (qk, z) : notif. arc

… …

… …

q live

z live (zk, q) : norm. arc

… …

… …

Fig. 8 Redex-emergent steps in proofs of liveness;
z is live because it is in the execution step redex.

Notification arc caseNormal arc case

1299Banach R.: MONSTR V - Transitive Coercing Semantics ...

We recall that for notifications,rG,H = iG,H. In H, the iG,H image oft is idle, and the
iG,H images of all arcs (zl, t) are normal. TheiG,H images of redex-emergent arcs (zm, q)
and (qm, z) are live iff their correspondingz is live, and theiG,H images of redex-emer-
gent arcs (tm, q) and (wm, t) are live iff t is live.

Suppose now thatx is garbage inG, but thatiG,H(x) is live inH. Obviouslyx cannot be
in the notification redex. Consider a proof of the liveness ofiG,H(x), in order to con-
struct one forx, for a contradiction. The proof inH starts at an active orRoot-labelled
node ofH, sayu0. But by the definition of notifications,u0 = iG,H(u0*) for some like-
wise active orRoot-labelled nodeu0* of G. Evidentlyu0* ≠ x, so the proof must be
bigger than just an axiom instance. It therefore continues along either a normal or no-
tification arc. If the arc is a notification arc, it is theiG,H image of a notification arc of
G, and we continue the proof inG. If it is a normal arc, then either it is theiG,H image
of a normal arc ofG and the proof inG continues, or it is theiG,H image of a notification
arc ofG. In the latter case we are dealing with an arc of the notification redex whose
child node must bet in G, which was active and thus live inG. Sincex is not in the
notification redex inG, the proof emerges from the notification redex along a redex-
emergent arc. Therefore we can construct a proof of the liveness ofx in G by patching
the tail of a proof of the liveness ofiG,H(x) in H, the tail in question being from the last
(if any) visit to theiG,H image of the notification redex in the proof forH.

So we have our contradiction andiG,H(x) is garbage inH. For a garbage arc (pk, c), we
argue that at least one ofp or c is garbage and thus outside the notification redex inG.
By the preceding, itsiG,H image is still garbage inH. If p is the garbage node, then
(iG,H(p)k, rG,H(c)) is obviously garbage. Ifc is the garbage node, then becauserG,H(c)
= iG,H(c) for notifications,rG,H(c) is garbage inH, giving the conclusion.

Suspensions. Let Susp(t) be given as in definition 3.3 and let 0≠ n = | Susp(t) |. The
suspension redex consists of all arcs (tl, z) of G, with l ∈ Susp(t), and their constituent
nodes. Sincet is active and all suspension redex arcs are normal by balancedness, the
suspension redex is live inG. The redex-emergent arcs are notification arcs (qm, t); all
normal arcs (tm, q) for m∉ Susp(t); normal arcs (zm, q) wherez = α(t)[l] for l ∈ Susp(t);
and finally notification arcs (qm, z). Before the suspension step all of these arcs are live.

Suppose now thatx is garbage inG, but thatiG,H(x) is live inH. Obviouslyx cannot be
in the suspension redex. As in the notification case, consider a proof of the liveness of
iG,H(x), in order to construct one forx. The proof inH starts at an active orRoot-la-
belled node ofH, sayu0. But by the definition of suspensions,u0 = iG,H(u0*) for some
likewise active orRoot-labelled nodeu0* of G. Sou0* ≠ x, and the proof must be big-
ger than just an axiom instance. It therefore continues along either a normal or notifi-
cation arc. If the arc is a normal arc, it is theiG,H image of a normal arc ofG, and we
continue the proof inG. If it is a notification arc, then either it is theiG,H image of a
notification arc ofG and the proof inG continues, or it is theiG,H image of a normal arc
of G. In the latter case we are dealing with an arc of the suspension redex, whose parent
node must bet in G, which was active and thus live inG. Sincex is not in the notifica-
tion redex inG, the proof emerges from the notification redex along a redex-emergent
arc. Therefore we can again construct a proof of the liveness ofx in G by patching the
tail of a proof of the liveness ofiG,H(x) in H, the tail in question being from the last (if
any) visit to theiG,H image of the suspension redex in the proof forH. The proof for
garbage arcs is as in the case of notifications.

1300 Banach R.: MONSTR V - Transitive Coercing Semantics ...

Rewrites. Employing the usual notation, for a rewrite step, the redex isg(L) as per def-
inition 2.5. An important consequence of balancedness and of definition 3.1, is that for
a rewrite, all arcs ofg(L) are normal. Therefore the whole ofg(L) is live. The redex-
emergent arcs are notification arcs (qk, z) with z ∈ g(L), and normal arcs (zk, q) with z
∈ g(L) andq ∉ g(L).

Consider the garbage nodex in G. There is no proof of liveness ofx in G sox ∉ g(L).
After contractum building, all proofs of liveness inG remain valid after being mapped
to G′ because of the injectioniG,G′ which preserves markings. New proofs of liveness
may have been created involving the contractum nodes, but none of them can prove
iG,G′(x) live. For suppose not. To do so such a proof would have to follow a semipath
from a contractum node toiG,G′(x). Since such a semipath must pass throughg′(L), we
would have a redex-emergent step in the proof. Since all redex-emergent steps are un-
changed fromG, we could patch the final part of such a proof inH to construct a proof
of the liveness ofx in G, a contradiction.

After redirection, all previous proofs not mentioning redex or contractum nodes remain
unchanged, since for arcs not containing a redex or contractum node,iG′,G′′ extends to
a marking-preserving homomorphism. Callg′′(P) ∪+ B (whereB is the set of⊥-nodes
adjoined during the redirection phase) the extended redex for brevity. By the previous
paragraph, any proof of liveness inG′′ of iG,G′′(x) must involve an extended-redex-
emergent step. There are two cases.

The Normal Case: Here we note that a normal arc (zk, q) with z in the extended redex
must havez in g′′(L) since redirection does not affect the parent nodes of arcs. Thus as
before, the final part of the proof would correspond with the final part of a proof inG′,
andiG,G′(x) would be live inG′, a contradiction.

The Notification Case: Here we note that a notification arc (qk, z) in G′′ is the (iG′,G′′,
rG′,G′′) image of a notification arc (qk, z*) of G′. If z* did not get redirected, thenz* is
in g′(L) as this is the only part of the extended redex inG′ accessible from outsideg′(P).
But theng′(L) is live, and so the final part of the proof would correspond with the final
part of a proof inG′ andiG,G′(x) would be live inG′. If z* did get redirected toz, then
z* is in g′(L) since LHSs of all redirections are. Once more we would find a proof with
a redex-emergent step involving (qk, z*), showing thatiG,G′(x) was live inG′. We con-
clude that theiG,G′′ image ofx remains garbage inG′′.

Finally the root quiescence and activation phase. The root is always made idle accord-
ing to definition 3.7.(4). Thus sinceh(root) is idle inH, some proofs of liveness that
exist forG′′ are destroyed; which cannot makeiG,H(x) live. If some nodes ofh(P) are
activated, some new proofs of liveness inH without counterparts inG′′ might be creat-
ed. However, any such proof which provediG,H(x) live, must utilise (theiG′′,H image
of) an extended-redex-emergent step, as argued above. Any such extended-redex-emer-
gent step involves either a normal arc, or a notification arc, and the arguments for these
cases are identical to those voiced above for the redirection phase. We conclude thatx
is garbage inH.

For a garbage arc (pk, c), we argue that at least one ofp or c is garbage and thus outside
of g(L) in G. By the preceding, itsiG,H image is still garbage inH. If p is the garbage
node, then (iG,H(p)k, rG,H(c)) is obviously garbage. Ifc is the garbage node, then be-
causec is outside ofg(L), rG,H(c) = iG,H(c), the latter of which is garbage inH, giving
the conclusion. We are done.

1301Banach R.: MONSTR V - Transitive Coercing Semantics ...

We end this section with a simple lemma whose proof is largely implicit in the preced-
ing proof.

Lemma 5.5 LetR be a MONSTR system. LetG be an execution graph ofR, and let
G → H be a rewrite execution step according to a ruleD = (P, root, Red, Act) of a redex
g(L) rooted att ∈ G. Let x ∈ g(L) be the left node of a redirection prescribed by the
rewrite. Then

(1) iG,H(x) has no in-arcs.

(2) iG,H(x) is garbage inH.

Proof. We know that each node that is the left node of a redirection is in either a [–]-

class, or in a [–]° class. In the first case the redirection target is theiG′,G′′ image of a
node ofG′ that is not itself the left hand side of a redirection. In the second case the
redirection target is a⊥-node, again not the left hand side of a redirection. We deduce
that (1) holds.

To get (2), we note that from the MONSTR restrictions on rules,x is either the root of
the redex, or the stateholder child of the root. Neither of these are constructors, there-
fore σ(x) ≠ Root, sinceRoot is a constructor byM-I.11.2.(4) quoted above, and so
iG,H(x) cannot be proved live by recourse to definition 5.1.(1). Also the root is quiesced,
and the stateholder, if redirected, is not activated since the nodes which are activated are
(rG′,G′′ g′)(Act), which does not include any left nodes of redirections by the previous
paragraph, soµ(iG,H(x)) ≠ ∗, andiG,H(x) cannot be proved live by definition 5.1.(2). By
(1), iG,H(x) has no in-arcs of any kind, soiG,H(x) cannot be proved live by definition
5.1.(3). Finally, the root was quiesced, so is idle inH. Furthermore, the stateholder was
in G, idle by definition 3.1, therefore if redirected, remains unactivated inH by our pre-
ceding argument, and thus idle inH. By balancedness,iG,H(x) has no notification out-
arcs, soiG,H(x) cannot be proved live by definition 5.1.(4). We are done.

6 Overlapping Redexes and Safe Critical Cones

In this section, we define resuspending rules, and discuss critical cones, particularly safe
critical cones.

Definition 6.1 Let F ∈ F andS∈ V. Let kf ∈ State(F). A normal ruleD = (P, root,
Red, Act) for F is a resuspending rule forF andS iff

(1) F matchesS (in kf’th position).

(2) The only contractum node ofP is a nodef such that

σ(f) = F,

µ(f) = #,

For j ∈ A(f),

α(f)[j] = α(root)[j],

ν(f)[j] = If j = kf Then ^ Else ε

1302 Banach R.: MONSTR V - Transitive Coercing Semantics ...

(3) Red = {(root, f)}

(4) Act = ∅

Example 6.2 LetA(F) = {1 … 5}, Map(F) = {2, 3, 4}, and State(F) = {3}. Then Fig.
9 shows a resuspending rule forF andS.

Definition 6.3 LetG be an execution graph of a MONSTR systemR, and lets∈ G be
a stateholder node ofG, and letS = σ(s). Let CC(s) contains and all the active function
nodesf ∈ G such thats occurs in stateholder position of eachf, i.e.

CC(s) = { f ∈ G | µ(f) = ∗, σ(f) ∈ F, ∃ kf ∈ State(σ(f)), ands = α(f)[kf] } ∪ {s}

We call CC(s), the critical cone ofs, and we call the arcs (fkf
, s), the arcs of the critical

cone. We can write a critical cone using the notation {s; f1 … fn}.

When we strive for a Church-Rosser property, we can allow redexes to overlap on con-
structors, as these are read-only. Likewise we can contemplate the idea of allowing re-
dexes to overlap on their implicitly matched nodes, since these cannot be redirected.
Because the operational semantics is transitive and coercing, this turns out to be sound,
though non-trivial (see the next section and the one that follows). This concentrates the
focus on critical cones, as the seat of non-confluent behaviour. Safe critical cones are
those where we can see that non-confluent behaviour can be avoided.

Definition 6.4 LetG be an execution graph of a MONSTR systemR, and lets∈ G be
a stateholder with critical cone CC(s) = {s; f1 … fn}. The critical cone is safe iff one of
the following conditions holds.

(1) For i = 1… n, no rule forσ(fi) which matches atfi ∈ G, redirects its stateholder
argument.

(2) There is exactly onei ∈ {1 … n} such that there is a rule forσ(fi) which matches
at fi ∈ G and redirects its stateholder argument. Furthermore it redirects it to a
non-idle node or activated node. Fori ≠ j ∈ {1 … n}, the only normal rules for
σ(fj) which match atfj are resuspending rules, and eachσ(fj) has such a rule.

The idea behind these possibilities should be clear. In (1), the stateholder behaves as
just another constructor. In (2), precisely one of the functions is capable of “doing an-
ything”; the others, should any of them rewrite, merely resuspend, which modulo mark-

F[• • • • •]

C1Any Any

#F[• • • • •]

^

Fig. 9 A resuspending rule.

S C2

1303Banach R.: MONSTR V - Transitive Coercing Semantics ...

ings and garbage does not alter the structure of the graph. A cone of type (1) can give
rise to one of type (2) on the same stateholder, as once all the “read only” functions have
rewritten, other rewriting activity containing references to (a suitablei–,– image of)s,
may create functions having references to (a suitable image of)s in stateholder position.

Despite these promising features, the critical cones we have described would not be in-
teresting were it not for the fact that the resuspending behaviour we focus on is exectly
what realistic MONSTR systems typically use for synchronisation purposes. (See eg.
the references to applications discussed inM-I .)

7 Subcommutativity Lemmas

In this section, we present the basic subcommutativity lemmas that hold for MONSTR
systems under transitive coercing semantics. These are the building blocks for the main
theorem of the paper.

Lemma 7.1 LetGN = [G0, …, GN] be a transitive coercing preexecution of a MONSTR
systemR. SupposeGN contains two active nodest1 ≠ t2 with {σ(t1), σ(t2)} ⊆ C ∪ V.
For either choice ofi ∈ {1, 2}, let j denote the other choice. LetHi be obtained by per-
forming a notification fromti in GN. Then

(1) H1 andH2 are graph structure isomorphic.

(2) rGN,Hi
(tj) = iGN,Hi

(tj) is an active constructor or stateholder, hence the root

of a potential notification step, inHi.

Let Ki be obtained fromHi by notifying fromrGN,Hi
(tj). Then

(3) K1 andK2 are marking preserving isomorphic via a mapψ : K1 → K2.

Proof. This is relatively easy. Since notifications merely manipulate markings, (1) fol-
lows immediately since bothH1 andH2 are graph structure isomorphic toGN. Sincetj
is active inGN, it cannot be a suspended parent of a notification arc ofti; thus it is not
notified inti’s notification, andrGN,Hi

(tj) is active inHi so that (2) holds. As for (1),K1
andK2 are graph structure isomorphic, so we must check that the markings coincide.
We know that the sets of notification arcs that comprise the notification redexes oft1
andt2 in GN are disjoint. After notification, all of them end up as normal arcs inK1 and
K2. Other arcs are unaffected.

For nodes,t1 andt2 lose their active marking; nodes not in either notification redex keep
their marking; parent nodes ofti in the notification redex ofti but not oftj decrement
their suspensions by the same amount during the notification of eitherti or of rGN,Hj

(ti);
and parent nodes of botht1 andt2 in both notification redexes decrement their suspen-
sions by the sum of two such amounts, ending with the same marking since (n – a) – b
= (n – b) – a. So we have (3), and thus the whole lemma.

Lemma 7.2 LetGN = [G0, …, GN] be a transitive coercing preexecution of a MONSTR
systemR. SupposeGN contains two active function nodess1 ≠ s2 with Susp(s1) ≠ ∅ ≠
Susp(s2), where the Susp set of a function node is given in definition 3.3. For either
choice ofi ∈ {1, 2}, let j denote the other choice. LetHi be obtained by performing a
suspension fromsi in GN. Then

(1) H1 andH2 are graph structure isomorphic.

1304 Banach R.: MONSTR V - Transitive Coercing Semantics ...

(2) rGN,Hi
(sj) = iGN,Hi

(sj) is an active function node, and hence the root

of a potential suspension step, inHi.

Let Ki be obtained fromHi by performing a suspension fromrGN,Hi
(sj). Then

(3) K1 andK2 are marking preserving isomorphic via a mapψ : K1 → K2.

Proof. This is pretty similar to lemma 7.1, in that notifications turn notification arcs into
normal arcs, while suspensions turn normal arcs into notification arcs. So we will be
fairly brief.

Since suspensions merely manipulate markings we have (1) immediately. Also since
the only node markings that change in a suspension step are those of the suspension root
and of any activated idle functions, and all nodes are idle afterwards only if they were
idle before, (2) follows, andK1 andK2 are graph structure isomorphic. Since the sets
of normal arcs constituting the two suspension redexes are disjoint inGN, and any idle
function that is activated ends up activated regardless of the order of the suspensions,
we get (3) easily.

Lemma 7.3 LetGN = [G0, …, GN] be a transitive coercing preexecution of a MONSTR
systemR. SupposeGN contains an active function nodes with Susp(s) ≠ ∅, where the
Susp set of a function node is given in definition 3.3. SupposeGN also contains an ac-
tive constructor or stateholdert. Let

Susp = {k ∈ Map(σ(s)) | α(s)[k] is non-idle, or
α(s)[k] is idle andσ(α(s)[k]) = ⊥, or
α(s)[k] is idle andσ(α(s)[k]) ∈ F, or
[k ∈ (Map(σ(s)) – State(σ(s))) and
α(s)[k] is idle andσ(α(s)[k]) ∈ V] }

SuspNodes = {x ∈ GN | x = α(s)[k] for somek ∈ Susp}
Π ≡ SuspNodes = {t} and not[σ(t) ∈ V andt = α(s)[k]

for somek ∈ (Map(σ(s)) – State(σ(s)))]

Let Hs be obtained by performing a suspension froms in GN, and letHt be obtained by
performing a notification fromt in GN. Then

(1) Hs andHt are graph structure isomorphic.

(2) (a) rGN,Hs
(t) = iGN,Hs

(t) is an active constructor or stateholder, hence the

root of a potential notification step, inHs.

(b) rGN,Ht
(s) = iGN,Ht

(s) is an active function node, and unlessΠ holds,

is the root of a potential suspension step, inHt.

Let Ks be obtained fromHs by performing a notification fromrGN,Hs
(t), and let

Kt = If Π Then Ht
Else The result of performing a suspension fromrGN,Ht

(s) in Ht

Then

(3) Ks andKt are marking preserving isomorphic via a mapψ : Ks → Kt.

1305Banach R.: MONSTR V - Transitive Coercing Semantics ...

Proof. As in the previous lemmas, (1) is immediate. Sinces cannot be in the notifica-
tion redex oft in GN, and since althought might be in the suspension redex ofs in GN,
the node markings of non-idle non-root nodes of suspension redexes do not change dur-
ing suspensions, we conclude (2), noting that ift was the only element ofs’s SuspNodes
set, unlesst is a stateholder in a constructor-only position ofs, there is no potential sus-
pension fromrGN,Ht

(s) in Ht sincerGN,Ht
(t) is idle. Obviously we find thatKs andKt are

graph structure isomorphic, so we need to check the markings.

For arcs there are four disjoint cases: (a) all arcs (sk, t), for any applicablek, which must
all be normal arcs inGN; (b) other arcs of the suspension redex; (c) arcs of the notifica-
tion redex; (d) all remaining arcs.

For (a), there are two subcases: (a1) arcs (sk, t) such thatt is a stateholder in constructor-
only positionk of s for any suchk; (a2) all other case (a) arcs. For both subcases, if the
suspension is done first, the constituent arcs become notification arcs ofHs, and then the
(a2) arcs become normal arcs ofKs after the notification, (a1) arcs remaining suspended.
If the notification is done first, sincerGN,Ht

(t) is idle, (a2) arcs disappear from the sus-
pension redex in Ht. If there were (a1) arcs in the suspension redex ofGN, the suspen-
sion step causes them to become notification arcs. For cases (b) and (c) it is clear that
they become notification arcs and normal arcs respectively regardless of the order of the
steps. Also case (d) arcs are unaffected.

For nodes there are also four disjoint cases: (a)s; (b) the nodes of the notification redex;
(c) nodes in the suspension redex other than case (a) and case (b) nodes; (d) all remain-
ing nodes.

For (a), if the suspension is done first,rGN,Hs
(s) becomes suspended inHs, and in the

notification step receives notifications along all case (a2) arcs (if there are any). If the
notification is done first,s is unaffected during notification, but becomes suspended (on
potentially fewer arguments) during the subsequent suspension (if any). It is clear that
the net suspension markings onrGN,Ks

(s) in Ks and onrGN,Kt
(s) in Kt are the same, as

the extra suspensions when the suspension is done first, match the notifications received
from case (a2) arcs in the following notification. Obviously if the suspension redex
consists solely of case (a2) arcs and their nodes, then all the suspensions thats acquires
when suspension is first, are released in the notification, leavingrGN,Ks

(s) active inKs;
corresponding to the complete removal of the suspension redex (because there are no
remaining elements in the SuspNodes set ofrGN,Ht

(s) in Ht) where notification is first,
followed by a null suspension, also leavingrGN,Kt

(s) active inKt. For case (b) and case
(c) nodes, it is easy to see that they undergo the same net change regardless of the order
of the steps; likewise case (d) nodes remain unaffected. This is enough for (3).

Lemma 7.4 LetGN = [G0, …, GN] be a transitive coercing preexecution of a MONSTR
systemR. SupposeGN contains an active constructor or stateholder nodet. Suppose
GN also contains an active function nodef, all of whose (Map(σ(f)) – State(σ(f))) argu-
ments are idle constructors, and whose State(σ(f)) argument (if any) is an idle construc-
tor or stateholder, and which is thus the root of a redexg : L → GN for some ruleD =
(P, root, Red, Act). Let

Π ≡ t ∈ g(Act ∪ {b | (a, b) ∈ Red, a ∈ Act, b ∈ L})

Let Ht be obtained by performing a notification fromt in GN. LetHf be obtained by re-
writing the redex rooted atf in GN, via the usual phasesg′ : P → GN′, g′′ : P → GN′′,
hf : P → Hf, and associatedi andr maps. Then

1306 Banach R.: MONSTR V - Transitive Coercing Semantics ...

(1) (a) rGN,Hf
(t) = iGN,Hf

(t) is an active constructor or stateholder, hence the

root of a potential notification step, inHf.

(b) rGN,Ht
(f) = iGN,Ht

(f) is an active function node, and

ht = rGN,Ht
g : L → Ht

is a redex forD, such that all the (Map(σ(rGN,Ht
(f))) – State(σ(rGN,Ht

(f))))

arguments ofrGN,Ht
(f) are idle constructors, and any State(σ(rGN,Ht

(f))) ar-

gument is an idle constructor or stateholder, hence is the redex of a
potential rewrite inHt.

Let Kf be obtained fromHf by performing a notification fromrGN,Hf
(t). Let Jt be ob-

tained fromHt by rewriting the redex rooted atrGN,Ht
(f) in Ht, via the usual phases

ht′ : P → Ht′, ht′′ : P → Ht′′, jt : P → Jt, and associatedi andr maps. Then

(2) If Π Then rGN,Jt
(t) is an active constructor or stateholder,

hence the root of a potential notification step, inJt

Let

Kt = If notΠ Then Jt
Else The result of performing a notification fromrGN,Jt

(t) in Jt

Then

(3) Kf andKt are marking preserving isomorphic via a mapψ : Kf → Kt.

Proof. A little thought shows that neitherf nor any off’s Map(σ(f)) arguments can be
in the notification redex, either because of the node markings or the node symbols in-
volved. However this does not preclude the notification redex nodes from occurring as
implicitly matched nodes of the rewriting redex. Because of the respective arc mark-
ings, it is clear that the sets of arcs of the two redexes are disjoint.

Consider performing the notification to createHt. EvidentlyGN andHt are graph struc-
ture isomorphic. And since the only node whose active marking changes in this process
is t itself, and no node becomes non-idle which was not non-idle previously,rGN,Ht

(f) is
active inHt and (1).(b) follows. Let us compare the rewriting processes that createHf
from GN andJt from Ht using the ruleD. Let

θ : GN → Ht

be the graph structure isomorphism mentioned already. The respective contractum
building phases clearly allow its extension to a graph structure isomorphism

θ′ : GN′ → Ht′

such that the obvious triangle involvingg′ : P → GN′ andht′ : P → Ht′ commutes. Ev-
idently the redirection phase admits a further extension to a graph structure isomor-
phism

θ′′ : GN′′ → Ht′′

1307Banach R.: MONSTR V - Transitive Coercing Semantics ...

such that the triangle involving the node mapsg′′ : P → GN′′ andht′′ : P → Ht′′ com-
mutes too. Likewise the activation phase finally yields the graph structure isomorphism

θ′′′ : Hf → Jt

such that the triangle involvinghf : P → Hf andjt : P → Jt commutes.

The definition 3.8 of rewriting shows that the only active node of the rewritten graph
that ends up idle in the result, is the root of the redex. The only other nodes that can
undergo a change of marking are the activated nodes which, if they start off idle, end up
active. Thus we conclude that sincet ≠ f, rGN,Hf

(t) is active inHf, whence we have
(1).(a). To get (2) and (3), we must follow what happens to the markings of the other
nodes, and to the markings of the various arcs too.

For nodes there are five disjoint cases: (a)t; (b) f; (c) nodes of the notification redex oth-
er thant; (d) contractum nodes; (e) all other nodes.

For case (a), regardingt, if rewriting is done first, we know that it is active inHf so ends
up idle inKf after the notification. If notification is done first, then it is idle inHt, and
then either is idle inJt if Π does not hold, or is active inJt if Π holds, giving us (2). In
the latter case, we know thatrGN,Jt

(t) = iGN,Jt
(t) because the non-idle marking ont ∈ G

means that it can only have been matched to an implicit node ofL and this precludes it
from being one of the redirected nodes of the rewrite. Also in the latter case,rGN,Jt

(t)
is a notification root inJt, and doing the notification, makes it idle inKt, as required.

For case (b),f ends up idle regardless of the order of execution steps.

For case (c) nodes, we note that they start out non-idle, and when notified, change their
marking from one non-idle marking to another (non-idle marking). By the definition of
rewriting, their markings are unaffected by activation. The relative order of rewriting
and notification(s) is thus immaterial for them and they end up with the same node
marking regardless.

For case (d), regarding (theg′ image or theht′ image of) aP – L nodeq, there are two
contributing subcases depending on the out-arcs ofq. Subcase (d1) concerns all notifi-
cation out-arcs ofq whose child node is (a node whoseg′ image, resp.ht′ image, is the
rGN,GN′ image, resp. therGN,Ht′ image, of)t, or whose child node is the LHS of a redi-
rection where the RHS node is (therGN,GN′ image, resp. therGN,Ht′ image, of)t. If there
are such notification out-arcs, then we haveΠ by the above quotedM-I .11.4.(7) orM-
I .11.4.(9), sincet can only have been matched to an implicit node ofL because of its
active marking. Subcase (d2) concerns all other out-arcs ofq.

Regarding the images ofq in the various graphs, if notification is done first, the child
node of (d1) out-arcs ofht′(q) is idle inHt′, but active inJt, whereuponjt(q) receives
notifications along the (d1) out-arcs which decrease its suspension marking inKt. (N.B.
Because of the earlier notification fromt, the only suspended parents thatrGN,Jt

(t) has,
are the parent nodes of these (d1) out-arcs.) If rewriting is done first, the child node of
(d1) out-arcs ofg′(q) is active inGN′, hence inHf, whereupon the (d1) out-arcs join the
image of the notification redex inHf. hf(q) therefore receives notifications along the
(d1) out-arcs which decrease its suspension marking inKf. Since by contractum build-
ing, the images ofq start with the same number of suspensions, and also have the same
number of (d1) out-arcs, the markings on them inKt andKf are the same. The (d2) out-
arcs do not affect the node markings of contractum nodes.

1308 Banach R.: MONSTR V - Transitive Coercing Semantics ...

Finally for case (e) nodes, it is clear that they end up with the same marking regardless
of the order of the steps, since either they retain the same marking throughout, or they
start idle and fall into the appropriate image ofAct at some point, thence acquiring the
active marking.

For arcs, there are four disjoint cases: (a) arcs of the notification redex; (b) contractum
arcs in the (d1) subcase of case (d) for nodes discussed above; (c) all other contractum
arcs; (d) all other arcs.

For case (a) arcs, they start off as notification arcs, and end up as normal arcs, regardless
of the order of steps. Likewise for case (b) arcs; depending on order of steps, they either
become normal arcs at the same time as the case (a) arcs, or later, during the extra no-
tification. Case (c) and case (d) arcs retain their arc marking throughout, regardless of
the order of steps. We are done.

Lemma 7.5 LetGN = [G0, …, GN] be a transitive coercing preexecution of a MONSTR
systemR. SupposeGN contains an active function nodes with Susp(s) ≠ ∅, where the
Susp set of a function node is given in definition 3.3. SupposeGN also contains an ac-
tive function nodef, all of whose (Map(σ(f)) – State(σ(f))) arguments are idle construc-
tors, and whose State(σ(f)) argument (if any, let it bev) is an idle constructor or
stateholder, and which is thus the root of a redexg : L → GN for some ruleD = (P, root,
Red, Act). Let

Susp = {k ∈ Map(σ(s)) | α(s)[k] is non-idle, or
α(s)[k] is idle andσ(α(s)[k]) = ⊥, or
α(s)[k] is idle andσ(α(s)[k]) ∈ F, or
[k ∈ (Map(σ(s)) – State(σ(s))) and
α(s)[k] is idle andσ(α(s)[k]) ∈ V] }

SuspNodes = {x ∈ GN | x = α(s)[k] for somek ∈ Susp}

Susp = {k ∈ Map(σ(s)) | k ∉ Susp}
SuspNodes = {x ∈ GN | x = α(s)[k] for somek ∈ Susp}

Suppose for every redirection (a, b) ∈ Red, eitherb is non-idle orb ∈ Act. Let

SuspAct = (SuspNodes∩ g(Act ∪ {b | (a, b) ∈ Red, a ∈ Act, b ∈ L}))
– ({α(f)[k] | k ∈ State(σ(f))} ∩ {α(s)[k] | k ∈ State(σ(s))})

Π ≡ SuspAct≠ ∅

Let Hs be obtained by performing a suspension froms in GN. Let Hf be obtained by
rewriting the redex rooted atf in GN, via the usual phasesg′ : P → GN′, g′′ : P → GN′′,
hf : P → Hf, and associatedi andr maps. Then

(1) (a) rGN,Hf
(s) = iGN,Hf

(s) is an active function node ofHf with non-empty

Susp set. HencerGN,Hf
(s) the root of a potential suspension step inHf.

(b) rGN,Hs
(f) = iGN,Hs

(f) is an active function node, and

hs = rGN,Hs
g : L → Hs

is a redex forD, such that all (Map(σ(rGN,Hs
(f))) – State(σ(rGN,Hs

(f)))) ar-

guments ofrGN,Hs
(f) are idle constructors, and any State(σ(rGN,Hs

(f))) ar-

1309Banach R.: MONSTR V - Transitive Coercing Semantics ...

gument is an idle constructor or stateholder, hence is the redex of a
potential rewrite inHs.

Let Jf be obtained fromHf by performing a suspension fromrGN,Hf
(s). Let Js be ob-

tained fromHs by rewriting the redex rooted atrGN,Hs
(f) in Hs, via the usual phases

hs′ : P → Hs′, hs′′ : P → Hs′′, js : P → Js, and associatedi andr maps. Then

(2) If Π Then Every node inrGN,Jf
(SuspAct) (resp.rGN,Js

(SuspAct)) is an

active constructor, hence the root of a potential notification step
in Jf (resp.Js).

Let Kf andKs be given by

If notΠ Then Kf = Jf andKs = Js
Else Kf (resp.Ks) = the result of performing notifications from each node in

rGN,Jf
(SuspAct) inJf (resp.rGN,Js

(SuspAct) inJs)

Then

(3) Kf andKs are marking preserving isomorphic via a mapψ : Kf → Ks; apart from
the exceptional case in whichf ands share the same stateholder or constructor
node, both in stateholder position, and thef rewrite either redirects it (to a non-
idle node, or activated node, or⊥-node), or merely activates it without redirec-
tion. In symbols if: State(σ(s)) = {ks} ; State(σ(f)) = {kf} ; α(s)[ks] = α(f)[kf] =
v ; µ(rGN,Kf

(v)) = µ(rGN,Ks
(v)) ≠ ε or σ(rGN,Kf

(v)) = σ(rGN,Ks
(v)) = ⊥: In such a

case,rGN,Kf
(s) has an extra suspension marking compared withψ(rGN,Kf

(s)) =

rGN,Ks
(s), and the arc (rGN,Kf

(s)ks
, rGN,Kf

(v)) is a notification arc, whereas

ψ((rGN,Kf
(s)ks

, rGN,Kf
(v))) = (rGN,Ks

(s)ks
, rGN,Ks

(v)) is a normal arc. Even in the

exceptional case,Kf andKs are marking preserving isomorphic viaψ aside from
the stated details.

Proof. Obviouslyf ≠ s sincef has an empty Susp set whiles does not. Equally obvi-
ously, f’s Map(σ(f)) arguments do not include most kinds of suspension redex nodes
since the latter are non-idle, or idle functions, or⊥-nodes, or idle stateholders in the
wrong place. (In fact one of the latter could be the stateholder argument off, but this is
the only possible exception.) However, this does not prevent the suspension redex
nodes from occurring as implicitly matched arguments of the rewriting redex. Because
the out-arcs off ands are disjoint, and the out-arcs of implicitly matched nodes of the
rewriting redex are not part of that redex, it is clear that the sets of arcs of the two re-
dexes are disjoint.

Consider performing the suspension to createHs. EvidentlyGN andHs are graph struc-
ture isomorphic. And since for suspensions, the only nodes whose markings change are
s itself and any idle function activated in the suspension,rGN,Hs

(f) is active inHs and
(1).(b) follows. Let us compare the rewriting processes that createHf from GN andKs
from Hs using the ruleD. Let

θ : GN → Hs

1310 Banach R.: MONSTR V - Transitive Coercing Semantics ...

be the graph structure isomorphism mentioned already. The respective contractum
building phases clearly allow its extension to a graph structure isomorphism

θ′ : GN′ → Hs′

such that the obvious triangle involvingg′ : P → GN′ andhs′ : P → Hs′ commutes. The
redirection phase admits a further extension to a graph structure isomorphism

θ′′ : GN′′ → Hs′′

such that the triangle involving the node mapsg′′ : P → GN′′ andhs′′ : P → Hs′′ com-
mutes too. Likewise the activation phase finally yields the graph structure isomorphism

θ′′′ : Hf → Js

such that the triangle involvinghf : P → Hf andjs : P → Js commutes. (In particular the
equalityσ(rGN,Kf

(v)) = σ(rGN,Ks
(v)) mentioned in clause (3) of the lemma is guaranteed

to hold.)

As in the previous lemma, the definition of rewriting 3.8 shows that the only active node
of the rewritten graph that ends up idle in the result, is the root of the redex. The only
other nodes that can undergo a change of marking are the activated nodes which, if they
start off idle, end up active. Thus we conclude that sincef ≠ s, rGN,Hf

(s) is active inHf.
To get 1.(a), we must show thatrGN,Hf

(s) has a non-empty Susp set. For this is it is suf-
ficient to notice that the rewrite cannot make a non-root non-idle node idle, nor change
the symbol on a node, nor redirect a node to an idle non-⊥-node. So each Susp argu-
ment ofs becomes a Susp argument ofrGN,Hf

(s), and in fact these may be joined by oth-
ers ifSuspAct≠ ∅, or if a node in stateholder position for bothf ands, is redirected or
activated. So 1.(a) holds.

By the rather stringent conditions for rewrite redexes, (2) holds trivially. To get (3) we
must follow what happens to the markings on the nodes and arcs.

For arcs there are five disjoint cases: (a) all arcs (sk, f), for any applicablek ∈ Susp,
which must all be normal arcs inGN; (b) other arcs of the suspension redex (i.e. whose
child nodes are in SuspNodes); (c) all arcs (sk, x) not in the suspension redex, but with
k ∈ (Map(σ(s)) – State(σ(s))); (d) any arc (sk, x) not in the suspension redex, but withk
∈ State(σ(s)); (e) all remaining arcs, whether already existing inGN, or introduced dur-
ing rewriting, (this includes all arcs (sk, x), for anyk ∉ Map(σ(s))).

For case (a) arcs, if rewriting is done first, they remain normal during the rewrite, and
sincef is redirected to a non-idle node or activated node or⊥-node, they become noti-
fication arcs after the suspension. If the redirection target was aSuspAct node, they be-
come normal after the final notification; otherwise not. If the suspension is done first,
they become notification arcs immediately, and remain so during the rewrite. During
the final notification, they become normal if the redirection target was aSuspAct node;
otherwise not.

For case (b) arcs, they are unaffected by rewriting, and become notification arcs after
the suspension, regardless of the order of steps, remaining so in the final notification (if
any). For case (c) arcs, if the rewrite is first, they remain normal throughout; unless
their child node was inSuspAct, in which case they become notification arcs after the
suspension, returning to normal after the final notification. If the suspension is first,
they remain normal through both the suspension and rewrite and final notification.

1311Banach R.: MONSTR V - Transitive Coercing Semantics ...

If there is a case (d) arc, its child is an idle constructor or stateholder. Either may get
activated, and a stateholder may get redirected by the rewrite, which will make the arc’s
child a non-idle node or⊥-node. Therefore if any of these happen and the rewrite is
done first, it joins the suspension redex, and becomes a notification arc during the sus-
pension; this does not happen if the rewrite comes second. The arc is unaffected by the
final notifications whatever the order. For case (e) arcs, they retain the marking they
had inGN, or were given during contractum building, regardless of the order of steps,
except for contractum notification arcs with contractum parent nodes andSuspAct child
nodes, which become normal after the final notification, regardless of order of steps.

For nodes there are six disjoint cases: (a)s; (b) f; (c) nodes in SuspNodes other thanf
and its child in stateholder position (if applicable); (d) nodes inSuspNodes other than
the child off in stateholder position if any; (e) the child off in stateholder position if
any; (f) all remaining nodes, whether already existing inGN, or introduced during re-
writing.

For the case (b) nodef, its marking is unaffected by the suspension, and it is quiesced
during the rewrite. This holds regardless of the order of the steps. For the case (c)
nodes, the non-idle nodes remain so, regardless of the order of steps, being unaffected
by any activations from the rewrite, or final notification. Any idle functions are activat-
ed either (perhaps) by the rewrite, or by the suspension, and remain thus. Idle statehold-
ers, might be activated by the rewrite, or not regardless of order;⊥-nodes remain so.
For the case (d) nodes, we know they must be idle constructors. During the rewrite, they
might be activated, but will subsequently notify in the final notification. In such a case,
if the rewite is first they join the suspension redex, otherwise not.

For case (e), if there is a child off in stateholder position, if it occurs in SuspNodes, the
argument is as for the SuspNodes nodes, since it must be an idle stateholder in construc-
tor position fors. Thus it may (or may not) be activated, or redirected to a non-idle node
or activated node or⊥-node by the rewrite regardless of order. If it occurs outside of
the Map(σ(s)) arguments ofs, it is unaffected by the suspension and notification, what-
ever the order of steps. If it occurs inSuspNodes, either it is a constructor, in which
case the rewrite may (or may not) activate it regardless of order. If the rewrite does ac-
tivate it, it joins the suspension redex if the suspension occurs second, and provided it
is not in stateholder position ofs, it notifies in the last step, again regardless of order.
Otherwise if it occurs inSuspNodes, it must be a stateholder, in which case it must be
the stateholder argument ofs as well as that off. In this case, the rewrite may activate
it, or redirect it (to a non-idle or activated or⊥-node) whereupon, if the suspension oc-
curs second, it joins the suspension redex. (In any case the equalityµ(rGN,Kf

(v)) =
µ(rGN,Ks

(v)) (whenα(s)[ks]) = α(f)[kf]) = v) mentioned in clause (3) of the lemma is
guaranteed to hold.)

For case (f) nodes, either they retain the marking they had inGN, or were given during
contractum building; or they undergo an activation. This holds regardless of the order
of the steps.

For the case (a) nodes, if suspension is done first, its marking changes from active to
suspended, with as many suspensions in total, as there are: Map(σ(s)) arcs to case (c)
nodes, plus Map(σ(s)) arcs tof if f is a matched argument ofs, plus (Map(σ(s)) – Sta-
te(σ(s))) arcs to the stateholder child off (in stateholder position off) if any, if it is a
constructor position argument ofs. The marking remains during the rewriting step and
final notification.

1312 Banach R.: MONSTR V - Transitive Coercing Semantics ...

If rewriting is done first, the Map(σ(s)) argument arcs tof (if any), become redirected
to an activated node or non-idle node or⊥-node. Similarly for the Map(σ(s)) argument
arcs to the childv of f in stateholder position if it got activated or non-root redirected.
If in fact either occured, andv was also in stateholder position ofs, the fact thatrGN,Hf

(v)
is non-idle or a⊥-node, means it joins the suspension redex ofrGN,Hf

(s). The rewrite
also potentially activates some nodes, and those that are inSuspAct join the suspension
redex ofrGN,Hf

(s) as well. These latter, notify during the final notification, so that the
suspension marking onrGN,Kf

(s) is one more than that onrGN,Ks
(s) if rGN,Hf

(v) joined
the suspension redex ofrGN,Hf

(s), otherwise being the same. We are done.

Lemma 7.6 LetGN = [G0, …, GN] be a transitive coercing preexecution of a MONSTR
systemR. SupposeGN contains two active function nodesf1 ≠ f2. Suppose fori ∈ {1,
2}, all of the (Map(σ(fi)) – State(σ(fi))) arguments offi are idle constructors, and any
State(σ(fi))) argument offi is an idle constructor or stateholder, and suppose therefore
thatfi is the root of a redexgi : Li → GN for some ruleDi = (Pi, rooti, Redi, Acti). Sup-
pose for each redirection (a, b) ∈ Redi, eitherb is non-idle orb is in Acti. For either
choice ofi ∈ {1, 2}, let j denote the other choice. IfLi (the left subpattern ofPi) contains
an explicit stateholder, let it besi. If for someti ∈ Pi, (si, ti) ∈ Redi, then we sayDi
redirectssi, otherwise not.

Let

MapNodesi = {x ∈ GN | x = α(fi)[k] for somek ∈ Map(σ(fi)}
RedNodesi = {x ∈ GN | x = gi(a) for some (a, b) ∈ Redi}
LActNodesi = gi(Acti ∪ {b | (a, b) ∈ Redi, a ∈ Acti, b ∈ Li})

Suppose

g1(s1) = v1 = v2 = g2(s2) ⇒ [For bothi ∈ {1, 2}, Di does not redirectsi].

Let Hi be obtained by rewriting the redex rooted atfi in GN, via the usual phasesgi′ :
Pi → GNi′, gi′′ : Pi → GNi′′, hi : Pi → Hi, and associatedi andr maps. Let

RedGNi = {(x, y) ∈ GN×GN | for some (a, b) ∈ Redi, gi(a) = x, gi(b) = y}
Redi° = {(x, y) ∈ GN×GN | for some (a, b) ∈ Redi, gi(a) = x, gi(b) = y,

 andx RedGNi+ x}
Red1&2° = {(x, y) ∈ GN×GN | for some (a, b) ∈ (RedGN1 ∪ RedGN2),

[(g1(a) = x andg1(b) = y), or (g2(a) = x andg2(b) = y)],
andx (RedGN1 ∪ RedGN2)+ x}

Let

NNi.1 = LActNodesi ∩ MapNodesj

Then

(1) Noti.1 = rGN,Hi
(NNi.1) = iGN,Hi

(NNi.1) contains only active constructors, possibly

combined with an active stateholder.

Let Mi be the result of performing notifications from all nodes inNoti.1.

Then

1313Banach R.: MONSTR V - Transitive Coercing Semantics ...

(2) rGN,Mi
(fj) = iGN,Mi

(fj) is an active function node ofMi, and

mi = rGN,Mi
gj : Lj → Mi

is a redex forDj, such that all the (Map(σ(rGN,Mi
(fj))) – State(σ(rGN,Mi

(fj)))) ar-

guments ofrGN,Mi
(fj) are idle constructors, and any State(σ(rGN,Mi

(fj))) argument

is an idle constructor or stateholder, hence is the redex of a potential rewrite in
Mi.

LetNi be obtained fromMi by rewriting the redex rooted atrGN,Mi
(fj) in Mi, via the usual

phasesmi′ : Pj → Mi′, mi′′ : Pj → Mi′′, ni : Pj → Ni, and associatedi andr maps.

Let

NN3 = (LActNodes1 ∪ LActNodes2) ∩
((MapNodes1 – RedNodes1) ∪ (MapNodes2 – RedNodes2))

Then

(3) Noti.3 = rGN,Ni
(NN3) = iGN,Ni

(NN3) contains only constructors and stateholders,

each in either the active or idle state.

Let Ki be the result of performing notifications from all active nodes inNoti.3.

Then

(4) K1 andK2 are marking preserving isomorphic via a mapψ : K1 → K2; apart from
the exceptional cases where

(a) Dj shares and activates an unredirected unactivated stateholder ofDi
which has a notification contractum in-arc. In symbols if: for somepi ∈
Pi, 0 <z = |{ l | α(pi)[l] = si, ν(pi)[l] = ^, vi ∉ RedNodesi, vi ∉ LActNodesi,
vi ∈ LActNodesj, vi ∈ MapNodesj} |. In such a case, ifµ(iNj,Kj

(nj(pi)))

= #q, thenµ(iHi,Ki
(hi(pi))) = #(q–z), and each relevant arc (iNj,Kj

(nj(pi))l,

rGN,Kj
(vi)) is a notification arc, whereas (iHi,Ki

(hi(pi))l, rGN,Ki
(vi)) is a nor-

mal arc. (And these respective pairs of nodes and arcs correspond viaψ
or ψ–1 according to the subscripts.)

(b) Dj activates a redirected stateholder ofDi which has a notification in-arc
in GN (and similarly forj). In symbols if: for someu ∈ GN, zi = |{ l | α(u)[l]
= vi, ν(u)[l] = ^, vi ∈ RedNodesi, vi ∈ LActNodesj} |, andzj = |{ l | α(u)[l]
= vj, ν(u)[l] = ^, vj ∈ RedNodesj, vj ∈ LActNodesi} |, and 0 <zi + zj. In

such a case, ifµGN
(u) = #q, then we haveµ(iGN,Ki

(u)) = #(q–zj) and

µ(iGN,Kj
(u)) = #(q–zi); and each relevant arc (iGN,Ki

(u))l, rGN,Ki
(vj)) is a no-

tification arc, whereas (iGN,Kj
(u))l, rGN,Kj

(vj)) is a normal arc, and each rel-

evant arc (iGN,Kj
(u))l, rGN,Kj

(vi)) is a notification arc, whereas (iGN,Ki
(u))l,

1314 Banach R.: MONSTR V - Transitive Coercing Semantics ...

rGN,Ki
(vi)) is a normal arc. (And these respective pairs of nodes and arcs

correspond viaψ or ψ–1 according to the subscripts.)

Even in the exceptional cases,K1 andK2 are marking preserving isomorphic via
ψ apart from the stated details.

Proof. Sincefi ≠ fj, and both are active, and because all (Map – State) arguments of both
f’s are idle constructors and any State argument must be an idle constructor or statehold-
er, the only overlap between ({fi} ∪ MapNodesi) and ({fj} ∪ MapNodesj) is on common
idle constructors, or a single shared but unredirected idle stateholder. (Of course im-
plicitly matched nodes of either redex may match arbitrary nodes, including arbitrary
nodes of the other redex). Noting that an activation from the first rewrite does not affect
the root of the redex of the second, clauses (1), (2) and (3) are clear.

It remains to establish the marking preserving isomorphism claimed in (4), which we
do in five stages.

Stage 1. First we define a bijection between the nodes ofK1 andK2. Images ofGN in
K1 andK2 are made to correspond, as are corresponding images of contractum nodes,
and any⊥-nodes introduced during redirection. Thus

θ : NK1
→ NK2

where

θ(iGN,K1
(x)) = iGN,K2

(x) for x ∈ GN

θ(iH1,K1
(h1(p1))) = iN2,K2

(n2(p1)) for p1 ∈ NP1
 – NL1

θ(iN1,K1
(n1(p2))) = iH2,K2

(h2(p2)) for p2 ∈ NP2
 – NL2

θ(iH1,K1
(q1.1)) = iN2,K2

(q1.2) for 〈q1.1, q1.2〉 ∈
{ 〈iGN1′′,H1

iGN,GN1′′([–]°), iM2′′,N2
iGN,M2′′([–]°)〉 |

[–]° ⊆ Red1°∗},
θ(iN1,K1

(q2.1)) = iH2,K2
(q2.2) for 〈q2.1, q2.2〉 ∈

{ 〈iM1′′,H1
iGN,M1′′([–]°), iGN2′′,H2

iGN,GN2′′([–]°)〉 |
[–]° ⊆ Red2°∗},

θ(iN1,K1
(q3.1)) = iN2,K2

(q3.2) for 〈q3.1, q3.2〉 ∈
{ 〈iGN1′′,N1

iGN,GN1′′([–]°), iGN2′′,N2
iGN,GN2′′([–]°)〉 |

[–]° ⊆ (Red1&2°∗ – (Red1°∗ ∪ Red2°∗))}

We can see that this is a well defined bijection, provided we note some things. First, we
assume a sufficiently fussy construction for disjoint union during contractum building
has ensured all introduced nodes are distinct. Second, the composition symbols
which occur, hide a slight abuse of notation. The earlier map in the composition refers
to an equivalence class of nodes (i.e. a set of nodes), before they have been formed into
a ⊥-node; the latter one, to the⊥-node itself (i.e. an individual node). Thirdly, the last
three cases are genuinely disjoint since the cycle of nodes that forms a⊥-node during
redirection has the property that each member is both the left node and the right node
of a redirection. As we are dealing with redexes which already exist inGN, witnesses
to the cycles that comprise the⊥-nodes created, also exist already. Thus inGN, since
for every left node of a redirection there is a unique right node, cycles entirely contained

1315Banach R.: MONSTR V - Transitive Coercing Semantics ...

in the first redex are disjoint from those contained in the second redex. These in turn
are disjoint from cycles spanning both redexes, since the latter consist of (an even
number of) chains contained entirely in one or other redex, for which the first node is
not the right node of a redirection, and the last node is not the left node of a redirection,
but such that the chains glue together suitably to form the cycle; and for which the first
rewrite (in whichever order), shorts out the pieces relevant to that rewrite, creating a
genuine cycle for the second rewrite. (We will see all this in a little more detail below.)

This completes stage 1.

Now we extendθ to a graph structure isomorphism by checking out the arcs. This oc-
cupies three stages since we argue separately about arc tails and arc heads (so each arc
is covered by one of the head cases and one of the tail cases), and then bring the two
together in a third stage.

Stage 2. We first check the arc tails, which are easy since tails of arcs never move during
redirection. So the cases above for nodes extendθ immediately to a bijection on tails
of arcs asθ-related nodes have the same arity.

Stage 3. Since arc heads follow the redirection functions under rewriting, we next cal-
culate therW,Ki

 functions of all nodes, whereW is as appropriate for the node in ques-
tion. Then we check thatθ expresses the right relationship between the various
possibilities. There are seven cases, following the breakdown of cases forθ above (the
last case splits into two): (a) nodes ofGN whereW is GN; (bi) contractum nodes intro-
duced in theDi rewrite whereW is eitherHi or Ni depending on order of rewriting; (ci)
⊥-nodes properly belonging to one or other rewrite whereW is eitherHi orNi depending
on order of rewriting; (di) ⊥-nodes properly belonging to both rewrites whereW is Ni.

We note that RedNodesi ∩ RedNodesj = ∅ follows easily from the hypotheses; and
from this we conclude

rGN,Hi
(y) = iGN,Hi

(y) for all y ∈ RedNodesj
rGN,Hj

(y) = iGN,Hj
(y) for all y ∈ RedNodesi

Now for case (bi), for an instantiated contractum nodex, sayx = w(ci), for either version
of W wherew : Pi → W, we haverW,Ki

(x) = iW,Ki
(x). This is because the first rewrite, of

Di say, only redirects nodes in RedNodesi, and the second rewrite, perforce ofDj, only
redirects nodes inrGN,Mi

(RedNodesj) = iGN,Mi
(RedNodesj). Neither of these includes

any instantiated contractum nodes. It is clear thatθ expresses the right relationship be-
tween therW,Ki

(x) images of such nodes.

A similar argument works for cases (ci) and (di), because⊥-nodes are not redirected ei-
ther. ThusrW,Ki

(x) = iW,Ki
(x) for such nodes, and againθ gives what is required.

For a case (a) nodex there are three subcases: (a.1)x ∉ (RedNodesi ∪ RedNodesj);
(a.2i) x ∈ RedNodesi.

For subcase (a.1), supposeDi rewrites first. We haverGN,Hi
(x) = iGN,Hi

(x). Subsequent-
ly iGN,Mi

(x) is not redirected in theDj rewrite either, andrGN,Ki
(x) = iGN,Ki

(x). By sym-
metry we getrGN,Kj

(x) = iGN,Kj
(x) if Dj rewrites first. Therefore by the first clause forθ,

we findθ(rGN,K1
(x)) = rGN,K2

(x) as required.

For the subcases (a.2i), there are a large number of sub…subcases, depending on how
the redirections combine together. Considerx ∈ (RedNodesi ∪ RedNodesj). Sox =

1316 Banach R.: MONSTR V - Transitive Coercing Semantics ...

gi!j (a) (wherei!j stands for eitheri or j), for some redirection (a, b) ∈ (Redi ∪ Redj).
Considerb. It is either a contractum node (caseC) and the analysis stops, or not. If not,
theny = g(b) is either not in (RedNodesi ∪ RedNodesj) (caseI) and the analysis stops,
or it is. In the latter case, eithery is a node we have analysed already (caseR⊥) and the
analysis stops having found a cycle of redirections, or not and we continue the analysis
with y (caseR). And so on. For any givenx ∈ (RedNodesi ∪ RedNodesj), the whole
process continues for at most four steps, since that is the maximum number of distinct
redirections.

Each possible combination for a nodex ∈ (RedNodesi ∪ RedNodesj) corresponds to a
connected directed graph of redirections, with a single source vertex, with each vertex
having at most one out-edge, whose directed edges are given by the (a, b) ∈ (Redi ∪
Redj), with verticesb andc identified iff gi!j (b) = gi!j (c), and with each edge (a, b) col-
ouredi or j according to whether (a, b) is inRedi or inRedj. Fig. 10 shows the cases of
length 4, supressing thei andj colouring (which serves to multiply the number of pos-
sibilities by a factor of 6), and for theR⊥ cases indicating the previously encountered
vertex with a blob.

We can see that the complete set of possibilities for a nodex ∈ (RedNodesi ∪ RedN-
odesj) is given by an expression of the form .R…R.X, where: the chain .R…R. contains
at least none, and at most threeR’s; X is C or I or R⊥, and ifR⊥ then one of the preceding
dots is a blob; and where eachR orX is colouredi or j with at most two of any one colour
occurring.

Where bothi andj colours occur for some particular case, both rewrites play a role in
determining the ultimate redirection target forx, otherwise only one of them does.

Suppose only one colour occurs, so the chain is of length at most 2. If the case ends in
C, thei–,– image of the contractum node instance provides the final redirection target for
x regardless of the order of rewriting. If the case ends inI, the i–,– image of the root
node of the relevant [–]- class (which is certainly not redirected because only one colour

subcase (a.2.R.R.R.C)

subcase (a.2.R.R.R.I)

subcase (a.2•R.R.R.R⊥)

Fig. 10 Cases for redirection chains of length 4.

subcase (a.2.R•R.R.R⊥)

subcase (a.2.R.R•R.R⊥)

subcase (a.2.R.R.R•R⊥)

1317Banach R.: MONSTR V - Transitive Coercing Semantics ...

occurs), provides the final redirection target regardless of the order of rewriting. If the
case ends inR⊥, thei–,– image of the⊥-node for the relevant [–]° class provides the final
redirection target regardless of the order of rewriting. All these possibilities are correct-
ly related byθ.

Suppose both colours occur. Then any maximal single coloured segment of the chain
which is not the last segment of the whole chain, must relate to part of a [–]- class of the
appropriate rewrite (say theDi rewrite), and its final vertex (corresponding to the root
node of the [–]- class) is necessarily implicitly matched byDi to a node that is explicitly
matched byDj to the left node of a redirection ofDj.

SupposeDi rewrites first and that the last segment belongs toDj. Then it is clear that
the redirections of theDi rewrite serve to short-circuit thei-coloured segments, by re-
directing all non-root nodes of each relevant [–]- class to its root. As the root also cor-
responds to the initial vertex of the followingj-coloured segment, the whole chain is
transformed into one of the single coloured cases dealt with above, for theDj rewrite.

Now supposeDj rewrites first. Allj-coloured segments except the last act as short-cir-
cuits as previously, but now the final segment participates in the rewrite too. If the last
edge of the last segment ends in theC or I cases, then the redirections of theDj rewrite
short circuit this segment, and transform the immediately precedingi-coloured segment
of the original chain from a pure short-circuit, to aC or I -ended case respectively, as
this preceding segment now becomes the last part of the chain for theDi rewrite. If the
last edge of the last segment ends inR⊥, there are two subcases, depending on whether
the cycle consists purely of edges of a single colour (necessarilyj), or whether both col-
ours are involved. If the former, then the last segment acts like theR⊥-ended case for
the single coloured situation, creating a⊥-node for the relevant [–]° class, which puts
the precedingi-coloured segment into theI-ended case, as the⊥-node does not get re-
directed. If the latter, then the last segment just acts like another of the previously dis-
cussed short-circuits, as its final vertex necessarily corresponds to a node which is also
the left node of a redirection (of either theDi or theDj rewrite). In this case, theDj re-
write short-circuits part of the cycle, creating a smaller cycle for theDi rewrite, which
now falls into anR⊥-ended case for the single coloured situation.

Tedious detailed calculations for all the possibilities, along the lines of that for subcase
(a.1), confirm that the results for either order of rewriting are correctly related byθ.

This completes stage 3.

Stage 4. We now utilise the results of stage 3 to show that all arcs ofK1 andK2 are re-
lated as required. There are three cases: (a) arcs ofGN; (bi) instantiations of contractum
arcs ofDi.

Let (pk, c) be an arc ofGN. Thenθ(iGN,K1
(p)) = iGN,K2

(p) by stage 2, andθ(rGN,K1
(c)) =

rGN,K2
(c) by stage 3, so

θ((iGN,K1
(p)k, rGN,K1

(c))) = (iGN,K2
(p)k, rGN,K2

(c))

and we have what we need for case (a) arcs.

For case (bi) arcs there are two subcases: (bi.C) where the child node is an instantiation
of a contractum node; (bi.I) where the child node is a matching image of a left pattern
node.

1318 Banach R.: MONSTR V - Transitive Coercing Semantics ...

For case (bi.C), let (pk, c) be an arc between two contractum nodes ofDi. Case (bi) of
stage 3 assures us that the instantiations of neitherp nor c get redirected. The homo-
morphic nature of the contractum building phase, the second and third clauses forθ, and
symmetry, then assure us that

θ((iH1,K1
(h1(p))k, rH1,K1

(h1(c)))) = ((iN2,K2
(n2(p)))k, rN2,K2

(n2(c)))

if Di = D1, and

θ(((iN1,K1
(n1(p)))k, rN1,K1

(n1(c)))) = (iH2,K2
(h2(p))k, rH2,K2

(h2(c)))

otherwise.

For case (bi.I), let (pk, c) be an arc from a contractum nodep to a left pattern nodec of
Di. We first note that due to the homomorphic nature of the contractum building phase,
the homomorphismgi′ : Pi → GNi′ guarantees that GNi′ has a copy,gi′((pk, c)) of (pk, c)
if Di rewrites first, and the homomorphismmj′ : Pi → Mj′ guarantees thatMj′ has a copy,
mj′((pk, c)) of (pk, c) if Di rewrites second. Case (bi) of stage 3 assures us that the in-
stantiations ofp do not get redirected. So forp, noting thatiGNi′,Hi

(gi′(p)) = hi(p) in the
first case, andiMi′,Ni

(mi′(p)) = ni(p) in the second case, we can use the second and third
clauses forθ as above.

For c, there will be a nodex ∈ GN such thatiGN,GNi′(x) = rGN,GNi′(x) = gi′(c) in the first
case, andrGN,Mj′(x) = mj′(c) in the second case, given that we have clause (2) of the the-
orem. Now using stage 3 forx ∈ GN, (which allows us to factorise therGN,K1

(x) and
rGN,K2

(x) maps atGNi′ and atMj′), and symmetry, allows us to conclude that

θ((iGN1′,K1
(g1′(p))k, rGN1′,K1

(g1′(c)))) = (iM2′,K2
(m2′(p))k, rM2′,K2

(m2′(c)))

if Di = D1, and

θ((iM1′,K1
(m1′(p))k, rM1′,K1

(m1′(c)))) = (iGN2′,K2
(g2′(p))k, rGN2′,K2

(g2′(c)))

otherwise.

At this pointθ is a graph structure isomorphism.

Stage 5. Finally we turn our attention to the markings, starting with the node markings.

There are eleven disjoint cases: (ai) the rootfi; (bi) nodes in RedNodesi other thanfi (if
any); (ci) nodes in MapNodesi – Rednodesi; (di) instantiations of contractum nodes of
Di; (e)⊥-nodes created by either rewrite; (f) non-idle nodes ofGN not previously men-
tioned; (g) idle nodes ofGN not previously mentioned.

For case (ai), fi is quiesced in theDi rewrite. If it occurred in ActNodesj then ifDi re-
writes first, the redirection offi to a non-idle, or activated, or⊥- node ensures that the
nodeiGN,Mi

(fi) is not accessible to theDj rewrite later; ifDj rewrites first, it is unaffected
by any activation, being active already. Soµ(iGN,K1

(fi)) = µ(iGN,K2
(fi)) = ε.

For case (bi), the redirected stateholdervi starts off idle. IfDi rewrites first, it is redi-
rected to a non-idle, or activated, or⊥- node, and henceiGN,Mi

(vi) is idle and remains
immune to any activation fromDj. If Dj rewrites first, it may be activated, but then no-
tifies, ready for theDi rewrite, which is as before. Either way we have,µ(iGN,K1

(vi)) =
µ(iGN,K2

(vi)).

1319Banach R.: MONSTR V - Transitive Coercing Semantics ...

For case (ci), the relevant nodes are idle constructors and possibly a stateholder which
is not redirected. Such a node may be activated by the first rewrite, and if it is matched
by the second rewrite, notifies immediately beforehand. It may be activated again, but
in any event, it notifies in the last step if it is active by then. Either way, for such a node
ci, µ(iGN,K1

(ci)) = µ(iGN,K2
(ci)) = ε.

For case (di), a contractum nodedi, an instantiation of nodepi of Di, is first created with
the marking specified by the rule, regardless of the order of rewriting. The only way
that this can change, is if it has a notification out-arc to a child node which is one of the
notifying nodes, or it receives an activation via a redirection. These two possibilities
are mutually exclusive. If an activation changes the marking,di must have been created
idle, ends up active regardless of rewriting order, and cannot receive notifications by
balancedness.

If it receives a notification,di must have been created suspended. In that case any rel-
evant child node is either among the MapNodes nodes (of either rewrite) and is activat-
ed byDi, or is the unredirected and unactivated stateholder node of theDi rewrite, (by
M-I.11.4.(7),(9) and the hypotheses for redirections ofDi and for which nodes notify).
In the former case, the notification takes place regardless of the order of rewriting, and
regardless of whetherDj also activates the node, because any arc can only be notified
once, and the hypotheses guarantee that this happens. The same applies in the latter
case ifDj does not activate the node. In these cases therefore, we haveµ(iHi,Ki

(hi(pi)))
= µ(iNj,Kj

(nj(pi))).

However in the latter case, ifDj does activate the node, it ends up with different mark-
ings depending on rewriting order. Thus ifDj rewrites first, it activates the stateholder
node of theDi rewrite which promptly notifies, beforedi has been instantiated, and thus
iNj,Kj

(nj(pi)) has not received a notification. IfDi rewrites first, the instantiation ofpi is
now earlier, andiHi,Mi

(hi(pi)) is around and able to receive the notification following the
activation from theDj rewrite. For this case therefore,µ(iHi,Ki

(hi(pi))) has as many few-
er suspension markings compared toµ(iNj,Kj

(nj(pi))), as there are notification out-arcs
from pi to si in Di.

For case (e), we note that a⊥-node is immune to activations, and cannot receive notifi-
cations because it has no out-arcs, soµKi

(⊥) = µKj
(⊥) = ε, for anyθ-related⊥-nodes

indicated informally by⊥.

For case (f), the marking of an otherwise not discussed non-idle nodeu of GN can only
be affected if it is suspended and receives a notification. In this case the child node in
question must belong to (MapNodesi ∪ MapNodesj). If the child is never redirected, or
never activated (or both), for either order of rewriting it either does or does not notify,
consistently. So ifu has only such children at worst, we getµ(iGN,K1

(u)) = µ(iGN,K2
(u)).

The same holds if the child is redirected (and/or perhaps activated) by one rewrite and
not activated by the other.

However, if the child is redirected byDi and activated byDj (which means the child
must bevi), if Di rewrites first, the child is redirected to a non-idle, or activated, or⊥-
node, which means that it is immune to the subsequent activation fromDj, and hence
does not notify. On the other hand, ifDj rewrites first,vi is activated and immediately
notifies, so a notification goes tou. For this case therefore,µ(iGN,Ki

(u)) has as many
more suspension markings compared toµ(iGN,Kj

(u)), as there are notification out-arcs
from u to vi in GN. (N.B. For simplicity, we have assumed no out-arcs of a similar kind

1320 Banach R.: MONSTR V - Transitive Coercing Semantics ...

from u to vj; if there are some, the required difference in number of suspensions is the
difference of two such calculations.)

For case (g), an idle nodew of GN not otherwise discussed, can only have its marking
changed by virtue of receiving an activation. Sincew is not redirected, it is clear thatw
does or does not receive such an activation consistently, regardless of the order of re-
writing. Soµ(iGN,K1

(w)) = µ(iGN,K2
(w)).

This completes the discussion of nodes. The argument for arcs follows that for nodes.
All arcs ofKi are either (iGN,Ki

, rGN,Ki
) copies of arcs ofGN, or (iHi,Ki

, rHi,Ki
) or (iNi,Ki

,
rNi,Ki

) copies of instantiations of contractum arcs ofDi andDj. Thus corresponding arcs
in K1 andK2 either are or are not notification arcs consistently, except for the cases
where differing numbers of notifications are received by the parent node, in which cases
the arcs to the relevant stateholders are or are not notification arcs. These cases can be
infered easily from the discussion of nodes, so we will not comment further. We are
done.

Lemma 7.7 LetGN = [G0, …, GN] be a transitive coercing preexecution of a MONSTR
systemR. SupposeGN contains two active function nodesfr ≠ fs. Suppose forfr, all of
the (Map(σ(fr)) – State(σ(fr))) arguments offr are idle constructors, that State(σ(fr)) =
{ kr}, and thekr ’th argument offr is an idle stateholder, and suppose therefore thatfr is
the root of a redexgr : Lr → GN for some ruleDr = (Pr, rootr, Redr, Actr). Suppose the
stateholder argument ofDr is sr, and thatDr redirectssr. Suppose for each redirection
(a, b) ∈ Redr, eitherb is non-idle orb is inActr.

Suppose forfs, all of the (Map(σ(fs)) – State(σ(fs))) arguments offs are idle constructors,
that State(σ(fs)) = {ks}, and theks’th argument offs is an idle stateholder, and suppose
that fs is the root of a redexgs : Ls → GN for a resuspending ruleDs = (Ps, roots, Reds,
∅). Suppose for the root redirection (roots, bs) ∈ Redr, bs is non-idle (as is the case for
a resuspending rule).

Supposegr(sr) = v = gs(ss).

Let

MapNodesr = {x ∈ GN | x = α(fr)[k] for somek ∈ Map(σ(fr))}
MapNodess = {x ∈ GN | x = α(fs)[k] for somek ∈ Map(σ(fs))}
RedNodesr = {x ∈ GN | x = gr(a) for some (a, b) ∈ Redr}
RedNodess = {x ∈ GN | x = gs(roots) for (roots, bs) ∈ Redr}
LActNodesr = gr(Actr ∪ {b | (a, b) ∈ Redr, a ∈ Actr, b ∈ Lr})

Let Hr be obtained by rewriting the redex rooted atfr in GN, via the usual phasesgr′ :
Pr → GNr′, gr′′ : Pr → GNr′′, gr′′′ : Pr → Hr, and associatedi andr maps. LetHs be
obtained by rewriting the redex rooted atfs in GN, via the usual phasesgs′ : Ps → GNs′,
gs′′ : Ps → GNs′′, gs′′′ : Ps → Hs, and associatedi andr maps.

Let

NNr = (LActNodesr ∩ MapNodess) – RedNodesr

Then

1321Banach R.: MONSTR V - Transitive Coercing Semantics ...

(1) Notr = rGN,Hr
(NNr) = iGN,Hr

(NNr) contains only active constructors.

Let Mr be the result of performing notifications from all nodes inNotr.

Then

(2) (a) rGN,Mr
(fs) = iGN,Mr

(fs) is an active function node ofMr, such that all the

Map(σ(rGN,Mr
(fs))) – State(σ(rGN,Mr

(fs)))) arguments ofrGN,Mr
(fs) are idle

constructors, and the State(σ(rGN,Mr
(fs))) argument ofrGN,Mr

(fs) is a non-

idle or⊥- node, hence is the redex of a potential suspension step inMr.

(b) rGN,Hs
(fr) = iGN,Hs

(fr) is an active function node ofHs, and

hs = rGN,Hs
gr : Lr → Hs

is a redex forDr, such that all the (Map(σ(rGN,Hs
(fr))) – State(σ(rGN,Hs

(-

fr)))) arguments ofrGN,Hs
(fr) are idle constructors, and the State(σ(-

rGN,Hs
(fr))) argument ofrGN,Hs

(fr) is an idle stateholder, hence is the redex

of a potential rewrite inHs.

Let Kr be obtained fromMr by performing a suspension step rooted atrGN,Mr
(fs) in Mr.

Let Ms be obtained fromHs by rewriting the redex rooted atrGN,Hs
(fr) in Hs, via the usu-

al phaseshs′ : Pr → Hs′, hs′′ : Pr → Hs′′, hs′′′ : Pr → Ms, and associatedi andr maps.

Then

(3) Nots = rGN,Ms
(NNr) = iGN,Ms

(NNr) contains only active constructors.

Let Ks be the result of performing notifications from all nodes inNots.

Then

(4) Kr andψ(Kr) ⊆ Ks are marking preserving isomorphic via a mapψ : Kr → Ks;
and the only things inKs – ψ(Kr) are the extra idle garbage nodeiGN,Ks

(fs) and

extra normal garbage arcs (iGN,Ks
(fs)l, rGN,Ks

(α(fs)[l])) for l ∈ A(σ(fs)), which

have no counterparts inKr.

Proof. Mercifully, we can reuse much of the proofs of previous lemmas with minor al-
terations, so we will be fairly brief. Consider performing the resuspension rewrite to
produceHs. Aside from technical details of disjoint unions etc., the only difference be-
tweenGN andHs is that the nodefs and out-arcs ((fs)l, α(fs)[l]) for l ∈ A(σ(fs)), which
are active and normal respectively and all live inGN, become idle and normal respec-
tively and all garbage inHs; and inHs, there is a new noderGN,Hs

(fs) once suspended
with the same symbol asfs, and new arcs (rGN,Hs

(fs)l, rGN,Hs
(α(fs)[l])) for l ∈ A(σ(fs)),

all normal arcs except for (rGN,Hs
(fs)ks

, rGN,Hs
(v)) which is a notification arc. Under the

circumstances, it is clear that the maprGN,Hs
 extends to an injective homomorphism,

which is marking preserving, except onfs and its stateholder out-arc. (2).(b) is now
clear.

1322 Banach R.: MONSTR V - Transitive Coercing Semantics ...

Let us callrGN,Hs
, θ for short. As we did in lemmas 7.4 and 7.5, we can perform the

rewrites according toDr of the redexes rooted atfr ∈ GN andrGN,Hs
(fr) ∈ Hs in parallel,

constructing injective “almost” marking preserving homomorphisms phase by phase.
SoMs andHr are related by an injective mappingθ′′′ : Hr → Ms, which fails to be a
marking preserving isomorphism by a node and arc marking and inMs an extra node
and its out-arcs which are garbage.

The rest is relatively straightforward. As in lemma 7.5, theDr rewrite (whatever the
order of rewriting), may activate some MapNodess nodes, but these can only be previ-
ously idle constructors as the stateholders are assumed shared, so the awkward cases
treated in lemma 7.5 do not arise, and (1), (2).(a) and (3) are now clear.

When the notificationsHr → Mr andMs → Ks are performed, a similar relationship, let
us call itθ′′′′ : Mr → Ks, holds as forHr andMs. Finally when the suspension step
Mr → Kr is performed, there results the mapψ : Kr → Ks, which is a marking preserving
injective homomorphism, such that the only things inKs falling outside the image ofψ
are the previously noted garbage nodeiGN,Ks

(fs) and its out-arcs. We are done.

8 The Church-Rosser Theorem

The general idea for proving the theorem is to fill in the Church-Rosser diamond be-
tween two preexecutions that diverge fromG0, by continually adding instances of sub-
commuting squares, until one reaches the diagonally opposite point. See Fig. 11. Two
things prevent this from being entirely straightforward. The first is that MONSTR is
not a free rewriting system, but one whose strategy is programmed by the markings, so
we have to be sure that the squares we fill in are permitted by the strategy. The second
is that some of the subcommuting squares do not subcommute quite “on the nose”,
which for our purposes means up to marking preserving isomorphism. This causes the
construction to potentially flake into separate sheets at various points1 — some of these
sheets may recombine later in the construction, as later activations and notifications
cause differing markings to resynchronise; see Fig. 11 again. Given the flaking, we
need to do two things. Firstly we need to be sure that despite it we can still get to the
diagonally opposite corner, up to some markings and some garbage. What we call the
handrail construction is crucial here. Secondly, we need to relate the graphs occurring
at the same coordinates of the various flakes, since there is no guarantee that all the
flakes will have recombined by the time we finish filling in all the sheets.

Lemma 8.1 LetGN = [G0 … GN] be a transitive coercing preexecution of a MONSTR
systemR. Suppose the hypotheses of one of lemmas 7.1 – 7.7 apply. Then with the
notation used in that lemma (or the obviously analogous notation in the subscripts), we
have:K 1 = [G0 … GN … K1] is a transitive coercing preexecution ofR iff K 2 = [G0
… GN … K2] is a transitive coercing preexecution ofR.

Proof. Beyond the facts established already in the lemmas mentioned, all we need to
check, is that for the execution steps discussed in each particular case, conformance to
the execution strategy of suspending MONSTR semantics in definition 3.1 holds for

1. Readers familiar with complex analysis may amuse themselves by contemplating an
analogy with Riemann surfaces. It is as though the graph structure corresponded to the
magnitude of an analytic function and the markings and garbage corresponded to the
phase; and there was a singularity in the “bad cell” of Fig. 11.

1323Banach R.: MONSTR V - Transitive Coercing Semantics ...

one order of execution steps iff it holds for the other; but it is rather obvious that this is
so. (Note in particular that the lemmas involving rewrite steps are insensitive to wheth-
er or not a default rule is being used when a normal rule is demanded by definition 3.1.)

Lemma 8.2 LetGN = [G0 … GN] be a transitive coercing preexecution of a MONSTR
systemR. Suppose the hypotheses of one of lemmas 7.1 – 7.7 apply. With the notation
used in that lemma (or the obviously analogous notation in the subscripts), letK 1 = [G0
… GN … H1 … K1] andK 2 = [G0 … GN … H2 … K2] be the transitive coercing pre-
executions ofR constructed in the relevant lemma, and letψ : K1 → K2 be the marking
preserving isomorphism (ornot quite marking preserving isomorphism), constructed in
that lemma. Then

(1) An active nodet of Hi hasrHi,Ki
(t) active inKi iff for no graphMi in Hi … Ki is

rHi,Mi
(t) the chosen root. For such at, rHi,Mi

(t) = iHi,Mi
(t) for everyMi.

(2) For every active nodet of H1 such thatrH1,K1
(t) is active inK1, ψ rH1,K1

(t) is

active inK2.

(3) For every active nodet of H2 such thatrH2,K2
(t) is active inK2, rH2,K2

(t) is in the

range ofψ, andψ–1 rH2,K2
(t) is active inK1.

Fig. 11 Filling in the Church-Rosser diamond.

GA

GBG0

…

ψ

1324 Banach R.: MONSTR V - Transitive Coercing Semantics ...

(4) A nodex ∈ K1 is non-idle iffψ(x) ∈ K2 is non-idle.

Proof. This requires an examination of the individual cases in lemmas 7.1 – 7.7. For
the notification/notification, suspension/suspension and notification/suspension cases,
things are helped by the facts that: (a)Hi … Ki consists of at most one step; (b) the graph
structure is not changed by any of the steps involved, and; (c)ψ is a marking preserving
isomorphism.

Thus for the notification/notification case, the only active markings removed inHi … Ki
are the ones on the notification roots, hence (1), (2) and (3). Similarly for the suspen-
sion/suspension case. Also for the notification/suspension case, except thatHt … Kt
might be trivial.

For the rewrite/notification case if the notification is last, its root is the only node whose
active marking is removed inHf … Kf; and if the rewrite is last, likewise forHt … Kt;
with the observation that if the rewrite reactivated the notification root, a final notifica-
tion is there to fix things.

For the rewrite/suspension case,ψ may no longer be marking preserving, but in any
case the discrepancy amounts to a differing number of suspensions on the suspension
root, which does not affect the conclusions. Otherwise the reasoning is much as in the
previous case.

For the rewrite/rewrite case, there are two subcases: (A) dealt with in lemma 7.6, cov-
ering two rewrites which either do not belong to the same critical cone or if they do,
their use of the common stateholder is read-only. In this case,ψ may no longer be mark-
ing preserving, and we need to check more carefully that the required conclusions hold.
The failure ofψ to be marking preserving concerns two kinds of nodes suspended on
the stateholder: either contractum nodes introduced during one or other rewrite, or ex-
isting nodes ofGN. Both kinds of nodes are suspended inHi on the shared stateholder
(apart from the contractum nodes which are due to be introduced in theDj rewrite which
do not exist yet inHi), so cannot cause the conclusions to fail. For other nodes we have
the conclusions because neither a rewrite nor a notification can remove an active mark-
ing, except from its own root.

The final subcase is (B), dealt with in lemma 7.7, covering two rewrites which belong
to the same critical cone and one of which is a resuspension. The reasoning here is sim-
ilar to but simpler than in the previous subcase, as none of the awkward circumstances
of that subcase arise because of the simple nature of resuspending rules. It is also the
only case in which the direction in whichψ goes matters, asψ : Kr → Ks is not onto.
This makes it necessary to have differing clauses (2) and (3) in the lemma.

Clause (4) follows from a trivial inspection of the conclusions of lemmas 7.1 – 7.7

Lemma 8.2 does little above stating the obvious, namely that performing one execution
step does not destroy other potential sites for performing execution steps. Still there is
more to it than meets the eye. For instance, the “iff” of the first clause does not hold for
other semantic models that have been considered in this series of papers. More impor-
tant, is the granularity of the implications in the clauses (2) and (3), which directly relate
properties ofHi to ones ofKi, without pausing to involve any of the intermediate graphs
along the way. Contemplating going only in small steps, i.e. proving a series of finer
grained implications that relate the active nodes of each graph inHi … Ki to the active
nodes of its successor is perfectly possible, but would cause clauses (2) and (3) to fail.

1325Banach R.: MONSTR V - Transitive Coercing Semantics ...

For example, the differences in markings that we were able to ignore in discussing re-
write/rewrite subcase (A), would become visible to the hypotheses of these mini-impli-
cations, and we would not be able to cross the gap described by theψ functions. Not
being able to do so would cause our proof strategy for the Church-Rosser theorem to
fail in cases whereψ refers to an exceptional case, as we would not be sure that any ex-
ecution step that we needed to perform on one sheet, could be mimicked on another. On
the other hand, we onlyneed to do this for execution steps that occurred in theoriginal
preexecutions (and some necessary notifications), not other ones that merely happen to
be permitted as a result of the subcommutativity cells that we construct in the process1.
This is exploited by the handrail construction in the main theorem, which is vital for
propagating the proof in the presence of the flaking, and shows why the correct granu-
larity of the implications is so important here.

Now for the main result.

Theorem 8.3 LetR be a MONSTR system. Suppose

(a) For every two distinct normal rulesDi ≠ Dj in R, whereDi = (Li ⊆ Pi, rooti, Redi,
Acti) andDj = (Lj ⊆ Pj, rootj, Redj, Actj), we have thatLi andLj are not graph
unifyable, (i.e. there is noG and nogi : Li → G, gj : Lj → G, with gi(rooti) = gj(-
rootj)). Similarly for every two distinct default rules.

(b) For every rule ofR, every redirection is to an activated node or non-idle node.

(c) Every critical cone that arises in any execution ofR is safe.

Let GA = [G0, …, GA] andGB = [G0, …, GB] be transitive coercing preexecutions ofR.
Then there are extensionsGX = [G0, …, GA, …, GX] andGY = [G0, …, GB, …, GY] of
GA andGB such that

(1) There are subgraphsGX* of GX, andGY* of GY, and a graph structure isomor-
phismΘXY* : GX* → GY*.

(2) All nodes and arcs inGX – GX*, and inGY – GY* are garbaged roots (and their
out-arcs) of resuspending rewrites. In particular,GX* contains LSG(GX) andGY*
contains LSG(GY).

Proof. Let us set the scene informally for the moment. We assume thatGA = [G0, …,
GA] consists ofA steps, andGB = [G0, …, GB] of B steps. So the Church-Rosser dia-
mond divides up into a grid ofA.B cells. We will coordinatise the diamond, refering to
a cell by its coordinates (a, b), where 1≤ a ≤ A, and 1≤ b ≤ B, so roughly speaking, cell
(a, b) produces graph (or graphs, because of the flaking)G(a, b), fromG(a–1,b–1), where
the graphs ofGA andGB are identified with graphsG(a, b) such that one or other coordi-
nate is zero.

The filling in of the Church-Rosser diamond will attempt to work by well founded re-
cursion on a partial order < over the coordinates, where (a, b) < (a′, b′) iff a < a′ andb
≤ b′, or a ≤ a′ andb < b′. We will call this setup the base coordinate system and base
partial order. We can fill a cell, i.e. construct the graph(s) at its highest coordinates by

1. To put it more brusquely, we do not needK1 andK2 to be bisimilar.

1326 Banach R.: MONSTR V - Transitive Coercing Semantics ...

using a subcommutativity lemma, once all the graphs at lower coordinates w.r.t. < have
been constructed. This process requires the consideration of two technical points.

The first technical point is that not all the subcommutativity lemmas close their cells
(i.e. constructHi … Ki say) using a single execution step. In one case there is no step
at all which is no problem at all, since we just introduce a suitable marking preserving
isomorphism to act as a step, but in others several steps are needed. The latter possibil-
ity requires the consideration of two points in and of itself.

On the one hand we need to amplify the indexing system in the Church-Rosser diamond
to cope with these extra graphs — this we can do for example by introducing a decimal
point and naming the first graph on the way fromG(a, b) to sayG(a, b+1) asG(a, b.1), the
secondG(a, b.2) and so on; introducing a second decimal point if perhaps the step
G(a+1, b.1) to G(a+1,b.2) say, subsequently needs to be subdivided itself, thusG(a+1,b.1.1)
etc. The partial order < extends pointwise and lexicographically to these pairs of index
sequences in the obvious way: the least significant index variable changes fastest in
both dimensions. We will call this generalised setup, the refined coordinate system and
refined partial order.

On the other hand, and more seriously, this process potentially causes the construction
to diverge as the hierarchy of newly introduced steps might potentially have an un-
bounded number of levels, and might require at least some sort of limit treatment. How-
ever we notice that all the additional steps introduced, in any of the subcommutativity
lemmas, are always notifications. It takes only a moment to check that notifications
subcommute on the nose with all other execution steps, so the phenomenon we feared
does not happen. In fact bearing in mind that the worst behaved of the subcommutativ-
ity lemmas is 7.6, where up to 2M notifications are introduced in either closing sequence
of the cell (whereM is the maximum cardinality of the MapNodes set of any function
used during eitherGA or GB), we can calculate that when an execution sequence of
lengthA, is projected over another of lengthB, we get a closing sequence [G(A, 0)=GA,
…, GX=G(A, B)] of length at most 2M.A.B.

The second technical point concerns the flaking of the construction into sheets, which
we have already mentioned. To keep things reasonable, for cases where the mapψ con-
structed in any of the subcommutativity lemmas is actually a genuine marking preserv-
ing isomorphism, let us agree that the cell in question is closed by a single graph, rather
than an isomorphic pair. We call such cells good cells; others will be bad cells. Max-
imising the number of good cells in the construction requires that we view execution
steps as being defined up to marking preserving isomorphism in general, and our nota-
tion throughout the paper has been fussy enough to transplant without change to this ap-
proach. More specifically, given the specific constructions for the various execution
steps defined in Section 3, which prescribe how to obtain from the starting graphG the
result graphH and the injection and redirection functionsiG,H andrG,H, if W is a graph
which is marking preserving isomorphic toH, via an isomorphismθ : H → W, thenW
is an equally acceptable result of the execution step, provided we equip it with the in-
jection and redirection functionsiG,W = θ iG,H andrG,W = θ rG,H. This allows us to
close all the good subcommutativity cells on the nose, and bad cells are consequently
ones which cannot be closed on the nose despite marking preserving isomorphisms.
Since all cases involving notifications are unproblematic, we see that all the extra steps
that get introduced in closing the more complicated cells (whether good or bad), do not
introduce additional flaking, and thus we easily estimate that the maximum number of

1327Banach R.: MONSTR V - Transitive Coercing Semantics ...

distinct non marking preserving isomorphic graphs we can generate at coordinate posi-
tion (A, B) is overestimated by flaking once per base coordinate cell on each sheet gen-
erated. The total thus generated being the binomial coeficient (A+B

A).

In principle the flaking can interfere rather badly with the coordinate construction, as
graphs on different sheets at a given coordinate position might conceivably spawn in-
compatible subsequent behaviour, leading to ambiguity in the construction of later co-
ordinates. But we will in fact see that such unwelcome behaviour will not arise.

With the above preamble, we turn to the more formal construction. We start with the
special case in which no flaking occurs; so all cells are good. This proceeds by a simul-
taneous recursive construction of, and induction on, the refined coordinate system and
partial order.

If bothGA andGB are trivial, consisting ofG0 only, then the theorem holds trivially, tak-
ing GA = GB = GX = GY, andΘXY* to be the identity. If only one ofGA or GB is trivial,
let it beGA; then takeGB = GX = GY, with ΘXY* an identity as before. There remains
the non-trivial case. This involves considering the situation illustrated in Fig. 12.

The induction hypothesis consists of the following clauses.

(i) The construction thus far, has constructed the refined coordinate system to in-
clude all coordinates lower than (a, b), (α, b), (a, β) in the refined partial order.

(ii) In the refined coordinate system thus far,α is the successor ofa in the vertical
direction, andβ is the successor ofb in the horizontal direction1.

(iii) The construction thus far is complete up to at least coordinate positions (a, b),
(α, b), (a, β), in that it has built the graphs required at these coordinate positions.

1. That is to say, any cell to the left of [Fig. 12] has its top and bottom at coordinatesp
andq, wherep ≤ a, andα ≤ q in the refined partial order. Similarly for any cell above
Fig. 12.

G(a, b) G(a, β)

G(α, b)

Fig. 12 Lines at the start of an induction step.

1328 Banach R.: MONSTR V - Transitive Coercing Semantics ...

(iv) The dashed lines connecting a graphG(a, b) to a graphG(α, b) or a graphG(a, β)
are of two kinds. Each is either: (a), a marking preserving isomorphism; or (b),
an execution step.

The rest is relatively straightforward. We just have to complete the square in Fig. 13,
and re-establish the induction hypothesis for the new graph(s)G(α, β) (and perhaps oth-
ers), and arrowsG(α, b) … G(α, β) andG(a, β) … G(α, β) illustrated.

The two different kinds of line generate three cases to consider, by symmetry.

If both lines are marking preserving isomorphisms, then we letG(α, β) be yet another
marking preserving isomorphic copy ofG(a, b) andG(α, b) andG(a, β), and we let the re-
quired arrows be the obvious marking preserving isomorphisms. If only one line is a
marking preserving isomorphism, we complete the square with a marking preserving
isomorphism and a marking preserving isomorphic copy of whatever execution step the
other line was, so that the isomorphisms and execution steps respectively face each oth-
er across the square. In these cases, the coordinate system does not require further re-
finement, so all clauses of the induction hypothesis are easily seen to be preserved.

Now suppose both lines are execution steps. Then either the same active node is the
chosen root of both steps inG(a, b) or not. If yes, then both lines are the same step, since
if either is a notification or suspension, the other can only be the same; and if either is a
rewrite, then hypothesis (a) of the theorem ensures that in MONSTR’s prioritised rule
selection strategy, only one rule will match at the chosen root so it must be the same one
in both cases. At any rate in any of these cases, the cell can be closed with a marking
preserving isomorphic copyG(α, β), of the already marking preserving isomorphic
G(α, b) andG(a, β); the required arrows being the obvious isomorphisms. As previously,
all clauses of the induction hypothesis are easily seen to be preserved.

Suppose then that the roots are different. In such a case we call on the subcommutativ-
ity lemmas to help. Where there are two rewrites involved and they are not in the same
critical cone, then lemma 7.6 applies; if both are in the same critical cone, the safety
hypothesis (c) of the theorem, assures us that either both uses of the stateholder are read-
only so that lemma 7.6 applies again, or that one rewrite is a resuspension rewrite, and
then lemma 7.7 applies. Apart from that, the subcommutativity lemmas apply unreserv-

G(a, b) G(a, β)

G(α, b)

Fig. 13 The objective of an induction step.

G(α, β)

1329Banach R.: MONSTR V - Transitive Coercing Semantics ...

edly. In each possible case, the relevant lemma allows us to complete the square on the
nose, by assumption.

In the case of notification/suspension, if the suspension comes second, it may become
trivial. In this case, the corresponding arrow of the construction is a marking preserving
isomorphism, dealt with rather as above. In other cases, the arrows may contain several
execution steps. In this case we refine the coordinate system further, for example on the
bottom arrow, making the successors ofG(α, b) in turn,G(α, b.1), G(α, b.2), G(α, b.3) etc.,
until the last graph is calledG(α, β) as in previous cases. This establishes that the induc-
tion hypothesis is preserved. This completes the treatment of the special case.

For the general case, we start by using the special case as far as we can. We fill in some-
thing like the shaded region of Fig. 14. The two not quite enclosed squares are bad cells
that do not close on the nose. Extending the construction into the area south east of such
cells, requires the handrail construction, a kind of strip lemma, next.

Consider the situation in Fig. 15.YXGNPR is an instance of a bad cell, whilePQRS is
a strip filled entirely by good cells. We claim that there is an extension ofG0GNXY to
G0GNXYZ, such that the natural analogue of lemma 8.2 holds. Thus letψRY : R→ Y be
theψ map provided by the appropriate subcommutativity lemma. (A completely anal-
ogous result holds ifψYR : Y → R is given instead). We will prove that there is a map
ψSZ : S→ Z (resp.ψZS : Z → S) such that the following hold.

Fig. 14 Bad cells block the Church-Rosser construction.

1330 Banach R.: MONSTR V - Transitive Coercing Semantics ...

(1) RS andYZ are of the same length, and contain similar execution steps in the same
order; in particular, rewrites occur at the same places in both.

(2) ψSZ : S→ Z (resp.ψZS : Z → S) is a graph structure isomomorphism except when
YXGNPR is an instance of lemma 7.7, when there is an extra garbage node and
its out-arcs not related byψSZ (resp.ψZS) to the other graph.

(3) An active nodet of Q hasrQ,S(t) active inS iff for no graphBj in Q … S is rQ,Bj
(t)

the chosen root. For such at, rQ,Bj
(t) = iQ,Bj

(t) for everyBj.

(4) For every active nodet of Q such thatrQ,S(t) is active inS, ψSZ(t) is active inZ,

(resp.rQ,S(t) is in the range ofψ andψ–1
ZS(rQ,S(t)) is active inZ) .

(5) A nodet ∈ S is non-idle iffψSZ(t) (resp.ψ–1
ZS(t)) is non-idle.

Now if YXGNPR is an instance of lemma 7.7, the only difference betweenR andY is
some garbage. By the soundness results for garbage in Section 5, we can makeYZ the
same asRS, up to this garbage, and the claim holds.

Otherwise the claim is substantiated by induction on the length ofPQ. If this is trivial
then the claim holds trivially by lemma 8.2. Otherwise we go by cases on the next step
in PQ, sayMi → Mi+1. LetNi close the span ofPMi andPR as in Fig. 15, and letNi+1
closePMi+1 andPR. Ni … Ni+1 may consist of more than a single step. LetWi be the
graph ofYZ corresponding toNi by induction hypothesis. Our job is to constructWi …
Wi+1 corresponding toNi … Ni+1.

If Mi → Mi+1 is an isomorphism step, it subcommutes with everything on the way from
Mi … Ni, so stepNi → Ni+1 in RS is an isomorphism, and we make the corresponding
stepWi → Wi+1 in YZ an isomorphism too. If the stepMi → Mi+1 is a notification, this
commutes with everything, and by the hypotheses, we can makeWi → Wi+1 in YZ a no-
tification too. This works, provided nothing inMi … Ni is thesame notification, other-
wise we have isomorphisms again from a certain point on. In such a case, the

Fig. 15 The handrail construction.

GN P Q

R S

X
Y Z

G0

Mi

Ni

1331Banach R.: MONSTR V - Transitive Coercing Semantics ...

corresponding node inWi is already idle by the induction hypothesis, and we make
Wi → Wi+1 an isomorphism too. It is easy to see that the claim holds.

If the stepMi → Mi+1 is a suspension, then either some step inMi … Ni is a notification
that trivialises the suspension, in which case the induction hypothesis assures us that the
corresponding node inWi is already idle and we makeWi → Wi+1 an isomorphism, or
not. If not, then apart from notifications and isomorphisms, of which there may be sev-
eral,Mi … Ni contains exactly one rewrite or suspension (this is because we are discuss-
ing a strip with exactly one bad cell on the left). If it is a suspension, the two of them
either subcommute, and the corresponding stepWi → Wi+1 becomes a suspension, or
they are the same, in which case we get an isomorphism. If it is a rewrite, then the re-
write and suspension subcommute (on the nose, because we assumePQRS is covered
by good cells), with perhaps the addition of some notifications as per lemma 7.5. The
extra notifications makeNi … Ni+1 into a multistep sequence but are easy to deal with.
Hence we constructWi … Wi+1 as a sequence consisting of a suspension, followed by
the requisite notifications. Establishing the claim is easy.

Finally the stepMi → Mi+1 might be a rewrite. This will subcommute with any isomor-
phisms or notifications inMi … Ni giving a corresponding step forWi → Wi+1, leaving
suspensions and rewrites to consider. If we have a suspension, the situation is as in the
previous paragraph with the roles reversed. If we have a rewrite, then either the two of
them are the same, and we have the inevitable isomorphisms, or not. If not then by as-
sumptionPQRS is covered with good cells, so the rewrites subcommute with the addi-
tion of the appropriate notifications, andWi … Wi+1 becomes a sequence consisting of
some notifications, a rewrite, and some more notifications. The notifications are again
easy to deal with and it is easy to see that all the clauses of the induction hypothesis are
properly established. This completes the inductive step for the construction ofYZ.

So we have the handrailYZ. In itself this is not enough to completely fill in the whole
Church-Rosser diamond, as a bad cell to the right ofQS might block further progress.
For this let us examine Fig. 16.

There are various possibilities depending on the relationship betweenQS andUV, where
we intend thatUV is a subsequence ofQS. First of allUV must be “the same” execution

Fig. 16 Two bad cells in the same strip.

G0

GN P Q

R S

X
Y Z

U P′ Q′
R′ S′V

Y′ Z′

Y′′ Z′′

P′′ Q′′

1332 Banach R.: MONSTR V - Transitive Coercing Semantics ...

step as wasGNX. Therefore ifQU is non-trivial, it must consist of notifications and iso-
morphisms, and the same holds ifVS is non-trivial. So there are four cases. If bothQU
andVS are trivial, it is easy to extend the argument used already to extend the handrail
YZ to Y′′, and then to notice that the same hypothesis applies toP′ andY′′ as applies to
P′ andY′, and thence to continue the extension toZ′′, independently of the construction
of Y′Z′. If QU is trivial butVS is not, we must first construct the handrailY′Z′, then fill
in the projection ofVS along it (this will contain only good cells), and finally build
ZY′′Z′′ which can be done as above. IfVS is trivial butQU is not, we must consider the
extension ofPQ toP′′Q′′ in order that the induction hypothesis for the extension ofXYZ
to XYZY′′Z′′ does not reveal differing markings on nodes that correspond inU andZ.
SinceQU consists of isomorphisms and notifications only, only good cells occur be-
tweenQP′′Q′′ andUP′Q′ so this is easy; then the handrail construction proceeds as for-
merly. If bothQU andVS are non-trivial, we must do both things.

Once we can build handrails, we can extend the filling in of the Church-Rosser diamond
to the various sheets generated. Roughly speaking, proceeding inwards into the interior
from the given preexecutionsGA andGB, ensures that we can always make progress
even ifPQ, P′Q′ or P′′Q′′ are themselves partly handrails. (We leave to the interested
reader the construction of the partial order, over whose induction the filling in of the
Church-Rosser diamond can be more formally described.) Because the relationships
between corresponding graphs at the same coordinates on the pairs of sheets we gener-
ate are, apart from garbage, graph structure isomorphisms which preserve the idle/non-
idle property of nodes, it is clear from definition 3.1 and the hypotheses, that for an ar-
bitrary coordinate position and arbitrary choice of direction of progress east or south,
we always perform “the same step” from corresponding roots on different sheets, i.e.
either always an isomorphism, or notification, or suspension on the same arguments, or
always a rewrite using the same rule. This also ensures that the construction of the re-
fined coordinate system and partial order is unambiguous. Because the original preex-
ecutions are finite, and we flake once per sheet per base cell at most, we complete the
whole process in a finite number of iterations. When the construction reaches coordi-
nates (A, B), erasing the isomorphism steps from the extensions toGA andGB generated,
gives us theGX andGY we need.

It remains to constructGX*, GY* and ΘXY*, and show they have the right properties. We
construct similar objects for all pairs of graphs on different sheets, for all coordinate po-
sitions. Then the ones required will just be a particular case.

If only good cells occur, then everything commutes on the nose, there is only one sheet,
and we can takeGX* = GX, GY* = GY and ΘXY* as the obvious identity; the same thing
holds for all coordinates.

Otherwise the structure of the sheets and their graphs can be discerned from the collec-
tion of bad cells. Each bad cell is identified by the coordinates of its southeast corner,
(a, b) say. For each bad cell, one sheet is obtained by going east then south from its
northwest corner, call this the + sheet; and the other sheet is given by going south then
east, call it the – sheet. Any graph at coordinates (a, b) on any sheet, and the sheet itself,
can be named by a function mapping all bad cells into the set {+, –}, and ignoring the
values at all bad cells at coordinates (a′, b′) > (a, b). The collection of such functions
restricted to (a′, b′) ≤ (a, b) names the set of sheets which are distinct at coordinates (a,
b), so all graphs created can be namedG(a, b)

T where (a, b) gives the coordinates, andT
is the function value naming the sheet.

1333Banach R.: MONSTR V - Transitive Coercing Semantics ...

Now we proceed by recursion on the flakings pertaining to bad cells. These are ordered
by < which is a finite partial order. Consider a <-maximal bad cell at (α, β) (on some
sheet with sheet nameT0 which is about to flake for the last time giving sheetsT1 and
T2, so T1 andT2 are the two possible extensions of the mapT0). The construction of
the handrails from the two different graphsG(α, β)

T1 andG(α, β)
T2 involves the construc-

tion of homomorphismsψ as described above. Since similar steps are performed on the
handrail and the corresponding normal execution, all the graphs constructed with coor-
dinates (a, b) > (α, β), are isomorphic up to markings or garbage. If they are isomorphic
up to markings, setG(α, β)

{T0},T1 * = G(α, β)
T1, G(α, β)

{T0},T2 * = G(α, β)
T2, and

Θ(α, β)
{T0},T1,T2 : G(α, β)

{T0},T1 * → G(α, β)
{T0},T2 * = ψ as constructed by the relevant lem-

ma, and do similarly for coordinates (a, b) > (α, β). If they are isomorphic up to extra
garbage, colour the relevant garbage node and arcs black (for example) in whichever of
G(α, β)

T1 or G(α, β)
T2 has it, and propagate the colouring via the (i–,–, r–,–) maps to (a, b)

> (α, β). SetG(α, β)
{T0},T1 * = the uncoloured subgraph ofG(α, β)

T1, G(α, β)
{T0},T2 * = the

uncoloured subgraph ofG(α, β)
T2, andΘ(α, β)

{T0},T1,T2 : G(α, β)
{T0},T1 * → G(α, β)

{T0},T2 *

= ψ as constructed by lemma 7.7 and restricted to the uncoloured parts ofG(α, β)
{T0},T1 *

andG(α, β)
{T0},T2 *. Do similarly for coordinates (a, b) > (α, β). In this notation{T0}

indicates how far the construction has progressed (i.e. the common part of the names of
sheets processed), andT1 andT2 refer to the sheets themselves. So much for the base
case.

For the recursive step, we have done all of the above for all bad cells at positions (α′,
β′) > (α, β) and located on the sheets that flake from the current bad cell on the current
sheet whose sheet name isT0 say. LetTx refer to a typical bad cellsuccessor of T0, so
we have generated partial isomorphismsΘ(α′, β′)

{Tx},T i,Tj : G(α′, β′)
{Tx},T i* → G(α′, β′)

{Tx},-

Tj* say, between graphs on sheets belonging to all bad cell descendants ofTx. We have
done this for all bad cell successorsTx of T0, so for a typicalΘ(α′, β′)

{Tx},T i,Tj, the{Tx}
is the common part of the names of a set of sheets already processed, such that all the
sheet names in the set agree withT0 on bad cells≤ (α, β) and with each other on one
further bad cell successorTx of T0.

If (α, β) is not a lemma 7.7 bad cell, theψ generated for it is bijective, so we extend the
construction in the expected way, noting that all cells involved at any coordinate posi-
tion are graph structure isomorphic, and building the relevant isomorphismsΘ(a, b)

{T0},-

Ti,Tj where the notation{T0} refers the common part of the previous{Tx} sets. If (α, β)
is a lemma 7.7 bad cell, the relevant garbage node and arc are coloured black, the col-
ouring is propagated wherever it will reach via (i–,–, r–,–) maps, and the subgraphs built
previously have to be further restricted to keep them uncoloured, for half of the sheets
in question.

Eventually we complete the construction, getting subgraphs and isomorphisms
Θ(a, b)

{},T1,T2 : G(a, b)
{},T1 * → G(a, b)

{},T2 *, between subgraphs on arbitrary sheets at any
given coordinates (a, b), where{} names the set of all sheets, being the empty function.

Now one of theG(A, B)
{},T i* , the one pertaining to the graphGX, is theGX* we seek, and

another isGY*. The graph structure isomorphismΘXY* : GX* → GY* is the relevant
Θ(A, B)

{},T i,Tj. It clearly has the required properties. We are done.

1334 Banach R.: MONSTR V - Transitive Coercing Semantics ...

Corollary 8.4 LetR be a MONSTR system. Assume the notation and hypotheses of
theorem 8.3. Then there is a preexecution ofR, GZ = [G0, …, GZ] such that

(1) There are subgraphsGX** of GX* of GX, andGY** of GY* of GY, and a graph
structure isomorphismΘXY** : GX** → GY**.

(2) All nodes and arcs inGX – GX**, and inGY – GY** are garbaged roots (and their
out-arcs) of resuspending rewrites. In particular,GX** contains LSG(GX) and
GY** contains LSG(GY).

(3) There are graph structure isomorphismsΘZX : GZ → GX**, and ΘZY : GZ → GY**,
such thatΘZY = ΘXY** ΘZX.

(4) ΘZX(LSG(GZ)) ⊇ LSG(GX) andΘZY(LSG(GZ)) ⊇ LSG(GY).

Proof. We describe how to constructGZ. View the edges of the various cells on the
various sheets constructed in the preceding theorem as the edges of a directed graph.
We start fromG0 and head for the diagonally opposite corner by an arbitrary path tra-
versing edges downwards and to the right only (i.e. in the direction of the execution
steps), and avoiding resuspending rewrite and suspension step edges; thereby generat-
ing a preexecution (with isomorphism steps)GZ

-. It may be impossible to proceed be-
yond some particular point without traversing a resuspending rewrite or suspension step
edge if both outgoing edges of some graph at (α, β) say, are resuspending rewrite or sus-
pension step edges. But rather than doing such a step, we jump by a marking preserving
isomorphism to the diagonally opposite corner of the cell in question (α′, β′) say, with-
out performing any execution step at all. The graph ofGZ

- that we have at (α′, β′), dif-
fers from the graph in the construction built in theorem 8.3 at the same coordinates, by
the absence of some garbage, and by the fact that the root(s) of the resuspending re-
write(s) or suspension step(s) is (are) still active. This cannot prevent subsequently
tracking a path towards (A, B) as theGZ

- graph is at least as ready to perform any exe-
cution step as any compatriot in the Church-Rosser diamond at the same coordinates is,
and this property persists. We generate none of the garbage nodes and arcs that lemma
7.7 takes pains to describe or that a suspension step might create, and futhermore, if
there is a critical cone within the Church-Rosser construction such that some resuspend-
ing rewrite is not forced to subcommute with a non-resuspending rewrite, the relevant
garbaged resuspension root and out-arcs survive intoGX* andGY* because there is no
instance of lemma 7.7 in the construction to throw them out. However the construction
of GZ

- omits the creation of such garbage, hence the subgraph ofGX*, GX**, that we
need to relateGZ to may be a proper subgraph ofGX*. We now getGZ fromGZ

- by eras-
ing all the isomorphism steps, and the conclusions follow easily, clause (4) in particular
following from the soundness of garbage and induction on the length of the preexecu-
tion.

9 Conclusions

In the preceding sections, we have described the structure of MONSTR, studied at
length in previous papers, and have given it the most elegant of the semantic models
considered in this series. Most elegant that is with respect to its having desirable prop-
erties, rather than having the simplest description: in fact its description is the most in-
volved of all the models considered, and also the furthest from the term rewriting
origins that inspired the original term graph rewriting model ([Barendregt et al.

1335Banach R.: MONSTR V - Transitive Coercing Semantics ...

(1987)]). Nevertheless the more complex collection of primitives offered in the model
seems to be more than justified by the strong properties it possesses. FromM-IV we
infer a good serialisability property as regards finegrained implementation, and in this
paper we showed that the Church-Rosser property holds, despite the lack of exact sub-
commutativity which looked more than once as though it might bring down the whole
enterprise.

Acknowledgements

Most of the work described in this paper was done while the author was on leave at the
Computer Science Department of the University of Cyprus at Nicosia, and the Compu-
ter Science Department of the University of Pisa in Italy. The hospitality of those de-
partments and the financial support of the Royal Society, the British Council, the
Consiglio Nazionale delle Ricerche, and the ERASMUS Staff Mobility Program of the
European Commission are gratefully acknowledged.

References

[Barendregt et al. (1987)] Barendregt H.P., van Eekelen M.C.J.D., Glauert J.R.W., Kennaway
J.R, Plasmeijer M.J., Sleep M.R., Term Graph Rewriting.in: Proc. PARLE-87, de Bakker,
Nijman (eds.), LNCS259, 141-158, Springer, (1987).

[Banach (1996a)] Banach. R., Transitive Term Graph Rewriting. Inf. Proc. Lett.,60, 109-114.

[Banach (1996b)] Banach. R., MONSTR I — Fundamental Issues and the Design of MONSTR.
J.UCS,2, 164-216, (1996).http://www.iicm.edu/jucs

[Banach (1997a)] Banach. R., MONSTR II — Suspending Semantics and Independence. J.UCS,
3, 755-801, (1997).http://www.iicm.edu/jucs

[Banach (1997b)] Banach. R., MONSTR III — Finegrained Semantics and Serialisability.In
preparation, (1997).

[Banach (1997c)] Banach. R., MONSTR IV — Weakly Coercing Semantics and Serialisability
for Resilient Systems.In preparation, (1997).

[Banach and Papadopoulos (1997)] Banach R., Papadopoulos G., A Study of Two Graph Rewrit-
ing Formalisms: Interaction Nets and MONSTR. Journal of Programming Languages,
(1997),to appear.

1336 Banach R.: MONSTR V - Transitive Coercing Semantics ...

