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MONSTR V — Transitive Coercing Semantics
and the Church-Rosser Property
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Abstract: The transitive coercing semantic model for the execution of the MONSTR generalised
term graph rewriting language is defined. Of all the operational semantics for MONSTR that one
might consider, this one has the cleanest properties. Under intuitively obvious conditions for
executions involving redexes permitted to overlap sufficiently to allow the programming of
deterministic synchronisations, and despite the failure of exact subcommutativity, a Church-
Rosser theorem is proved to hold up to markings and garbage.

1 Introduction

In the first MONSTR paper ([Banach (1996b)], hereafter referredNbgs we intro-

duced the MONSTR generalised term graph rewriting language, together with its oper-
ational semantics, and the architectural rationale behind its design. We also briefly
described some other semantic models for MONSTR and the correctness problems that
they engender when soundness with respect to the original semantics is desired. In sub-
sequent papersvi-ll [Banach (1997a)]M-1ll [Banach (1997b)]M-IV [Banach
(1997c¢)]), we treated such correctness problems in detail, concentrating on issues con-
nected with serialisability properties of finegrained operational semantic models, such
as might reflect the behaviour of actual implementations on distributed architectures.

In this paper we introduce the transitive coercing semantic model. Because the model
is already coercing, it enjoys the good serialisability properties of coercing models for
finegrained implementation as discusseMiivV. The addition of transitivity of redi-
rections ([Banach (1996a)]) gives the model better subcommutativity properties, and so
the emphasis in this paper is on the Church-Rosser property. (In truth, for the models
considered earlier in this series, analogous Church-Rosser theorems hold, but because
of the weaker subcommutativity properties of those models, collections of rather ugly
side conditions have to be included in the hypotheses, and this makes such theorems of
less interest. Some indication of what is involved here may be gleaned from Section 6
of M-Il where subcommutativity results are worked out for the standard (suspending)
semantics, as an aid to the verification of systems implemented in MONSTR, without
proceeding to a full Church-Rosser theorem.)

MONSTR is worth studying for number of reasons. First it is a graph rewriting frame-
work deliberately cast close to the capabilities of real implementations. Its expressive-
ness therefore combines the abstractness of graphs and their arbitrary interconnectivity,
with very pragmatic considerations, and translations of other systems into MONSTR
describe both potential implementation routes, and something of the naturalness or oth-
erwise of the primitives offered by such systems. MONSTR has with some justification
been called an abstract assembly language, and a wider ranging discussion setting
MONSTR in context and with suitable references to earlier work can be folvhd .in
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Secondly, MONSTR provides a model for concurrent computations that combines the
abstractness of graph structure and of the potential to encode arbitrary information with-
in the labels of the graphs, with a very specific rewrite strategy control mechanism,
based on considerations of concrete machine design. MONSTR is also sensitive to the
particular feature of many real computing systems, whereby some parts of the current
computational state are active and others are passive, the latter being manipulated by
the former; and in a real system the active may in time become passive and vice versa.
Often the nondeterminism in a real system finds expression in the competition between
active parts to perform incompatible manipulations on the passive parts. Ideally, and in
a clean model of computation, this would be the only source of hondeterminism as re-
gards the final answer computed by the system. However most low level models of
computation that are as operational as MONSTR, do not have such pleasant semantic
properties, at least not in an elegantly expressible form. And the same is true of the se-
mantic models for MONSTR considered earlier in this series of papers. However, the
model presented here, the culmination of the series, possesses particularly strong prop-
erties in this respect. Provided synchronisations are deterministic, i.e. provided there is
a (locally) unique outcome whatever the order of arrival of interested processes at a par-
ticular piece of passive computational state, the local determinism extends to a global
determinism, resulting in a Church-Rosser property. This is what we prove here.

The rest of the paper is as follows. Section 2 defines transitive term graphs, and gives
the (abstract) syntax of MONSTR rules and systems. Though the treatment is mathe-
matically self contained, no attempt is made to motivate the definitions. The reader who
is left uneasy by Section 2 should conddt which is largely concerned with such mo-
tivational issues. For future reference, notation sudii-bsl1.4 refers to the fourth

listed item of Section 11 dfl-I. Section 3 defines transitive coercing semantics pre-
cisely, and contains additional motivational remarks at the end. Then Section 4 covers
the fundamental invariants of MONSTR, balancedness and state saturatedness, while
Section 5 discusses garbage, an issue which plays a significant role in the Church-Ross-
er theorem subsequently.

Typical MONSTR systems feature a lot of sharing and thus a lot of overlapping redexes,
in order to express the synchronisations that concurrent systems need. Thus a Church-
Rosser theorem that merely deals with the obvious analogue of orthogonal systems in
which redexes may not overlap at all (or hardly at all) yields a relatively weak result,
with little applicability to practice and to the situations described previously. So Section

6 deals with overlapping redexes, identifying cases in which redexes may overlap in a
benign manner. The paper would be of less value were it not for the fact that the syn-
chronisation situations these cases allow us to reason about are in fact just the ones that
turn out to be practically useful in typical real MONSTR systems. Section 7 sets out
the subcommutativity results on which the main theorem is based. We see there, that
the elementary atomic actions of transitive coercing MONSTR do not actually subcom-
mute in all the desired situations. This adds some technical spice to the Church-Rosser
theorem of Section 8, where we see that the discrepancies in subcommutativity cause
the expected filling in of the Church-Rosser diamond to flake into distinct sheets. For-
tunately, a careful analysis reveals that the discrepancies are sufficiently benign that
they do not actually block the construction, and all relevant sheets can be filled in as
desired. It is perhaps worth mentioning that not all systems with the Church-Rosser
property satisfy the hypotheses of the main theorem, though these are fairly rare. An
interesting case in point is the efficient translation of untyped interaction nets into
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MONSTR ([Banach and Papadopoulos (1997)]), where more drastic overlapping of re-
dexes than permitted here nevertheless leads to confluent results. Section 9 concludes.

2 Transitive Term Graphs and the Syntax of MONSTR Systems

In this section we deal with basic syntactic matters. For readers familidvivittthe
graphs of this paper contain “bottom-nodes” whose nature will become clear in the next
section.

We assume we are given an alphabet{S, T, ...} of node symbols and in addition,
two further special symboisny andI (bottom) which are not iB. When we wish to
refer to specific symbols we will write them tHaisT; but when we speak about sym-
bols in general in the meta-language we will use italics $hilis

Definition 2.1 A transitive term graph (or just grapB) is a quintupleN|, g, a, Y, v)
where

(1) Nis aset of nodes.
(2) oisamadN - S O {0}, which labels each node.

(3) aisamamN - N*, which maps each node to its sequence of children.

(4) pisamamN - {g O#, ##, ###, ... #" (n = 1)}, which maps each node to its
node marking (idle, active, once, twicen times suspended).

(5) visamaMN - {&, *}*, which maps each node to the sequence of arc markings
on the arcs to its children (each either the normal or notification marking).

Clearly we must have for atll] N, dom@(x)) = domg(x)), where the domain of a se-
guence is the set of its indices. And furtherm@kégbelled nodesl{-nodes), satisfy

(BOT) ox)=0 0 a(x)=v(x)=0
i.e. O-nodes are always childless.

We write A(X), the arity of a nodg, for domi(x)) = dom@(x)). Note thatA(x) is a set

of consecutive natural numbers starting at 1, or empty. When dealing with more than
one graph (or pattern — see below), we subscript the objects defined in (1) — (5) above
with the name of the graph in question to avoid ambiguity. Also we allow ourselves to
write x O G instead ok O N(G) orx O Ng etc. Each child nodeof some node de-
termines an arc of the graph, and we will refer to arcs using the nogggioht6 indi-

cate that is thek'th child of p; i.e. thatc = a(p)[K] for somek [0 A(p). The map$, v

are referred to as the markings and are mainly concerned with encoding execution strat-
egies, whileN, o, a are referred to as the graph structure and provide the main informa-
tion content of the graph.

For ease of use, the names are meant to be reasonably alliterébiveymbolsa for
arcs,u for markingsy for notifications.

Fig. 1 below shows a term graph, in which each node is depicted by its symbol followed

by its sequence of out-arcs in brackets, and only non-idle markings are shown. Obvi-
ously transitive term graphs are directed graphs. We use standard digraph terminology
below where necessary without further comment; eg. path, semipath, and accessibility
of one node from another. (Recall a semipath ignores the orientation of arcs.)



1286 Banach R.: MONSTR YV - Transitive Coercing Semantics ...
Root[ l ]
7N
Cons’[/ -]\/‘Var

N

Fig. 1 A graph.
For rewriting, we will need a notion of pattern, and a sufficiently flexible notion of pat-
tern matching.

Definition 2.2 A pattern is defined as in definition 2.1 except that the signatoris of
N - S O {Any}, and Any-labelled nodes must satisfy

(ANY) o(x)=Any O a(x) =v(x) =0

In patterns and graphs, among the Abnedes, Any-labelled nodesAny-nodes) are
also called implicit whereas other nodes are explicit.

Homomorphisms relate patterns to graphs. Apart from the expected preservation of
structure, readers should note the asymmetry of the rolesArfiyheodes andl-nodes.

Definition 2.3 LetP be a pattern an@ be a graph (and I€t have a root). A node
maph : P - Gis a homomorphism, or matching,&(att [0 G) iff (h(r) =t and) for
all nodesx 0 P such that(x) # Any anda(h(x)) # O

(1) o(x) = o(h(x), i.e.his label-preserving.

(2) AKX =A(h(X), i.e.his arity-preserving.

(3) Forallk O A(X), h(a(X)[K]) = a(h(X))[K], i.e.his order-preserving.

A homomorphism is proper iffl 0 {a(h(xX)) | x O P andx is explicit}.

Suppose in addition the following hold:

@)  p) =puh(x)), i.e.his node-marking-preserving.

(5) Forallk O A(X), h(v(X)[K]) = v(h(x))[K], i.e. his arc-marking-preserving.

In such a case we say thgpreserves markings. (To emphasise the converse when re-
quired, we call ordinary homomorphisms, graph structure homomorphisms.)

Omitting mention of roots, definition 2.3 serves just as well for homomorphisms be-
tween graphs and homomorphisms between unrooted patterns, as it does for rooted pat-
terns and graphs.
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Definition 2.4 A ruleD is a quadrupleR, root, Red Act) where
(1) Pis apattern, called the full pattern of the rule.

(2) rootis an explicit node d? called the root, and all implicit nodes®fre acces-
sible from the root. [6(root) = S thenD is a rule forS The subpattern ¢t
of nodes and arcs accessible from (and includingf)is called the left pattern
of the rule, and nodes Bfnot inL are called contractum nodesis unmarked,
i.e. for allx O L, u(x) = ¢, andv(x)[K] = € for all k O A(X).

(3) Redis a set of pairs of nodes, (called redirections) sucHbafl L x P, and
Redsatisfies the invariants (RED-1), (RED-2) and (RED-3) below:

(RED-1) Redis the graph (in the set theoretic sense) of a partial function.
(RED-2) (@ b) ORed ais an explicit node df.
(RED-3) {(a, b, (@, b)} O Redanda#a O o(a) # a(a).

For @, b 00 Red a is called the LHS anHd the RHS of the redirection, and we
say that the rule redirecss

(4) Actis a set of nodes (called activationsPasuch thaAct [ L.

Fig. 2 is a picture of a rule, witbot indicated by the short stubby arrd®edindicated
by the dashed arrows, aAdt indicated by adorning the relevant nodes ofith all
(these are unmarked according to definition 2.4.(2)).

A

'F[/ K‘\> HHG[p 9]

Cons[s <] Var

(Any  [CAny

Fig. 2 Arule.

Definition 2.5 A ruleD = (L O P, root, Red Acf) matches (or is applicable to) a graph
G att iff p(t) = Oand there is a proper matchiggL — G att. We call the image of
such a matching a redex.

It is not hard to see that the rule of Fig. 2 matches dt-thbelled node of Fig. 1.

For reasons discussed at lengtivii , it is necessary from a distributed implementa-
tion standpoint, to circumscribe the generality permitted by definition 2.4. The deliber-
ations inM-I distil down to the following combinatorial properties, quoted (almost)
verbatim fromM-I , which define the abstract syntax of MONSTR systems.

Restriction M-1.11.1 The alphabet of symbo%; is the disjoint union of three subal-
phabets
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S=FOCOV

F is the alphabet of function symbols. A function symbol may label the root of the left
patternL of a rule, but not any subroot nodeLofFunction symbols may label the LHS
of a redirection.

C is the alphabet of constructor symbols. A constructor symbol may label a subroot
node of the left pattern of a rule, but not the root. Constructors may not label the LHS
of a redirection.

V is the alphabet of stateholders, or variables. A stateholder symbol may label a subroot
node of the left pattern of a rule, but not the root. Stateholders may label the LHS of a
redirection.

The functions act as instigators of rewrites, the constructors encode immutable values,
while the stateholders are able to model notions of updatable state, and to play a central
role in the coding of synchronisation primitives.

Restriction M-1.11.2

(1) Foreacls0 S, there is a set of natural numb&($), in every case an initial
segment of the naturals from 1, or empty.

(2) For each- OF, there is a subset 8{F), Map().

(3) For each- OF, there is a subset of Mdf)( StateF), in every case either a sin-
gleton or empty.

(4) RootOC.

The above maps each symi&ilo its arityA(S). The intention is that ai-labelled
nodes are to have the same arity. For functioddap() is the set of argument posi-
tions at which all normal rules fét (see below), will always need to pattern match.
Similarly Statef), if non-empty, contains the position at which any stateholder argu-
ment ofF must occur in a normal rule fér Clause (4) states thabot is a constructor,

a fact used in the theory of garbage collection.

Definition M-1.11.3 LetF OF. A rule forF such that each child of the root is a distinct
implicit node is called a default rule fbr Otherwise the rule is a normal rule.

Note that with fixed arities, a default rule fowill always succeed in matching its left
pattern to any active-labelled node of a graph, precisely because no-non trivial con-
ditions need to be satisfied by the children of the root of the redex.

Restriction M-1.11.4 LetD = (P, root, Red Aci) be a rule with left patterh. Then
(1) Each node has the arity dictated by its symbol, i.e.
For allx O P, A(X) = A(a(X))

(2) Each normal rule for a symbol matches the same set of arguments of the root, i.e.
if o(root) = F, andD is a normal rule then

a(root)[K] is explicit = k[ Map(F)

(3) Arrule for a function may match at most one stateholder, and then only in a fixed
position (the stateholder position); all other explicit arguments must be construc-
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tors (occurring in constructor positions), i.ezffoot) =F, andD is a normal rule
then

o(a(root)[K]) OV O k0O StateF)

(4) All grandchildren of the root are implicit, i.e. for &0 A(a(root)), andj O
A(a(a(root)[K]))

a(a(root)[K])[j] is implicit

(5) Implicit nodes of the left pattern have only one parent in the left pattern, i.e. if
y O P is implicit, there is precisely onell L such that for somk 0 A(X), y =

a(x)[K].

(6) Everyx[Pis balanced, i.e.
Hx) =#" (forn=1) « [k|v(x)[Kl="}/=n

(7)  Every arcf, c) of P is either state saturated or activated, i.e.
v(p)[K] =" andp(c) =¢ O o(c) OV orcO Act

(8) The root is always redirected, i.e. for sdonie P
(root, b) 0 Red

(9) No arc can lose state saturatedness through redirection, i.e.
(a, b) O Redandu(b) =¢ O o(b) OV orbOAct

(10) A node which is the LHS but not the RHS of a redirection should be garbaged
by a rewrite whenever possible, i.e.

(b, ¢) O Redandb O Act 0 there is & # a L such that4, b) 0 Red

Restriction M-1.11.6 For eachr O F there is a pair of setdl(, Dg), whereN ¢ con-
sists of normal rules fd¥, andDg is non-empty and consists of just default ruleg=for
An assignment of such pairs to e&chl F constitutes a MONSTR system.

The above gives the syntax of MONSTR systems. In addiMendefines a couple of
builtins for testing pointer equality, but we will not be concerned with these in this pa-
per.

3 Transitive Coercing Semantics

Definition M-1.3.13 An initial graph is one which consists of a single node with empty
arity, with the active node marking, and labelled by the syimiitidl.

Definition M-1.3.14 A preexecutiorG of a systenR is a sequence of graphGg
G;...] such that is initial and for each> 0 such thait+1 is an index o, G;, results
from G; by some execution step at some arbitrarily selected activet;nafdg; (i.e. a
nodet; for whichp(t)) = 0. If the sequence is of maximal length, it is called an execu-
tion. Graphs occuring in (pre)executions are called execution graphs.

Though the above is (essentially) taken fidrh, it applies equally well here. All that
remains is to define execution steps, and the rules which state how one chooses between
them at any particular active node. Transitive coercing execution steps are of three
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kinds: notifications, rewrites and suspensions. The next definition states the circum-
stances under which each kind of action is performed.

Definition 3.1 LetG be a graph antdan active node d&, the chosen root. For tran-
sitive coercing semantics, the kind of execution step to be perforrmeddstermined
as follows.

If o)0COV
Then Perform a notification dt
Else If ForallkdMap@(t)), p(a(®)[k]) =€ (andv(t)[K] = ¢),
and for allk O State¢(t)), o(a(®)[K]) O C DOV,
and for allk O (Map(o(t)) — Stateg(t))), o(a(t)[k]) O C
Then Perform a rewrite using a rule chosen
nondeterministically fronselwhere
If some rule fronN o(t matches the chosen rdot
Then Sel={D ON 4 | D matches af}
Else Sel= Dy
Else (If For some O Mapéc(t)), pH(a)[k]) #e,
or fork [0 State@(t)), o(a(t)[K]) T C OV,
or for somek O Map(o(t)) — Stateg(t)), o(a(t)[K]) O C
Then) Perform a suspensiontat

We note incidentally that if the conditions for a rewrite hold, then either a normal or a
default rule will definitely match according to the criterion of definition 2.5.

Now we define the individual types of step. We start with the simplest cases. Notifica-
tion causes the chosen root to be quiesced (i.e. to have its active marking removed), and
for most notification in-arcs of the chosen root, their notification marking is removed
and parent nodes of such in arcs have any non-zero suspension marking decremented.
“Most” in the preceding sentence refers to all notification arcs which do not connect
functions to stateholder children occuring in matched but not stateholder position.

Fig. 3 shows a notification in a fragment of a graph, (assumis@ constructor).
##HG[ ] #G[ ]
Voo
N
2 2

Fig. 3 A notification.

More formally we have the following.

Definition 3.2 Lett be the chosen root in a gra@twith a(t) 0 C O V. Let the graph
H be given by

(1) NH = NG'
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(2) Oy =0g-
(3) ay =0g.

4)  py) = If pg(®¥) =#" (withn=1) and
0Zm=[kOAX) |oag[K =tandvg(X)[K =" and
not[og(x) 0 F andk O (Map(og(X)) — State§s(x)))
andog(t) OV 1}
Then #™™ (where#° = [] and#™® = ¢ for p> 1)
Else If x=t Then ¢
Else pg(x).

(5)  VHML[K = If ag(®)[K =t andvg(X)[K] =~ and notfog(x) O F and
k O (Map(og(x)) — Statef(X))) andog(t) O V ]
Then €
Else vg(¥)[K].

The result of the notification is the gragh

Suspensions occur when not all the matched arguments of a function at the chosen root
are in the required form, by virtue of being non-idle, or of bé&ingdes, or of being
functions, or of being stateholders in a non-stateholder position. The suspension makes
the chosen root suspended on all such arguments till the required state of affairs obtains,
activating any idle functions thus encountered. Fig. 4 shows a suspension step for a
fragment of term graph rooted at R#labelled chosen root. The assumption is that all
four arguments of are in MapF), thatG is a function, tha$ is a stateholder, and that

StateF) = {2}.
/AN AAN

G #H[[] s O G #H[j] s O

LA LA

Fig. 4. A suspension step.

More formally we have the following.

Definition 3.3 Suppose is a chosen root in a gra) o(t) O F and there is at least
onek O Map(o(t)) such that eithem(t)[K] is alJ-node, o (t)[K] is non-idle, oro(t)[K]
is an idle function, oa(t)[K] is an idle stateholder with] State¢(t)). Let

Suspf) = {k O Map(og(t)) | ag(t)[K] is non-idle, or
og(W[K] is idle andog(ag(t)[K]) = C, or
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ag(W[K] is idle andog(ag(t)[K]) O F, or

[ kO (Map(og(t)) — Stategg(t))) and

ag(t)[K] is idle andog(ag®)[K) OV]}
n=|Suspf) |

Define the graph as follows.
(1) Ny =Ng.
(2) oy=oc
3) ay=ag.

4) M) = If x=t
Then #"
Else If x=ag(t)[K] andk O Suspf) andag(t)[K] is idle and
og(ag(t[k) OF
Then O
Else pg(x).

(5)  vH[K = If x=tandk O Suspf)
Then »
Else vg(X)[K].

ThenH is the result of the suspension.

We define the mapg 4 =rg 4 as the identity on nodes for notification and suspension
steps, in order to be able to track the fate of nodes through executions using a notation
uniform with that for the relevant maps for rewrite steps, which are introduced as we
proceed with the definition of the latter now.

Once a redex has been identified, a rewrite consists of four phases, namely contractum
building, bottom analysis, redirection and activation. AssGneD = (P, root, Red

Act) andg given as necessary, in the notation of Section 2. We will use the matching of
Fig. 2 at the~-labelled node of Fig. 1 as a running example.

Contractum building adds a copy of each contractum no&et@fs. Node markings

for such nodes are taken frdn Copies of arcs d? from contractum nodes to their
children are added in such a way that there is a graph structure homomorphism (called
the extended matching) : P -~ G' from the whole of to the graph being created,
which agrees witlg onL. Arc markings are again taken frdn

Doing this for our running example yields Fig. 5. We see that copies of exactly the con-
tractum nodes and arcs, suitably marked, have been added, and that this enables the ex-
tended matching’ of the whole oP to be constructed.

More formally we have the following.
Definition 3.4 Assume the preceding notation. Let the gi@pbe given by

(1) Ng =Ng®# (Np—N,) wherelt is disjoint union.
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Fig. 5 Contractum Building.

(2) og(¥)=0g(¥ ifxOG,
og(n) =op(n) ifnOP-L.

(3) oMK =agMI[K if xOG, fork O A(X),
o (MK = ap(n)[K] if bothnandap(n)[k] O P —L, fork O A(n),
g(ag(M[K) if nOP—L andap(n)[k] O L, fork O A(N).

(4)  He(¥) =He() fxOG,
Mg (N) =pp(n) ifnOP-L.

(5)  vg[K =ve(X[K] if xOG, fork O A(X),
V(MK = vp(n)[K] if nOP —L, fork O A(n).

Note the use of disjoint union above. In constructive definitions of disjoint union, the
members of such a union are tagged so that one can discern their origin. Definition 3.4
omitted to do this. This is not normally a source of difficulty unless one is interested in
more “global” issues. In fact we will be confronted by some of these later in this paper,
and so a proper definition needs to take this into account. In such a casex amr®de

and its representative @& after contractum building, are no longer the same thing, and
there is a natural injectidg ¢ : G — G’ that takes( to its representative i@. We let

rec be another name fog i, as for notifications and suspensions.

Bottom analysis does nothing to the structure of the graph itself, but prepares the ground
for the details of the next phase. It consists of the following observations. Let

Red = {(x,y) | for some &, b) O Red g'(a) =%, d'(b) = vy}

View Red as a relation oiNg, writing Red+, RedOfor its transitive, reflexive transi-
tive closures.

We writex ~y iff there is az 0 Ng' such thak Reddz andy Reddz. Then ~ is clearly
an equivalence relation, becalisedis a partial function oR and because (RED-3) en-
suresy and henceg' is injective on the LHS nodes of redirections. We wiiieéd rep-
resent the equivalence class containirag usual. Further, we will writg]p iff there

is ay O [X] such thaty Red+ y (i.e. we write k]° to indicate that¥] contains a non-
trivial Red-cycle). We write X]™ otherwise.
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Lemma 3.5 With the preceding notation, for al{{there is a uniqug O [X]” such that
forallx O [X]", x Reddy'.

Proof. Basically trivial once one notes that all rules are finite objects, whencexgach [
equivalence class is a treeNg: and has a unique rogt ©

When the context makes the clags lear, we will use the notation to refer to this
root element without further comment.

Redirection takes each agg,(c) such that = g'(a) for some §, b) 0 Redand replaces
it with (py, d), whered is determined by interpreting the redirectionRéutransitively.
Thus ifcis a member of a [=tlass, X]” say, therd is the unique root elemexitof that
class. Otherwiseis in a [-] class, andl is a freshly introduced-node for the class.

Performing the redirections on our example yields Fig. 6. Note thélnede, intro-
duced because of the self-redirectiorMan

Root[ « ]

Fig. 6 Redirection.

More formally we have the following.
Definition 3.6 Assume the preceding notation. Let the gi@pHbe given by
(1) Ng'=Ng & BwhereB={[x]°|[X]°ONg}.

(2) og'(¥)=0g(¥ ifxONg,
O if xOB.

(3) ag([Kl =y ONg if ag(¥[k] =yandy O [y], forkdA(X),
MI° OBif ag(X)[K =y andy O [y]°, fork O A(X),
og(¥[K fork OA(X), otherwise.

4)  He() =Ha() if xONg,
e if xOB.

(5) ve(®¥)=vg() if xONg,
O ifxOB.
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OnG" the mapy induces a mag" : P - G" which is now just a symbol preserving
node map, rather than a homomorphism. Furthermore, there is an obvious injection
iz g -G - G"that takes each node @f to its representative 8" as we discussed
above. We also define the mapg- - G -~ G" which identifies redirection targets as
follows.

rec(® = X ONg if xO[XT,
[X]°OBif xd[x]°,
iz g(X), otherwise.

The above is the only place where theandr_ _maps differ.

Activation makes active thed zogd')-images of idle nomi-nodes inAct, and also
makes they’-image oft idle (root quiescence). Doing this for our running example
yields Fig. 7. Note that despite there being two activations in the rule (the two children
of Cons), only one is performed as the secon€ohfs’s children is a&J1-node.

Fig. 7 Activation.

More formally we have the following.

Definition 3.7 Assume the preceding notation. Let the gidgde given by

(1) Ny=Ng.

(2) oy=og.

3) ay=ag.

(4) up() = Oif DadActwith (g grog')(@) =x andog(xX) # 0 andug-(x) =&,
e if x=t,
Hg'(X) otherwise.

(5) vH=vg

One can easily check that b¢l.11.4.(8), quoted above, and definition 3.6, the first two
clauses of definition 3.7.(4) are always disjoint.
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OnH, g" induces a map: P - H which is of course another symbol preserving node
map. We also define the mags =rg- iy : G" — H as the identity on nodes by anal-
ogy with previous cases.

Definition 3.8 The result of the rewrite of the redgxL - G according to the rul®
= (P, root, Red Acf) is the grapiH produced by applying definitions 3.4 — 3.7.

By composing the various maRsg, i g Of ' g, €tC., we can track the history of

a node through a rewrite. Thiggy(X) = (g 4Oig G Cig ) (X) is the node which is

the copy irH of xJ G, andrg y(X) = (‘g 4Ol 6" Of ,c)(X) is the node off thatx got
redirected to. In future we will need to keep a close track of nodes through the phases
of a rewrite, particularly when relevant properties of nodes change from one phase of a
rewrite to another, so the above notation is a useful alternative gogheg'’, h maps,

and is also applicable to nodes not directly affected by the particular rewrite.

Composing a sequenceigfy; maps or of g y maps, allows us to track the history of a
node through an execution of the system The former tracks a node’s identity, and the
latter tracks what a node “becomes” via redirection. Generically, any such composition
will be callediy y orry y whereX andY are the first and last graphs in the sequence. An
arc py, c) is evidently tracked by v(P)k: 'x ¥(€)). A last but very important property

of these notations is that they are portable to situations in which one wishes to define
operations on graphs “universally”, i.e. up to (marking preserving) isomorphism. In
such approaches one defines the semantics by listing properties that the collection of
functionsg, g, 9", h,ig g ig 6" e G €tC. possesses, and any grelpielated to the

input data of the rewrite (or other execution step) by such a collection of maps is an ac-
ceptable answer. Of course the list of properties must be such thdt aayisfying

them is guaranteed to be marking preserving isomorphlit @ we constructed it
above. We will need some of this below, when we have to say precisely in what manner
the two graphs at the ends of the two paths round a cell in the Church-Rosser diamond
are “the same”.

The above operational semantics is a bit complicated, to say the least. The reasons for
this arise from the desire to make the implementation on a certain kind of architectural
model relatively straightforward, and thus efficient. In reality, the model divides into
the graph structure part (which is intended to encode the actual computation), and the
markings, which guide the sheduling policy of any implementation (via activations,
suspensions and notifications, and definition 3.1). Thus the essence of the rewriting
process is redirection, a digraph version of substitution. Since the RHS of such a “sub-
stitution” must connect with the rest of the graph in general, it is more convenient to
insist that contractum building comes first. Activations then allow the execution of a
rule to influence future rewriting strategy. The specific versions of activations, suspen-
sions, and redirections used in this paper (compared with those of other papers in this
series) ensure both a good serialisability theory6#¢ ), and a clean Church-Rosser
theorem, properties which are not altogether unrelated.

4 Fundamental Properties — Balancedness and
State Saturatedness

In this section we treat two rather basic invariants in the context of our operational se-
mantics.
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Definition 4.1 A nodex in a graphG is balanced iff fon=> 1,
HO) =#" < {K[Vv(J[K ="} =n
We say that a pattern or graph is balanced iff every node is balanced.

Theorem 4.2 LetR be a MONSTR system. Then every execution graghisfbal-
anced.

Proof. By induction on executions. An initial graph is balanced. Furthermore, notifi-
cations preserve balancedness, since for each notification marking removed from an
arc, a suspension marking is removed from the parent node. Suspensions preserve bal-
ancedness by doing the opposite. We check that the phases of a rewrite do not affect
balancedness. Contractum building preserves balancedness, as all new nodes added to
the graph are balanced by restrictMr.11.4.(6) quoted above. Redirection only af-

fects the heads of some arcs and introduces balaRoedes, so preserves balanced-

ness. Finally, activation only affects the node markings on non-suspended nodes, thus
preserving balancedness)

Definition 4.3 An arc ,, ¢) of a graphG is state saturated iff
v(p)[K =" andu(c)=¢ O o(c) OV O{O}

A node of a graph is state saturated iff all of its in-arcs are state saturated. Likewise, a
graph or pattern is state saturated if all of its nodes and arcs are.

Theorem 4.4 LetR be a MONSTR system. Then every execution graphisfstate
saturated.

Proof. By induction over executions. An initial graph is state saturated. A notification
step clearly preserves state saturatedness, since for the only node which becomes idle,
all notification in-arcs become idle unless the node is a stateholder, in which case certain
of them are allowed to remain as notification in-arcs according to definition 3.2. A sus-
pension step does the opposite, creating notification arcs, but where these have idle
nodes as children, then such children are always stateholdénsooies by inspection

of definition 3.3, preserving state saturatedness. We argue that rewrites preserve state
saturatedness as follows.

Let G; be rewritten td&G;,, using a rul® = (P, root, Red AcY), and aredeg; : L - G;.
Assume the usual notation for the pieces of a rewrite (eg. gya®s g;"', andg;+1 :

P - Gj;1). Consider contractum building. It is easy to check that all new nodes intro-
duced inG'; are state saturated by restrictddr.11.4.(7) sinceActOd L. Obviously the
nodes ofG;' —g;'(P) are state saturated since they continue to higvg ( copies of)

just the same arcs they had3p andG; is state saturated by the induction hypothesis.
This leaves the nodes@f(L). Nodes irg;'(L) —g;'(Act) are state saturated because any
new in-arcs they acquired are state saturatéd-h$1.4.(7). This leaves a set of nodes
g'(X) O g'(Act) O gi'(L) O G which fail to be state saturated as they acquired a non-
zero number of notification in-arcs during contractum building, but were idld-not
nodes, nov-labelled, and without notification in-arcs@. ThereforeG;' may fail to

be state saturated, but just for this reason.

Now consider redirection and activation. All arc$pf; are copies, or redirected cop-
ies of arcs of5;". We check that all arcs &' end up state saturated@,, which is
sufficient. Leaving aside the phenomenon of root quiescence for the moment, there are
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three cases. Case (a): in-arcs of nodeg'(r) O g;'(Act) which are not redirected.
These are unchanged by redirection, and have their child nodes activated during activa-
tion, restoring state saturatedness to case (a) nodes. Case (b): in-arcs piniocles

are redirected. Lekg, y) be a redirected arc, withf(a) =, (a, b) 0 Red and redirec-

tion target g, g+(y). If o(rg g (¥)) UV oru(rgy gi(¥)) Z €, orrgy g;»(y) is all-node,

then (Gi',G-"(X)k: rG-’,Gi"(y)) is state saturated. In case not, we kibawAct by restric-

tion M-I.li.4.(9). NowrGi, ci(y) = rGi,VG.”(g'(b)) by definition of redirection, and we

are assuming that(rG.,,Giu(g’(b))) =& Therefore the activation phase, makig,,

will make u(rGi',Giﬂ(yB) = u(rGi.,Gi l(g’(b))) = Oby definition 3.7.(4). This restores

state saturatedness to all case (b) nodes. Case (c): in-arcs of all other nodes. These are
state saturated i@;' and do not suffer redirection. They remain state saturated through-
out the redirection and activation phases.

Finally we return to the root, to deduce that root quiescence cannot destroy state satu-
ratedness. But this is immediate sigggroot) has no in-arcs. This in turn holds by
restrictionM-1.11.4.(8) and because no LHS of a redirection is a redirection target (i.e.
the destination of a redirected arc) by definition 3.6. We are done.

5 Liveness and Garbage

In all of the preceding, no node or arc was ever destroyed, which is not really acceptable
for a reasonable model of computation. In this section we introduce a suitable notion
of liveness, which turns out to be a proof theoretic business. This leads to the appropri-
ate notion of garbage which we prove sound.

Definition 5.1 LetG be a graph, anxla node ofs. Thenx s live iff it can be proved
so on the basis of the following rules of inference:

(1) If o(X) is a special symbdroot, thenx s live.

(2) If p() =0 thenx s live.

(3) Ifpislive and f,, X) is an idle arc, thenis live.

(4) Ifcis live and X, €) is a notification arc, thexis live.

Definition 5.1 is nothing more than a proof system. Thus clauses (1) and (2) form base
cases of proofs of liveness; and liveness is propagated down normal arcs and up notifi-
cation arcs, which makes clauses (3) and (4) into analogues of modus ponens. It is ev-
ident that the structure of a proof of liveness follows the structure of a certain kind of
semipath in the graph.

Definition 5.2 LetG be a graph. The set of live nodesis denoted Liveg), and
Ng — Live(G) is denoted Ga), the garbage set &f. An arc fy, ) of Gis live iff both
p andc are live; otherwise it is garbage.

Note that the inference rules in definition 5.1.(3) and 5.1.(4) give “local” means of prov-
ing the liveness of any given live ang,(c). Connectivity properties of the gragh
may also give rise to other, completely unrelated proofgfoc):

Definition 5.3 The live subgraph of a grafh LSG(G), consists of the live nodes and
live arcs ofG.
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Note that the live subgraph need not be a graph in the sense that it satisfies all the invar-
iants implied by definition 2.1, since a live node may have a garbage notification out-
arc to a garbage child node. Live nodes may also have garbage normal in-arcs from gar-
bage parent nodes, though this does not threaten the invariants of definition 2.1.

The most important thing about garbage is its persistence. Once a node of an execution
graph is proclaimed garbage, no execution step should cause it to be capable of being
proved live ever again. This is the main result of this section.

Theorem 5.4 LetR be a MONSTR system. L&tbe an execution graph Bf and let
G - H be an execution step. Then

(1) Ifxis a garbage node G thenig y(x) is a garbage node bf.
(2) If(px ©) is a garbage arc @, then (g 4(P)k. e H(C)) is a garbage arc of.

Proof. We must check that each possible execution step does not involve any garbage
node or arc in any harmful way. In order, we examine notifications, suspensions, and

finally rewrites. For each execution step we defineeeution step reddr consist

of all nodes and arcs mentioned in the definition of execution steps of that kind in Sec-

tion 3.

In all three cases, the structure of the proof is the same. First of all we prove that the
execution step redex is live. Then we identify the redex-emergent arcs as those arcs,
precisely one of whose nodes is in the execution step redex, and which are capable of
progressing a liveness proof out of the redex. Fig. 8 shows how this happens in sequent
notation. Finally we show that the transformation that generates the lgregnot

make any hypothesised garbage nedige, by reasoning about the properties of the
redex-emergent arcs. The proof for garbage @fcs)(then follows quickly.

z live % Q) : norm. arc z live €l 2 : notif. arc
g live g live
Normal arc case Notification arc case

Fig. 8 Redex-emergent steps in proofs of liveness;
zis live because it is in the execution step redex.

Notifications. For a notification frotJ G, the notification redex consists of all noti-
fication arcs %, t) and their constituent nodes manipulated by the notification, i.e. all
notification in-arcs4, t) of t such that is not a stateholder child in (Map — State) posi-
tion of the function parent node The redex-emergent arcs are therefore: normal arcs
(ty, O); other notification in-arcs, t) of t (such that is a stateholder child in (Map —
State) position of the function parent nodle normal arcsZ,, g) (for the relevant
nodesz); and notification arcsig, 2) (for the same relevant nodas All such arcs are
evidently live inG sincet is active inG.
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We recall that for notificationsgy =ig . InH, theig y image oft is idle, and the
ig,n iImages of all arcs( t) are normal. This , images of redex-emergent argg, (@)
and @, 2) are live iff their correspondingis live, and theg ;; images of redex-emer-
gent arcst, q) and (v, t) are live ifft is live.

Suppose now thatis garbage i, but thaig (X) is live inH. Obviouslyx cannot be

in the notification redex. Consider a proof of the livenesg gfx), in order to con-
struct one fok, for a contradiction. The proof H starts at an active &oot-labelled

node ofH, sayuy. But by the definition of notificationsg = ig 14(Up*) for some like-

wise active oRoot-labelled nodeig* of G. Evidentlyup* # x, so the proof must be
bigger than just an axiom instance. It therefore continues along either a normal or no-
tification arc. If the arc is a notification arc, it is thg, image of a notification arc of

G, and we continue the proof @ If it is a normal arc, then either it is thg, image

of anormal arc ofs and the proof il continues, or it is thig; j; image of a notification

arc ofG. In the latter case we are dealing with an arc of the notification redex whose
child node must bein G, which was active and thus live @ Sincex is not in the
notification redex inG, the proof emerges from the notification redex along a redex-
emergent arc. Therefore we can construct a proof of the liveneds Gfby patching

the tail of a proof of the liveness igf () in H, the tail in question being from the last

(if any) visit to theig |y image of the notification redex in the proof Fbr

So we have our contradiction aigly(x) is garbage itd. For a garbage arpy c), we
argue that at least one pbr c is garbage and thus outside the notification red€x in
By the preceding, itg iy image is still garbage iH. If p is the garbage node, then
(icH(P)k re H(0) is obviously garbage. His the garbage node, then becaysg(c)

=ig n(c) for notificationsy g y(C) is garbage i, giving the conclusion.

Suspensions. Let Sugpbe given as in definition 3.3 and let® = | Suspf) |. The
suspension redex consists of all atgsz)( of G, with | O Susp(), and their constituent
nodes. Sinceis active and all suspension redex arcs are normal by balancedness, the
suspension redex is live (& The redex-emergent arcs are notification argsty; all

normal arcstf, g) for mO Suspf); normal arcsz,, ) wherez=a(t)[1] for | O Suspy);

and finally notification arcsig, 2). Before the suspension step all of these arcs are live.

Suppose now thatis garbage i, but thaig y(x) is live inH. Obviouslyx cannot be

in the suspension redex. As in the notification case, consider a proof of the liveness of
igH(X), in order to construct one far The proof inH starts at an active &oot-la-

belled node oH, sayuy. But by the definition of suspensiong,=ig 1(Up*) for some
likewise active oRoot-labelled nodeiy* of G. Soug* # x, and the proof must be big-

ger than just an axiom instance. It therefore continues along either a normal or notifi-
cation arc. If the arc is a normal arc, it is iggy image of a normal arc @, and we
continue the proof iG. If it is a notification arc, then either it is thg, image of a
notification arc ofs and the proof it continues, or it is thig; iy image of a normal arc

of G. In the latter case we are dealing with an arc of the suspension redex, whose parent
node must beéin G, which was active and thus live@ Sincex is not in the notifica-

tion redex inG, the proof emerges from the notification redex along a redex-emergent
arc. Therefore we can again construct a proof of the livenedss & by patching the

tail of a proof of the liveness af y(x) in H, the tail in question being from the last (if

any) visit to the g iy image of the suspension redex in the prooHorThe proof for
garbage arcs is as in the case of notifications.
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Rewrites. Employing the usual notation, for a rewrite step, the red@) s per def-
inition 2.5. An important consequence of balancedness and of definition 3.1, is that for
a rewrite, all arcs of(L) are normal. Therefore the wholegtt) is live. The redex-
emergent arcs are notification argg ¢ with zJ g(L), and normal arcsf, q) with z

O g(L) andg O g(L).

Consider the garbage nodén G. There is no proof of livenessfn G sox O g(L).

After contractum building, all proofs of livenessGremain valid after being mapped

to G’ because of the injectiag & which preserves markings. New proofs of liveness
may have been created involving the contractum nodes, but none of them can prove
ig,e(X) live. For suppose not. To do so such a proof would have to follow a semipath
from a contractum node tg (x). Since such a semipath must pass thraif), we

would have a redex-emergent step in the proof. Since all redex-emergent steps are un-
changed fron, we could patch the final part of such a prodflito construct a proof

of the liveness af in G, a contradiction.

After redirection, all previous proofs not mentioning redex or contractum nodes remain
unchanged, since for arcs not containing a redex or contractumigagleextends to

a marking-preserving homomorphism. GAIP) & B (whereB is the set of-nodes
adjoined during the redirection phase) the extended redex for brevity. By the previous
paragraph, any proof of liveness@¥ of ig g+(X) must involve an extended-redex-
emergent step. There are two cases.

The Normal Case: Here we note that a normalzyg) with z in the extended redex
must havezin g" (L) since redirection does not affect the parent nodes of arcs. Thus as
before, the final part of the proof would correspond with the final part of a prGaf in
andig g/(x) would be live inG', a contradiction.

The Notification Case: Here we note that a notificationgga)(in G" is the (g g,

e gv) image of a notification argyf, z*) of G'. If z* did not get redirected, thet! is

in g'(L) as this is the only part of the extended redeX iaccessible from outsidg(P).

But theng'(L) is live, and so the final part of the proof would correspond with the final
part of a proof irG’" andig (x) would be live inG'. If z* did get redirected ta, then

zis in g'(L) since LHSs of all redirections are. Once more we would find a proof with
a redex-emergent step |nvoIV|rq]<(z*) showing thaig () was live inG'. We con-
clude that theég ¢+ image ofx remains garbage @".

Finally the root quiescence and activation phase. The root is always made idle accord-
ing to definition 3.7.(4). Thus sind¢#root) is idle inH, some proofs of liveness that

exist forG" are destroyed; which cannot makg,(x) live. If some nodes df(P) are
activated, some new proofs of livenesslimithout counterparts i might be creat-

ed. However, any such proof which provggy(x) live, must utilise (thég- 1y image

of) an extended-redex-emergent step, as argued above. Any such extended-redex-emer-
gent step involves either a normal arc, or a notification arc, and the arguments for these
cases are identical to those voiced above for the redirection phase. We conclude that

is garbage .

For a garbage argy, c), we argue that at least onepadr c is garbage and thus outside
of g(L) in G. By the preceding, itig; |y image is still garbage iH. If pis the garbage
node, thenig 1(P)k G H(C)) is obviously garbage. {fis the garbage node, then be-
causec is outside ofy(L), rg y(c) =igH(c), the latter of which is garbagelih) giving
the conclusion. We are don€)
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We end this section with a simple lemma whose proof is largely implicit in the preced-
ing proof.

Lemma 5.5 LetR be a MONSTR system. L& be an execution graph Bf and let

G - H be a rewrite execution step according to aBufe(P, root, Red Acl) of a redex
g(L) rooted at [0 G. Letx O g(L) be the left node of a redirection prescribed by the
rewrite. Then

(1) ign() has no in-arcs.
(2) ign(X) is garbage i,

Proof. We know that each node that is the left node of a redirection is in eithér a []
class, or in a [ class. In the first case the redirection target is¢hg- image of a

node ofG' that is not itself the left hand side of a redirection. In the second case the
redirection target is B-node, again not the left hand side of a redirection. We deduce
that (1) holds.

To get (2), we note that from the MONSTR restrictions on ruléeseither the root of

the redex, or the stateholder child of the root. Neither of these are constructors, there-
fore a(x) # Root, sinceRoot is a constructor bi-1.11.2.(4) quoted above, and so
ig,H(X) cannot be proved live by recourse to definition 5.1.(1). Also the root is quiesced,
and the stateholder, if redirected, is not activated since the nodes which are activated are
(re gv©g)(Act), which does not include any left nodes of redirections by the previous
paragraph sp(i, H(x)) # [J andig (x) cannot be proved live by definition 5.1.(2). By

(1), igH(X) has no in-arcs of any kind, ng(x) cannot be proved live by definition
5.1.(3). Finally, the root was quiesced, so is idld.ifFurthermore, the stateholder was

in G, idle by definition 3.1, therefore if redirected, remains unactivateicoypour pre-

ceding argument, and thus idleHin By balancednesgg 14(X) has no notification out-

arcs, sdg y(x) cannot be proved live by definition 5.1.(4). We are dane.

6 Overlapping Redexes and Safe Critical Cones

In this section, we define resuspending rules, and discuss critical cones, particularly safe
critical cones.

Definition 6.1 LetF OF andSO V. Letk; O StateF). A normal ruleD = (P, root,
Red Acf) for F is a resuspending rule fBrandSiff

(1) F matchesS (in ki 'th position).
(2) The only contractum node Bfis a nodd such that
of) =F
H(f) =#,
Forj O A(f),
a(f)[jl = a(root)[j],
v[jl=1f j=k Then ™ Else ¢
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(3) Red={(root, f)}
4) Act=0

Example 6.2 LetA(F) ={1 ... 5}, Map(F) = {2, 3, 4}, and Stat#{) = {3}. Then Fig.
9 shows a resuspending rule FoandS.

FI = #F ]

Any C1 S C2 Any

Fig. 9 A resuspending rule.

Definition 6.3 LetG be an execution graph of a MONSTR sysfnand lets 0 G be
a stateholder node &, and letS=0(s). Let CC§) containsand all the active function
noded [0 G such thas occurs in stateholder position of edche.

CCE ={f0G|u( =0 o(f) O F, Ok O State6()), ands = a(f)[k] } T {s}

We call CC§), the critical cone of, and we call the arc§ s), the arcs of the critical
cone. We can write a critical cone using the notat&{... f.}.

When we strive for a Church-Rosser property, we can allow redexes to overlap on con-

structors, as these are read-only. Likewise we can contemplate the idea of allowing re-

dexes to overlap on their implicitly matched nodes, since these cannot be redirected.

Because the operational semantics is transitive and coercing, this turns out to be sound,
though non-trivial (see the next section and the one that follows). This concentrates the

focus on critical cones, as the seat of non-confluent behaviour. Safe critical cones are
those where we can see that non-confluent behaviour can be avoided.

Definition 6.4 LetG be an execution graph of a MONSTR sysinand lets 0 G be
a stateholder with critical cone G€ {s, f; ... f,}. The critical cone is safe iff one of
the following conditions holds.

(1) Fori=1...n,no rule fora(f) which matches dt [ G, redirects its stateholder
argument.

(2) There is exactly oniel] {1 ... n} such that there is a rule fo(f;) which matches
atfy 0 G and redirects its stateholder argument. Furthermore it redirects it to a

non-idle node or activated node. kerj 00 {1 ... n}, the only normal rules for
a(f;) which match af; are resuspending rules, and eaf) has such a rule.

The idea behind these possibilities should be clear. In (1), the stateholder behaves as
just another constructor. In (2), precisely one of the functions is capable of “doing an-
ything”; the others, should any of them rewrite, merely resuspend, which modulo mark-
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ings and garbage does not alter the structure of the graph. A cone of type (1) can give
rise to one of type (2) on the same stateholder, as once all the “read only” functions have
rewritten, other rewriting activity containing references to (a suiiablénage of)s,

may create functions having references to (a suitable imageafiateholder position.

Despite these promising features, the critical cones we have described would not be in-
teresting were it not for the fact that the resuspending behaviour we focus on is exectly
what realistic MONSTR systems typically use for synchronisation purposes. (See eg.
the references to applications discussed-h.)

7 Subcommutativity Lemmas

In this section, we present the basic subcommutativity lemmas that hold for MONSTR
systems under transitive coercing semantics. These are the building blocks for the main
theorem of the paper.

Lemma 7.1 LetGy =[Gy, ..., G\] be a transitive coercing preexecution of a MONSTR
systemR. Supposés, contains two active nodég# t, with {o(t;), o(ty)} O C O V.

For either choice dftd {1, 2}, letj denote the other choice. Li¢tbe obtained by per-
forming a notification front; in Gy. Then

(1) HqandH, are graph structure isomorphic.

(2 rGN‘Hi(tj) = iGN'Hi(tj) is an active constructor or stateholder, hence the root
of a potential notification step, .

Let K; be obtained froni; by notifying froerN‘Hi(tj). Then
(3) K;andK, are marking preserving isomorphic via a mapK; - K.

Proof. This is relatively easy. Since notifications merely manipulate markings, (1) fol-
lows immediately since botH; andH, are graph structure isomorphic@. Sincet;

is active inGy, it cannot be a suspended parent of a notification afcthlis it is not
notified int;’s notification, andGNyHi(tj) is active inH; so that (2) holds. As for (15,

andK, are graph structure isomorphic, so we must check that the markings coincide.
We know that the sets of notification arcs that comprise the notification redetxes of
andt, in Gy are disjoint. After notification, all of them end up as normal arks and

K,. Other arcs are unaffected.

For nodest; andt, lose their active marking; nodes not in either notification redex keep
their marking; parent nodes Bfin the notification redex df but not oft; decrement
their suspensions by the same amount during the notification oftethefrg . (t);

and parent nodes of bathandt, in both notification redexes decrement their suspen-
sions by the sum of two such amounts, ending with the same markingrsinae~b

= (n—b)—a. So we have (3), and thus the whole lemra.

Lemma 7.2 LetGy =[Gy, ..., G\] be a transitive coercing preexecution of a MONSTR
systemR. Supposé&s, contains two active function nodes# s, with Susp$,;) # 0 #
Susps,), where the Susp set of a function node is given in definition 3.3. For either
choice ofi 00 {1, 2}, letj denote the other choice. Lid{be obtained by performing a
suspension frorg in Gy. Then

(1) HqandH, are graph structure isomorphic.
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(2) rGN'Hi(sj) = iGN,Hi(q) is an active function node, and hence the root
of a potential suspension stepHp

LetK; be obtained front; by performing a suspension framg, (). Then
(3) K;andK, are marking preserving isomorphic via a apK; - Ko.

Proof. This is pretty similar to lemma 7.1, in that notifications turn notification arcs into
normal arcs, while suspensions turn normal arcs into notification arcs. So we will be
fairly brief.

Since suspensions merely manipulate markings we have (1) immediately. Also since
the only node markings that change in a suspension step are those of the suspension root
and of any activated idle functions, and all nodes are idle afterwards only if they were
idle before, (2) follows, and; andK, are graph structure isomorphic. Since the sets

of normal arcs constituting the two suspension redexes are disj@gt amd any idle

function that is activated ends up activated regardless of the order of the suspensions,
we get (3) easily©

Lemma 7.3 LetGy =[Gy, ..., G\] be a transitive coercing preexecution of a MONSTR
systemR. Suppos&, contains an active function nog&ith Suspg) # 0, where the
Susp set of a function node is given in definition 3.3. SupBesdso contains an ac-
tive constructor or stateholder Let

Susp = k0 Map(©(s)) | a(s)[K] is non-idle, or

a(9)[K] is idle anda(a(9)[K]) = O, or

a(9)[K] is idle anda(a(9)[K]) O F, or

[ kO (Map(o(s)) — State@(s))) and

a(9)[K] is idle anda(a(s)[K) OV ]}
SuspNodes =X G | x = a(9)[K] for somek [0 Susp}
M = SuspNodes =t} and not[a(t) O V andt = a(s)[K]

for somek O (Map(o(s)) — Stateg(s))) |

Let Hg be obtained by performing a suspension fedimG,, and letH; be obtained by
performing a natification frorhin Gy. Then

(1) HgandH; are graph structure isomorphic.

2) (a) rGN,HS(t) = iGN,HS(t) is an active constructor or stateholder, hence the
root of a potential notification step, liy.

(b) rGN,Ht(s) = iGN‘Ht(s) is an active function node, and unl€ssolds,
is the root of a potential suspension stefin

Let Kq be obtained fromig by performing a notification frorrbNst(t), and let

Ki = If T Then H,
Else The result of performing a suspension fnqgn,Ht(s) in Hg

Then

(3) KsandK; are marking preserving isomorphic via a mapKg — K;.
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Proof. As in the previous lemmas, (1) is immediate. Sgca&nnot be in the notifica-

tion redex oft in G, and since althoughmight be in the suspension redexsah Gy,

the node markings of non-idle non-root nodes of suspension redexes do not change dur-
ing suspensions, we conclude (2), noting thiavéis the only element g6 SuspNodes

set, unlessis a stateholder in a constructor-only positios, dfiere is no potential sus-
pension fronrg, y.(s) in Hy sincerg, ,(t) is idle. Obviously we find thats andK; are

graph structure |somorph|c so we need to check the markings.

For arcs there are four disjoint cases: (a) all ag¢$)(for any applicablé& which must
all be normal arcs isy; (b) other arcs of the suspension redex; (c) arcs of the natifica-
tion redex; (d) all remaining arcs.

For (a), there are two subcases: (al) ag¢$) Such that is a stateholder in constructor-

only positionk of s for any suclkk; (a2) all other case (a) arcs. For both subcases, if the
suspension is done first, the constituent arcs become notification Higsod then the

(a2) arcs become normal arcé(ghfter the naotification, (al) arcs remaining suspended.

If the notification is done first, sineg, He (t) is idle, (a2) arcs disappear from the sus-
penS|on redex itl;. If there were (al) arcs in the suspension red& pthe suspen-

sion step causes them to become notification arcs. For cases (b) and (c) it is clear that
they become notification arcs and normal arcs respectively regardless of the order of the
steps. Also case (d) arcs are unaffected.

For nodes there are also four disjoint cases (&) the nodes of the notification redex;
(c) nodes in the suspension redex other than case (a) and case (b) nodes; (d) all remain-
ing nodes.

For (a), if the suspensmn is done firg, Hg (s) becomes suspendedHfy, and in the
notification step receives natifications along all case (a2) arcs (if there are any). If the
notification is done firsgis unaffected during notification, but becomes suspended (on
potentially fewer arguments) during the subsequent suspension (if any). It is clear that
the net suspension markings g} Kd (s) in Kgand onrg, Kt(s) in K; are the same, as

the extra suspensmns when the suspensmn is done f|rst match the notifications received
from case (a2) arcs in the following natification. Obviously if the suspension redex
consists solely of case (a2) arcs and their nodes, then all the suspensiasghies

when suspension is first, are released in the notification, leaying(s) active inKg
corresponding to the complete removal of the suspension redex (because there are no
remaining elements in the SuspNodes seggh (s) in Hy) where notification is first,
followed by a null suspension, also leavr Ki (s) active inK;. For case (b) and case

(c) nodes, it is easy to see that they undergo the same net change regardless of the order
of the steps; likewise case (d) nodes remain unaffected. This is enough for (3).

Lemma 7.4 LetGy =[Gy, ..., G\] be a transitive coercing preexecution of a MONSTR
systemR. Supposés, contains an active constructor or stateholder nodsuppose
G, also contains an active function nddell of whose (Mapf(f)) — Stateg(f))) argu-
ments are idle constructors, and whose Sifif@@rgument (if any) is an idle construc-
tor or stateholder, and which is thus the root of a regdex — G for some ruleD =

(P, root, Red Acf). Let

M =t0Og(Actd {b|(a,b) 0D RedalAct bOL})

Let H; be obtained by performing a notification froin Gy. LetH; be obtained by re-
writing the redex rooted dtin G, via the usual phases: P - G, d"': P - G,
h; : P — Hs, and associatédandr maps. Then
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Q) (a rGNYHf(t) = iGN,Hf(t) is an active constructor or stateholder, hence the
root of a potential notification step, lif.

(b) rGN,Ht(f) = iGN,Ht(f) is an active function node, and
hy=rgm ©9:L - H

is a redex foD, such that all the (Map(rGN,Ht(f))) - Statec(r(rGN’Ht(f))))
arguments orfGN,Ht(f) are idle constructors, and any Sta(eéN,Ht(f))) ar-

gument is an idle constructor or stateholder, hence is the redex of a
potential rewrite irH;.

Let K¢ be obtained frontis by performing a notification fromg, i (t). LetJ; be ob-
tained fromH, by rewriting the redex rooted gt Ht (f) in Hy, via the usual phases
h':P - H, h':P->H"j:P-J and associatecandr maps. Then

(2) If M Then rGN'Jt(t) is an active constructor or stateholder,

hence the root of a potential notification steplin

Let

K¢ = If notll Then J
Else The result of performing a notification framg, 5(t) in J;

Then

(3) KjandK, are marking preserving isomorphic via a mjapKs - K;.

Proof. A little thought shows that neithEnor any off's Map(o(f)) arguments can be

in the notification redex, either because of the node markings or the node symbols in-
volved. However this does not preclude the notification redex nodes from occurring as
implicitly matched nodes of the rewriting redex. Because of the respective arc mark-
ings, it is clear that the sets of arcs of the two redexes are disjoint.

Consider performing the notification to crelie EvidentlyGy andH; are graph struc-

ture isomorphic. And since the only node whose active marking changes in this process
ist itself, and no node becomes non-idle which was not non-idle previngsly(f) is

active inH; and (1).(b) follows. Let us compare the rewriting processes that Eteate
from G andJ; from H; using the rul®. Let

0:Gy - H;
be the graph structure isomorphism mentioned already. The respective contractum
building phases clearly allow its extension to a graph structure isomorphism

0 :Gy - HY
such that the obvious triangle involvigyg: P —» G\’ andhy : P - H, commutes. Ev-

idently the redirection phase admits a further extension to a graph structure isomor-
phism

9” :GNH N Ht”
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such that the triangle involving the node mgps P — G\ andh,’ : P - H;" com-
mutes too. Likewise the activation phase finally yields the graph structure isomorphism

0" 1 Hf -
such that the triangle involvirtg : P —» H; andj; : P - J;, commutes.

The definition 3.8 of rewriting shows that the only active node of the rewritten graph
that ends up idle in the result, is the root of the redex. The only other nodes that can
undergo a change of marking are the activated nodes which, if they start off idle, end up
active. Thus we conclude that sirtcef, rg p(t) is active inH¢, whence we have
(1).(a). To get (2) and (3), we must follow "What happens to the markings of the other
nodes, and to the markings of the various arcs too.

For nodes there are five disjoint casest; (@) f; (c) nodes of the notification redex oth-
er thant; (d) contractum nodes; (e) all other nodes.

For case (a), regardingif rewriting is done first, we know that it is activeHpso ends
up idle inKs after the notification. If notification is done first, then it is idléljpnand
then either is idle id, if M does not hold, or is active Jif M holds, giving us (2). In
the latter case, we know th@NJ M) =ig, It (t) because the non-idle marking ol G
means that it can only have been matched to an implicit nddarat this precludes it
from being one of the redirected nodes of the rewrite. Also in the Iatterr@gg(ét)
is a notification root ild;, and doing the notification, makes it idlekip as requwed

For case (b), ends up idle regardless of the order of execution steps.

For case (c) nodes, we note that they start out non-idle, and when notified, change their
marking from one non-idle marking to another (non-idle marking). By the definition of
rewriting, their markings are unaffected by activation. The relative order of rewriting
and notification(s) is thus immaterial for them and they end up with the same node
marking regardless.

For case (d), regarding (tlgeimage or théy' image of) & —L nodeq, there are two
contributing subcases depending on the out-args 8ubcase (d1) concerns all notifi-
cation out-arcs aff whose child node is (a hode whagémage, resrht image, is the
rGy.Gy IMage, resp. theg y |mage of)t or whose child node is the LHS of a redi-
rection where the RHS node is (e, g, iImage, resp. thes Hy image, of}. If there
are such notification out-arcs, then we hiaviey the above quotekzl 1.11.4.(7) oM-
1.11.4.(9), since can only have been matched to an implicit node bécause of its
active marking. Subcase (d2) concerns all other out-aigs of

Regarding the images dfin the various graphs, if notification is done first, the child
node of (d1) out-arcs d¥'(q) is idle inH{', but active inJ;, whereuporj(q) receives
notifications along the (d1) out-arcs which decrease its suspension matkjnghnB.
Because of the earlier notification franthe only suspended parents thgt 5(t) has,

are the parent nodes of these (d1) out-arcs.) If rewriting is done first, the child node of
(d1) out-arcs ofy'(q) is active inG,', hence irH;, whereupon the (d1) out-arcs join the
image of the notification redex id;. hy(q) therefore receives notifications along the
(d1) out-arcs which decrease its suspension markilg iSince by contractum build-

ing, the images df start with the same number of suspensions, and also have the same
number of (d1) out-arcs, the markings on thet;iandK; are the same. The (d2) out-
arcs do not affect the node markings of contractum nodes.
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Finally for case (e) nodes, it is clear that they end up with the same marking regardless
of the order of the steps, since either they retain the same marking throughout, or they
start idle and fall into the appropriate imagedof at some point, thence acquiring the
active marking.

For arcs, there are four disjoint cases: (a) arcs of the notification redex; (b) contractum
arcs in the (d1) subcase of case (d) for nodes discussed above; (c) all other contractum
arcs; (d) all other arcs.

For case (a) arcs, they start off as notification arcs, and end up as normal arcs, regardless
of the order of steps. Likewise for case (b) arcs; depending on order of steps, they either
become normal arcs at the same time as the case (a) arcs, or later, during the extra no-
tification. Case (c) and case (d) arcs retain their arc marking throughout, regardless of
the order of steps. We are done.

Lemma 7.5 LetGy =[Gy, ..., G\] be a transitive coercing preexecution of a MONSTR
systemR. Suppos&, contains an active function noggith Suspg) # 0, where the
Susp set of a function node is given in definition 3.3. SupBesdso contains an ac-
tive function nodd, all of whose (Mapf(f)) — Stateg(f))) arguments are idle construc-
tors, and whose Statg(f)) argument (if any, let it b&) is an idle constructor or
stateholder, and which is thus the root of a ragex - G, for some rulé® = (P, root,
Red Acf). Let

Susp = k0 Map(o(s)) | a(9)[K] is non-idle, or
a(9)[K] is idle anda(a(s)[K]) = O, or
a(9)[K] is idle anda(a(9)[K]) O F, or
[ kO (Map(o(s)) — Stated(s))) and
a(9)[K] is idle ando(a(9)[K]) OV ]}
SuspNodes =X G | x = a(9)[K] for somek [0 Susp}

Susp = k0 Map(o(s)) | k O Susp}
SuspNodes =X G | x = a(s)[K] for somek [0 Susp}

Suppose for every redirectioa, p) (0 Red eitherb is non-idle ob [0 Act Let

SuspAct = SuspNodes g(Actd {b]| (a, b) 0 RedalAct bL}))
— ({a(fK | kO State@(f))} n {a(s)[K] | k T State¢(s))})

M = SuspActz U

Let Hg be obtained by performing a suspension feim G,. LetH; be obtained by
rewriting the redex rooted &in G, via the usual phasegs: P - G/, g" : P - G\,
h : P — Hy, and associateédandr maps. Then

Q) (3 rGN,Hf(s) = iGN,Hf(s) is an active function node bk with non-empty
Susp set. HenaQ;Nny(s) the root of a potential suspension steplin

(b) rGN,HS(f) = iGN,Hs(f) is an active function node, and
hS:rGN’Hso g:L - Hg

is a redex foD, such that all (Maro((rGN,Hs(f))) - State(f(rGN,Hs(f)))) ar-
guments ofGN,HS(f) are idle constructors, and any Sta(e&N’Hs(f))) ar-
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gument is an idle constructor or stateholder, hence is the redex of a
potential rewrite irHs,

Let J; be obtained fronid; by performing a suspension fro’r@N’Hf(s). LetJg be ob-
tained fromHg by rewriting the redex rooted ety (f) in Hg, via the usual phases
hd :P - Hg,h':P - HJ",js: P - Jg, and assoCiatacandr maps. Then

(2) If M Then Every node irrGN’Jf(SuspAct) (respr.GN‘JS(SuspAct)) is an

active constructor, hence the root of a potential notification step
in J; (resp.Jy).

Let K¢ andKg be given by

If notn Then K;=J;andKq=Jg
Else K (resp.Ky) = the result of performing notifications from each node in
MGy, Jf(SuspAct) ind (resprg,, JS(SuspAct) inJy)

Then

(3) KjandKgare marking preserving isomorphic via a ngapKs — K apart from
the exceptional case in whitlands share the same stateholder or constructor
node, both in stateholder position, and ftihewrite either redirects it (to a non-
idle node, or activated node, [@rnode), or merely activates it without redirec-
tion. In symbols if: State(s)) = {k¢} ; State@(f)) = {kg} ; a(s)[kd = a(f)[k{] =
V5 UGy k(W) = H(rgy k(W) # € or o(rg k(V)) = 0(rg k) = - In such a
case,rGN’Kf(s) has an extra suspension marking compared BM[BN’K]‘(S)) =
FGyke(S), and the arcrg k(Skg foy.ki(V)) is @ notification arc, whereas

Lp((rGN,Kf(s)kS, rGN,Kf(v))) = (rGNvKS(S)kS’ rGN’KS(v)) is a normal arc. Even in the
exceptional casé; andKg are marking preserving isomorphic disaside from
the stated details.

Proof. Obviouslyf # s sincef has an empty Susp set whildoes not. Equally obvi-
ously, f’s Map(o(f)) arguments do not include most kinds of suspension redex nodes
since the latter are non-idle, or idle functions[Janodes, or idle stateholders in the
wrong place. (In fact one of the latter could be the stateholder argunightiothis is

the only possible exception.) However, this does not prevent the suspension redex
nodes from occurring as implicitly matched arguments of the rewriting redex. Because
the out-arcs of ands are disjoint, and the out-arcs of implicitly matched nodes of the
rewriting redex are not part of that redex, it is clear that the sets of arcs of the two re-
dexes are disjoint.

Consider performing the suspension to créhteEvidentlyG, andHg are graph struc-

ture isomorphic. And since for suspensions, the only nodes whose markings change are
s itself and any idle function activated in the suspensign(f) is active inHg and

(1).(b) follows. Let us compare the rewriting processes that drgéitem G, andKg

from Hg using the ruld®. Let

0:Gy - Hg
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be the graph structure isomorphism mentioned already. The respective contractum
building phases clearly allow its extension to a graph structure isomorphism

8 :Gy - Hg

such that the obvious triangle involvigg: P » G’ andhg' : P -~ HJ commutes. The
redirection phase admits a further extension to a graph structure isomorphism

. n n
0" Gy - Hg

such that the triangle involving the node mgps P — G\" andh{" : P - Hg' com-
mutes too. Likewise the activation phase finally yields the graph structure isomorphism

0" He - Jg

such that the triangle involvirtg : P — Hfandjs: P - J;commutes. (In particular the
equalityo(rGN'Kf(v)) = G(rGN’KS(v)) mentioned in clause (3) of the lemma is guaranteed
to hold.)

As in the previous lemma, the definition of rewriting 3.8 shows that the only active node
of the rewritten graph that ends up idle in the result, is the root of the redex. The only
other nodes that can undergo a change of marking are the activated nodes which, if they
start off idle, end up active. Thus we conclude that di#crg, (s is active inHy.

To get 1.(a), we must show thr. ’Hf(s) has a non-empty Susp set. For this is it is suf-
ficient to notice that the rewrite cannot make a non-root non-idle node idle, nor change
the symbol on a node, nor redirect a node to an idleChnode. So each Susp argu-
ment ofs becomes a Susp argument@f’Hf(s), and in fact these may be joined by oth-

ers ifSuspAct# [, or if a node in stateholder position for bétmds, is redirected or
activated. So 1.(a) holds.

By the rather stringent conditions for rewrite redexes, (2) holds trivially. To get (3) we
must follow what happens to the markings on the nodes and arcs.

For arcs there are five disjoint cases: (a) all asgd)( for any applicablé O Susp,
which must all be normal arcs @; (b) other arcs of the suspension redex (i.e. whose
child nodes are in SuspNodes); (c) all asgsxX) not in the suspension redex, but with
kO (Map(o(s)) — State¢(s))); (d) any arcg,, X) not in the suspension redex, but with

O State@(s)); (e) all remaining arcs, whether already existin@jnor introduced dur-

ing rewriting, (this includes all arcs(x), for anyk O Map(©(9))).

For case (a) arcs, if rewriting is done first, they remain normal during the rewrite, and
sincef is redirected to a non-idle node or activated nodé-mode, they become noti-
fication arcs after the suspension. If the redirection target %asg@ct node, they be-
come normal after the final notification; otherwise not. If the suspension is done first,
they become notification arcs immediately, and remain so during the rewrite. During
the final notification, they become normal if the redirection target \BaspAct node;
otherwise not.

For case (b) arcs, they are unaffected by rewriting, and become notification arcs after
the suspension, regardless of the order of steps, remaining so in the final notification (if
any). For case (c) arcs, if the rewrite is first, they remain normal throughout; unless
their child node was iBuspAct, in which case they become notification arcs after the
suspension, returning to normal after the final notification. If the suspension is first,
they remain normal through both the suspension and rewrite and final notification.
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If there is a case (d) arc, its child is an idle constructor or stateholder. Either may get
activated, and a stateholder may get redirected by the rewrite, which will make the arc’s
child a non-idle node dr-node. Therefore if any of these happen and the rewrite is
done first, it joins the suspension redex, and becomes a notification arc during the sus-
pension; this does not happen if the rewrite comes second. The arc is unaffected by the
final notifications whatever the order. For case (e) arcs, they retain the marking they
had inG,, or were given during contractum building, regardless of the order of steps,
except for contractum notification arcs with contractum parent nod&uapdct child

nodes, which become normal after the final notification, regardless of order of steps.

For nodes there are six disjoint casess(&)) f; (¢) nodes in SuspNodes other tlian
and its child in stateholder position (if applicable); (d) node3uspNodes other than
the child off in stateholder position if any; (e) the childfah stateholder position if
any; (f) all remaining nodes, whether already existinGnor introduced during re-
writing.

For the case (b) nodeits marking is unaffected by the suspension, and it is quiesced
during the rewrite. This holds regardless of the order of the steps. For the case (c)
nodes, the non-idle nodes remain so, regardless of the order of steps, being unaffected
by any activations from the rewrite, or final notification. Any idle functions are activat-

ed either (perhaps) by the rewrite, or by the suspension, and remain thus. Idle statehold-
ers, might be activated by the rewrite, or not regardless of drdesdes remain so.

For the case (d) nodes, we know they must be idle constructors. During the rewrite, they
might be activated, but will subsequently notify in the final notification. In such a case,

if the rewite is first they join the suspension redex, otherwise not.

For case (e), if there is a childfdh stateholder position, if it occurs in SuspNodes, the
argument is as for the SuspNodes nodes, since it must be an idle stateholder in construc-
tor position fors. Thus it may (or may not) be activated, or redirected to a non-idle node
or activated node dr-node by the rewrite regardless of order. If it occurs outside of
the Map6(s)) arguments af, it is unaffected by the suspension and notification, what-
ever the order of steps. If it occursSnspNodes, either it is a constructor, in which
case the rewrite may (or may not) activate it regardless of order. If the rewrite does ac-
tivate it, it joins the suspension redex if the suspension occurs second, and provided it
is not in stateholder position sf it natifies in the last step, again regardless of order.
Otherwise if it occurs irsuspNodes, it must be a stateholder, in which case it must be
the stateholder argument®&s well as that df In this case, the rewrite may activate

it, or redirect it (to a non-idle or activated@mnode) whereupon, if the suspension oc-
curs second, it joins the suspension redex. (In any case the eqy 'y(f(v)) =

H(rgy kW) (Whena(s)[kg]) = a(f)[k]) = v) mentioned in clause (3) of the lemma is
guaran?eed to hold.)

For case (f) nodes, either they retain the marking they h@g, iar were given during
contractum building; or they undergo an activation. This holds regardless of the order
of the steps.

For the case (a) nodeif suspension is done first, its marking changes from active to
suspended, with as many suspensions in total, as there are(8flap(cs to case (c)
nodes, plus Mag(s)) arcs tof if f is a matched argument gfplus (Map@(s)) — Sta-
te(o(s))) arcs to the stateholder child fofin stateholder position dj if any, if it is a
constructor position argument ®f The marking remains during the rewriting step and
final notification.
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If rewriting is done first, the Map(s)) argument arcs tb(if any), become redirected

to an activated node or non-idle nodeéJlemode. Similarly for the MapK(s)) argument
arcs to the childr of f in stateholder position if it got activated or non-root redirected.
If in fact either occured, andwas also in stateholder posmonsofhefact thatg, Hs (V)

is non-idle or d}-node, means it joins the suspension redexQ f_| (s). The rewrlte
also potentially activates some nodes, and those thatﬁmsm\ctjom the suspension
redex oer Hi (s) as well. These latter, notify during the final notification, so that the
suspensmn markmg arg,, k() is one more than that og, « (9) if rg, n (V) joined

the suspension redex |Q§N Hf(s) otherwise being the same. We are d e.

Lemma 7.6 LetGy =[Gy, ..., G\] be a transitive coercing preexecution of a MONSTR
systemR. Suppos&, contains two active function nods# f,. Suppose foir 0 {1,

2}, all of the (Map6(f;)) — Stateg(f;))) arguments of; are idle constructors, and any
State@(f;))) argument of; is an idle constructor or stateholder, and suppose therefore
thatf; is the root of a redeg; : L; — G for some ruldd; = (P;, root, Req, Act). Sup-
pose for each redirection, (b) O Red, eitherb is non-idle orb is in Act. For either
choice ofl 0 {1, 2}, letj denote the other choice.Lif(the left subpattern &) contains

an explicit stateholder, let it s If for somet; O P;, (S, t)) O Red, then we sap;
redirectss;, otherwise not.

Let
MapNodes= {x O Gy | x = a(f;)[K] for somek O Map(o(f;)}
RedNodes= {x O G, | x = gj(a) for some &, b) U Red}
LActNodes = gj(Act O {b| (a, b) 0 Red, a J Act, b O L;})
Suppose

01(S1) =v1 =V, =0o(sp) O [For bothi O {1, 2}, D; does not redirec ].

Let H; be obtained by rewriting the redex rooted &t Gy, via the usual phase :
Pi - Gy g'" P - Gy, hj: P; - Hj, and associatedandr maps. Let

Reds,; = {(x, y) 0 GyxGy | for some &, b) [ Red, gi(a) =X, gi(b) =y}
Red’® = {(x, y) O GyxGy | for some &, b) 0 Req, g;(a) =, gi(b) =V,
andx Reds;+ X}
Red g,° = {(x, y) O GyxGy | for some &, b) [ (Reds,; U Reds,,),
[(9,(a) =x andg, (b) =), or @,(a) =x andg,(b) =y)],
andx (Redsy; 0 Redgyo)+ X}
Let

NN; 1 = LActNodes n MapNodeg
Then

(1) Not 1 =rgn;(NN; 1) =ig, Hi(NN; 1) contains only active constructors, possibly
combined with an active stateholder.

Let M; be the result of performing notifications from all nodeNar ;.
Then
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(2) rGN'Mi(fj) = iGN’Mi(fj) is an active function node f;, and
m=rg,m ©9 L - M

is a redex foD;, such that all the (Map(rGN,Mi(fj))) - State(r(rGN’Mi(fj)))) ar-
guments of g ;(fj) are idle constructors, and any Statfeg, v;(f;))) argument

is an idle constructor or stateholder, hence is the redex of a potential rewrite in
M;.

LetN; be obtained fror; by rewriting the redex rootedrg, \;;(f;) in M;, via the usual
phasesny’ : Pj — My, m" : P; - M{", nj : P; - N;, and associatecandr maps.

Let

NN3 = (LActNodeg O LActNodes) n
((MapNodeg — RedNodeg O (MapNodes — RedNodeg)

Then

(3)  Not 3=rgn;(NN3) =ig, n;(NN3) contains only constructors and stateholders,
each in either the active or idle state.

Let K; be the result of performing notifications from all active nodeégoit1s.
Then

(4) K;andK, are marking preserving isomorphic via a njayK,; — K,; apart from
the exceptional cases where

(@ Djshares and activates an unredirected unactivated stateholBer of

which has a notification contractum in-arc. In symbols if: for spnié

P, 0<z=[I]a()ll] =s, v(p)lll =", v, D RedNodesv; O LActNodes,

v; U LActNodes, v; [l MapNodeg|. In such a case, if(iNj,Kj(nj(pi)))

=#9, thenp(iy, i (hi(pp)) = #2, and each relevant gy, (M ().
rGN,Kj(vi)) is a notification arc, whereaigy(;(hi(p))1, g, ; (Vi) is a nor-

mal arc. (And these respective pairs of nodes and arcs correspand via
or ¢t according to the subscripts.)

(b)  Djactivates a redirected stateholdeDpfvhich has a notification in-arc
in Gy (and similarly fof). In symbols if: for soma O Gy, z = [{I | a(u)[I]
=v;, v(U)[l] =", v; U RedNodes v; [ LActNodes}|, andz = {1 [ a(u)([]
=V, v(W[l] =*, v; 0 RedNodes v; U LActNodes}|, and 0 <z + 2. In
such a case, ifig,(u) = #9, then we have(ig, k(1)) = #*%) and
Mligy k(W) = #(43); and each relevant arig( k,(U));, g, k;(¥})) is a no-
tification arc, Whereas's(gN,Kj(u))h rGN,Kj(vj)) is a normal arc, and each rel-
evant arci(_;N,Kj(u))h rGN,Kj(vi)) is a notification arc, whereaig( ;(U)),



Banach R.: MONSTR YV - Transitive Coercing Semantics ... 1315

rGNYKi(vi)) is a normal arc. (And these respective pairs of nodes and arcs
correspond via or qJ‘l according to the subscripts.)

Even in the exceptional cas&s,andK, are marking preserving isomorphic via
Y apart from the stated details.

Proof. Sincef; #f;, and both are active, and because all (Map — State) arguments of both
f's are idle constructors and any State argument must be an idle constructor or statehold-
er, the only overlap betweerf{{l) MapNodeg and (ff} C MapNodeg is on common

idle constructors, or a single shared but unredirected idle stateholder. (Of course im-
plicitly matched nodes of either redex may match arbitrary nodes, including arbitrary
nodes of the other redex). Noting that an activation from the first rewrite does not affect
the root of the redex of the second, clauses (1), (2) and (3) are clear.

It remains to establish the marking preserving isomorphism claimed in (4), which we
do in five stages.

Stage 1.First we define a bijection between the nodes;adndK,. Images of5y in
K; andK, are made to correspond, as are corresponding images of contractum nodes,
and anyJ-nodes introduced during redirection. Thus

8 : Nk, - Nk,
where

B(igy Kk (X)) =igyk,(X) for xT Gy
B(iH,, k. (N1(PD)) =N, ko (N2(Py)) for py O Np, — N,
B(iny K, (N1(P2))) = ik, ko (2(P2)) for p2 O Np, — N,
B(iH,,K,(01.0) = inyk,(d1.2) for [y 1, G1 oL
{ lgyy " Hy Cley,eng"(F12)) IMy Ny Ol My (F12)0)
[-]° O Red°},
B(ing k,(02.0) = iH, k(02,2 for (G 4, dp o1
{ vy Hy Cley My (F1°): gy, HoClay,Gyy (K190
[-]° O Reg’0},
B(ing k,(0d3.0) = inyk(03.2) for [83 1, gz o1
{ oy N; Ol Gng " ([F1°): Ty Ny Clay,Gyy (F19)H

[-]° U (Red ¢,°0—- (Red 00 Red°0)}

We can see that this is a well defined bijection, provided we note some things. First, we
assume a sufficiently fussy construction for disjoint union during contractum building
has ensured all introduced nodes are distinct. Second, the composition sombols
which occur, hide a slight abuse of notation. The earlier map in the composition refers
to an equivalence class of nodes (i.e. a set of nodes), before they have been formed into
a[0-node; the latter one, to thénode itself (i.e. an individual node). Thirdly, the last
three cases are genuinely disjoint since the cycle of nodes that farmsde during
redirection has the property that each member is both the left node and the right node
of a redirection. As we are dealing with redexes which already ex@, withesses

to the cycles that comprise thenodes created, also exist already. ThuGygnsince

for every left node of a redirection there is a unique right node, cycles entirely contained
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in the first redex are disjoint from those contained in the second redex. These in turn
are disjoint from cycles spanning both redexes, since the latter consist of (an even
number of) chains contained entirely in one or other redex, for which the first node is
not the right node of a redirection, and the last node is not the left node of a redirection,
but such that the chains glue together suitably to form the cycle; and for which the first
rewrite (in whichever order), shorts out the pieces relevant to that rewrite, creating a
genuine cycle for the second rewrite. (We will see all this in a little more detail below.)

This completes stage 1.

Now we extend to a graph structure isomorphism by checking out the arcs. This oc-
cupies three stages since we argue separately about arc tails and arc heads (so each arc
is covered by one of the head cases and one of the tail cases), and then bring the two
together in a third stage.

Stage 2.We first check the arc tails, which are easy since tails of arcs never move during
redirection. So the cases above for nodes eXeémumediately to a bijection on tails
of arcs a®-related nodes have the same arity.

Stage 3.Since arc heads follow the redirection functions under rewriting, we next cal-
culate theryk. functions of all nodes, wheW is as appropriate for the node in ques-
tion. Then we check th& expresses the right relationship between the various
possibilities. There are seven cases, following the breakdown of caexbfore (the

last case splits into two): (a) nodes@f whereW is Gy; () contractum nodes intro-
duced in thé; rewrite wheré/V is eitherH; or N; depending on order of rewriting;;
O-nodes properly belonging to one or other rewrite wiiéieeitheH; or N; depending

on order of rewriting;d;) C-nodes properly belonging to both rewrites whatis N;.

We note that RedNodes RedNodes= U follows easily from the hypotheses; and
from this we conclude

FGuHi(Y) =igyH;(y) for ally O RedNodes
rGN,Hj(y) = iGN,Hj(y) for ally 0 RedNodes

Now for case (), for an instantiated contractum nodsayx =w(c;), for either version
of Wwherew : P; - W, we haveyy;(x) =iwg;(X). This is because the first rewrite, of
D; say, only redirects nodes in RedNqdesd the second rewrite, perforceDpf only
redirects nodes ing, v, (RedNode§ = ig v (RedNodes. Neither of these includes
any instantiated contractum nodes. It is clearahmpresses the right relationship be-

tween therWKi(x) images of such nodes.

A similar argument works for cases)(@nd ¢;), becausél-nodes are not redirected ei-
ther. ThuerKi(x) = iW,Ki(X) for such nodes, and agdlrgives what is required.

For a case (a) nodethere are three subcases: (x 1) (RedNodesl] RedNodes;
(a.2) xJ RedNodes

For subcase (a.1), suppa3gewrites first. We haVQBN,Hi(X):iGN,Hi(X)- Subsequent-
ly ig,,m;(X) is not redirected in thi; rewrite either, andg, ;(X) =ig,k;(X). By sym-
metry we getg, k.(X) =ig, k(X if ESJ- rewrites first. Therefore by the first clause@pr
we find(rg, k, () = e, k() as required.

For the subcases (@.,2here are a large number of susubcases, depending on how
the redirections combine together. Consixiér (RedNodesll RedNodeg. Sox =
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gij(@) (whereilj stands for eitheiror j), for some redirectiora( b) U (Red Ul Red).
Considem. Itis either a contractum node (ca3end the analysis stops, or not. If not,
theny = g(b) is either not in (RedNodeS RedNode3 (case) and the analysis stops,
oritis. Inthe latter case, eithers a node we have analysed already (ea$@nd the
analysis stops having found a cycle of redirections, or not and we continue the analysis
with y (caser). And so on. For any givenl] (RedNodesl] RedNodeg, the whole
process continues for at most four steps, since that is the maximum number of distinct
redirections.

Each possible combination for a nodel (RedNodesl] RedNodeg corresponds to a
connected directed graph of redirections, with a single source vertex, with each vertex
having at most one out-edge, whose directed edges are given bylijhél (Red O

Reg), with verticesb andc identified iff gy; (b) = gy;(c), and with each edge,(b) col-

ouredi orj according to whetheg(b) is inRed or inReq. Fig. 10 shows the cases of
length 4, supressing th@ndj colouring (which serves to multiply the number of pos-
sibilities by a factor of 6), and for thre; cases indicating the previously encountered
vertex with a blob.

——— subcase (a.2R.R.C)
— > > subcase (a.2.R.R.I)
@ subcase (a.R*R.R.R[)
. subcase (a.2*R.R.R[)

—>—>U subcase (a.2.R*R.R[)
Q subcase (a.R.R.R°R[)

Fig. 10 Cases for redirection chains of length 4.

We can see that the complete set of possibilities for a xodfRedNodes] RedN-
odeg) is given by an expression of the forR..R.X, where: the chairr...R. contains
at least none, and at most thréss X isc or | or R, and ifR then one of the preceding
dots is a blob; and where eacbrx is coloured orj with at most two of any one colour
occurring.

Where both andj colours occur for some particular case, both rewrites play a role in
determining the ultimate redirection target fpotherwise only one of them does.

Suppose only one colour occurs, so the chain is of length at most 2. If the case ends in
C, thei__image of the contractum node instance provides the final redirection target for
x regardless of the order of rewriting. If the case endstirei__image of the root

node of the relevant [-¢lass (which is certainly not redirected because only one colour
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occurs), provides the final redirection target regardless of the order of rewriting. If the
case ends iRp, thei_ _image of théJ-node for the relevant [>Llass provides the final
redirection target regardless of the order of rewriting. All these possibilities are correct-
ly related byb.

Suppose both colours occur. Then any maximal single coloured segment of the chain
which is not the last segment of the whole chain, must relate to part otkags|of the
appropriate rewrite (say th® rewrite), and its final vertex (corresponding to the root
node of the []class) is necessarily implicitly matcheddyto a node that is explicitly
matched byD; to the left node of a redirection bf.

Suppose; rewrites first and that the last segment belonds;.toThen it is clear that
the redirections of thB; rewrite serve to short-circuit thecoloured segments, by re-
directing all non-root nodes of each relevant §Hss to its root. As the root also cor-
responds to the initial vertex of the followifrgoloured segment, the whole chain is
transformed into one of the single coloured cases dealt with above, @yrrtherite.

Now suppos®; rewrites first. Allj-coloured segments except the last act as short-cir-
cuits as previously, but now the final segment participates in the rewrite too. If the last
edge of the last segment ends indler | cases, then the redirections of Byaewrite

short circuit this segment, and transform the immediately precedoigured segment

of the original chain from a pure short-circuit, tc ar | -ended case respectively, as
this preceding segment now becomes the last part of the chain Byrréherite. If the

last edge of the last segment endsinthere are two subcases, depending on whether
the cycle consists purely of edges of a single colour (neceg$amitywhether both col-

ours are involved. If the former, then the last segment acts likethaded case for

the single coloured situation, creating@lanode for the relevant [*class, which puts

the preceding-coloured segment into theended case, as tfienode does not get re-
directed. If the latter, then the last segment just acts like another of the previously dis-
cussed short-circuits, as its final vertex necessarily corresponds to a node which is also
the left node of a redirection (of either tgor theD; rewrite). In this case, theg; re-

write short-circuits part of the cycle, creating a smaller cycle foDthewrite, which

now falls into arr-ended case for the single coloured situation.

Tedious detailed calculations for all the possibilities, along the lines of that for subcase
(a.1), confirm that the results for either order of rewriting are correctly relatgd by

This completes stage 3.

Stage 4.We now utilise the results of stage 3 to show that all arks ahdK, are re-
lated as required. There are three cases: (a) aBg (if) instantiations of contractum
arcs ofD;.

Let (py, €) be an arc 06y. ThenB(ig, k,(P)) =ig, k,(P) by stage 2, anb(rg, «,(c)) =
IGyKo(C) by stage 3, so

B((iy,. k1 (M Tk, (0)) = Gy ka(Pio TGy Ko(C))
and we have what we need for case (a) arcs.

For case () arcs there are two subcasesdjbwhere the child node is an instantiation
of a contractum node; i(j where the child node is a matching image of a left pattern
node.
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For case (f), let (o, €) be an arc between two contractum nodeld;ofCase () of
stage 3 assures us that the instantiations of ngitherc get redirected. The homo-
morphic nature of the contractum building phase, the second and third cla@sestbr
symmetry, then assure us that

B((H1,k, (M1 (PDio THLKk1(N1(0)))) = (g ko (M2AP)ks TN ko(N2(C)))
if D; = D4, and

B(((Ing, k1 (M1(PDic Ty, k1 (M2(0)))) = i,k (M2(PDkr T k0(N2(C)))
otherwise.

For case (), let (o, ) be an arc from a contractum nqulto a left pattern node of

D;. We first note that due to the homomorphic nature of the contractum building phase,
the homomorphisrg,' : P; - G’ guarantees th&,;' has a copyg;'((py €)) of (P, ©)

if D; rewrites first, and the homomorphisii : P; - M;" guarantees thd;" has a copy,

m' (P ©)) of (p, ©) if D; rewrites second. Case)(bf stage 3 assures us that the in-
stantiations op do not get redirected. So fornoting thaiGNi,’Hi(gi'(p)) =hi(p) in the

first case, andwi,,Ni(rn'(p)) =n;(p) in the second case, we can use the second and third
clauses foB as above.

Forc, there will be a node U Gy such thatg, g,;/(X) =gy cy'(¥) =g'(c) in the first
case, andg, v(X) =my'(c) in the second case, given that we have clause (2) of the the-
orem. Now ulsing stage 3 farl] Gy, (which allows us to factorise thg, y,(x) and
rGN,Kz(X) maps aG,;" and atV;’), and symmetry, allows us to conclude that

B((IGyy k(91" (ke TGy k1 (91'(9))) = (my k(MR () Ty k(MR'(C)))
if D; =D4, and
B((Imy ko (M (P Ty ko (M) = (G k(92 (M) TGy k(92 ()))
otherwise.
At this point6 is a graph structure isomorphism.
Stage 5.Finally we turn our attention to the markings, starting with the node markings.

There are eleven disjoint cases) {ae rootf;; () nodes in RedNodgsther tharf; (if
any); () nodes in MapNodes- Rednodgs(d;) instantiations of contractum nodes of
D;; (e)O-nodes created by either rewrite; (f) non-idle nodeSpfot previously men-
tioned; (g) idle nodes d&, not previously mentioned.

For case (g f; is quiesced in thB; rewrite. If it occurred in ActNodgshen ifD; re-
writes first, the redirection dfto a non-idle, or activated, @r node ensures that the
nodeig, v (f) is not accessible to thy rewrite later; ifD; rewrites first, it is unaffected
by any ac{ivation, being active already. LSQ;N,Kl(fi)) = u(iGN,KZ(fi)) =€

For case (), the redirected stateholderstarts off idle. IfD; rewrites first, it is redi-
rected to a non-idle, or activated,[0rnode, and hendg, (V) is idle and remains
immune to any activation from;. If D; rewrites first, it may be activated, but then no-
tifies, ready for th®; rewrite, which is as before. Either way we haueg, k,(vi)) =

H(igy ko(VD))-
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For case (9, the relevant nodes are idle constructors and possibly a stateholder which
is not redirected. Such a node may be activated by the first rewrite, and if it is matched
by the second rewrite, notifies immediately beforehand. It may be activated again, but
in any event, it notifies in the last step if it is active by then. Either way, for such a node
Ci» Mgy, k4(Ci)) = Mligy k,(Ci)) =&

For case (g, a contractum nodd, an instantiation of nodg of D, is first created with

the marking specified by the rule, regardless of the order of rewriting. The only way
that this can change, is if it has a notification out-arc to a child node which is one of the
notifying nodes, or it receives an activation via a redirection. These two possibilities
are mutually exclusive. If an activation changes the marljmgust have been created
idle, ends up active regardless of rewriting order, and cannot receive notifications by
balancedness.

If it receives a notificatiord; must have been created suspended. In that case any rel-
evant child node is either among the MapNodes nodes (of either rewrite) and is activat-
ed byD;, or is the unredirected and unactivated stateholder node Df tewrite, (by
M-1.11.4.(7),(9) and the hypotheses for redirection®phnd for which nodes notify).

In the former case, the notification takes place regardless of the order of rewriting, and
regardless of whethd; also activates the node, because any arc can only be notified
once, and the hypotheses guarantee that this happens. The same applies in the latter
case ifD; does not activate the node. In these cases therefore, Wp(h@y@(hi(pi)))

= Mling k(M (Pi))-

However in the latter case,Df does activate the node, it ends up with different mark-

ings depending on rewriting order. Thu®jfrewrites first, it activates the stateholder

node of théd; rewrite which promptly notifies, befodzhas been instantiated, and thus

in: ki (M (P7) has not received a notification. Of rewrites first, the instantiation pfis

now earlier, andpi'Mi(hi(pi)) is around and able to receive the notification following the
activation from thé; rewrite. For this case therefopc{iH.lKi(hi(pi))) has as many few-

er suspension marfdngs comparequtmj’Kj(nj(pi))), as there are notification out-arcs
fromp; tos in D;.

For case (e), we note thaflanode is immune to activations, and cannot receive notifi-
cations because it has no out-arcsu@@) = qu(D) = ¢, for any0-relatedJ-nodes
indicated informally byl

For case (f), the marking of an otherwise not discussed non-idleuraid&, can only

be affected if it is suspended and receives a notification. In this case the child node in
question must belong to (MapNogesMapNodeg. If the child is never redirected, or
never activated (or both), for either order of rewriting it either does or does not natify,
consistently. So ifi has only such children at worst, we gébN,Kl(u)) = p(iGN'KZ(u)).

The same holds if the child is redirected (and/or perhaps activated) by one rewrite and
not activated by the other.

However, if the child is redirected Iiy; and activated bf; (which means the child
must bev;), if D; rewrites first, the child is redirected to a non-idle, or activated; or
node, which means that it is immune to the subsequent activatiorbfrand hence
does not notify. On the other handDjfrewrites firsty, is activated and immediately
notifies, so a natification goes o For this case thereforﬂ(iGN,Ki(u)) has as many
more suspension markings comparedi(ig, x.(U)), as there are notification out-arcs
fromutov; in Gy. (N.B. For simplicity, we hale assumed no out-arcs of a similar kind
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from u tov;; if there are some, the required difference in number of suspensions is the
difference of two such calculations.)

For case (g), an idle nodeof G not otherwise discussed, can only have its marking
changed by virtue of receiving an activation. Siwwvde not redirected, it is clear that
does or does not receive such an activation consistently, regardless of the order of re-

writing.  Sop(ig, k;(W)) = H(ig, k(W)

This completes the discussion of nodes. The argument for arcs follows that for nodes.
All arcs ofK; are eitherig k;, e, k;) copies of arcs dBy, or (i, k;» MH;,k;) OF (N K;»

In; k;) copies of instantiations of contractum arcBpndD;. Thus corresponding arcs

in K; andK, either are or are not notification arcs consistently, except for the cases
where differing numbers of notifications are received by the parent node, in which cases
the arcs to the relevant stateholders are or are not notification arcs. These cases can be
infered easily from the discussion of nodes, so we will not comment further. We are
done. ©

Lemma 7.7 LetGy =[Gy, ..., G\] be a transitive coercing preexecution of a MONSTR
systenR. Supposé&, contains two active function nodes fs. Suppose fof;, all of

the (Map6(f,)) — State@(f,))) arguments of, are idle constructors, that Staté()) =
{k:}, and thek;'th argument of, is an idle stateholder, and suppose thereford tisat
the root of a redeg, : L, — G for some rul®, = (P,, root,, Req, Act). Suppose the
stateholder argument @ is s, and thaD, redirectss,. Suppose for each redirection
(a, b) O Red, eitherb is non-idle ot is in Act,.

Suppose fofg, all of the (Map@(fy)) — State¢(fy))) arguments of; are idle constructors,
that Statef(fg)) = {kg$, and theksth argument of is an idle stateholder, and suppose
thatfg is the root of a redegg : Lg — Gy for a resuspending rul@g = (P, root;, Redq,

0). Suppose for the root redirectiondts, by) [ Red, by is non-idle (as is the case for
a resuspending rule).

Supposa(sy) =V = gy(sy)-

Let
MapNodes = {x O G | x = a(f;)[K] for somek O Map(o(f,))}
MapNodeg = {x O Gy | x = a(fg[K] for somek O Map(a(fy))}
RedNodes= {x O Gy | x = g,(a) for some &, b) O Req}

RedNodeg= {x O Gy | x = g4rooty) for (roots, bg) O Req}

LActNodes =g,(Act O {b| (a, b) O Red,ad Act,bOL,})
Let H, be obtained by rewriting the redex rooted, @ Gy, via the usual phaseg :
Pr - Gy, g" 1P - Gy, 9" : P, - H,, and associateidandr maps. LeHg be
obtained by rewriting the redex rootedgh Gy, via the usual phaseg : Ps - G.g,
0s':Ps - Gy' 05" : Ps - Hg, and associatedandr maps.
Let

NN, = (LActNodes n MapNodeg) — RedNodgs

Then
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(1) Not = rGN,Hr(NNr) = iGN‘Hr(NNr) contains only active constructors.

Let M, be the result of performing notifications from all nodeN ar.
Then

(2) (@) reymfd =igym,(f9 is an active function node M;, such that all the
Map(c(rGN,Mr(fS))) - State(y(rGN'Mr(fs)))) arguments GfGN,Mr(fs) areidle
constructors, and the Stam(GN,Mr(fS))) argument ofGNMr(fs) is a non-
idle orJ- node, hence is the redex of a potential suspension st&p in

(b) ey ndfr) =iy n f) is an active function node bl and
hg = FGuHs O Or L, - Hs

is a redex foD,, such that all the (Map(rGN'HS(fr))) — State§(rg, 1
f;)))) arguments ofGN‘HS(fr) are idle constructors, and the State(
rGN,HS(fr))) argument ofGN,HS(fr) is an idle stateholder, hence is the redex
of a potential rewrite it

Let K, be obtained fronM, by performing a suspension step rOOteqﬁF,"Mr(fs) in M,.
Let Msbe obtained frorhig by rewriting the redex rootedd, 1 (f;) in Hg, via the usu-

al phase$ : P, - Hg, hs' : P, - Hg', hd"' : P, — Mg, and associatddandr maps.
Then

(3)  Not=rg,m{NNp) =ig, m(NN;) contains only active constructors.

Let Kq be the result of performing notifications from all nodeN ..
Then

(4) K, andy(K,) O Kg are marking preserving isomorphic via a ndapK; - Kg;
and the only things iKg — Y(K,) are the extra idle garbage nd@ﬁ,Ks(fs) and
extra normal garbage ard@&Ks(fs)h rGN,Ks(O((fs)“])) for | O A(o(fg), which
have no counterparts ;.

Proof. Mercifully, we can reuse much of the proofs of previous lemmas with minor al-
terations, so we will be fairly brief. Consider performing the resuspension rewrite to
produceHs. Aside from technical details of disjoint unions etc., the only difference be-
tweenGy andHyg is that the nod& and out-arcs g, a(fy[l]) for I O A(a(fy)), which

are active and normal respectively and all liv&sja become idle and normal respec-
tively and all garbage ikl and inHg, there is a new nodg;, 1 (f9) once suspended
with the same symbol dg and new arcsréN,Hs(fs)h rGN‘HS(a(h*S)[Q]])) for | O A(o(fy),

all normal arcs except ford, 1 (fokg ey, H(V)) Which is & notification arc. Under the
circumstances, it is clear that the . He €xtends to an injective homomorphism,
which is marking preserving, except fyrand its stateholder out-arc. (2).(b) is now
clear.
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Let us callrg n , 8 for short. As we did in lemmas 7.4 and 7.5, we can perform the
rewrites according tD, of the redexes rootedfat] Gy andrg, n(f;) O Hgin parallel,
constructing injective “almost” marking preserving homomorphisms phase by phase.
SoMg andH;, are related by an injective mappié¢ : H, - Mg, which fails to be a
marking preserving isomorphism by a node and arc marking avid &m extra node

and its out-arcs which are garbage.

The rest is relatively straightforward. As in lemma 7.5,Dheewrite (whatever the

order of rewriting), may activate some MapNadasdes, but these can only be previ-

ously idle constructors as the stateholders are assumed shared, so the awkward cases
treated in lemma 7.5 do not arise, and (1), (2).(a) and (3) are now clear.

When the notificationsl, - M, andMg - Kg are performed, a similar relationship, let
us call ite"" : M, - K, holds as foH, andMg. Finally when the suspension step
M, - K, is performed, there results the mapK, - K¢, which is a marking preserving
injective homomorphism, such that the only thingk{rialling outside the image df
are the previously noted garbage an{ng(fs) and its out-arcs. We are dore.

8 The Church-Rosser Theorem

The general idea for proving the theorem is to fill in the Church-Rosser diamond be-
tween two preexecutions that diverge fr@g by continually adding instances of sub-
commuting squares, until one reaches the diagonally opposite point. See Fig. 11. Two
things prevent this from being entirely straightforward. The first is that MONSTR is
not a free rewriting system, but one whose strategy is programmed by the markings, so
we have to be sure that the squares we fill in are permitted by the strategy. The second
is that some of the subcommuting squares do not subcommute quite “on the nose”,
which for our purposes means up to marking preserving isomorphism. This causes the
construction to potentially flake into separate sheets at various'peirgsme of these
sheets may recombine later in the construction, as later activations and notifications
cause differing markings to resynchronise; see Fig. 11 again. Given the flaking, we
need to do two things. Firstly we need to be sure that despite it we can still get to the
diagonally opposite corner, up to some markings and some garbage. What we call the
handrail construction is crucial here. Secondly, we need to relate the graphs occurring
at the same coordinates of the various flakes, since there is no guarantee that all the
flakes will have recombined by the time we finish filling in all the sheets.

Lemma 8.1 LetG, =[Gy ... Gy] be a transitive coercing preexecution of a MONSTR
systemR. Suppose the hypotheses of one of lemmas 7.1 — 7.7 apply. Then with the
notation used in that lemma (or the obviously analogous notation in the subscripts), we
have:K | =[Gy ... Gy ... Kq] is a transitive coercing preexecutionRiff K, =[Gy

... Gy ... Ky] is a transitive coercing preexecutionRf

Proof. Beyond the facts established already in the lemmas mentioned, all we need to
check, is that for the execution steps discussed in each particular case, conformance to
the execution strategy of suspending MONSTR semantics in definition 3.1 holds for

1. Readers familiar with complex analysis may amuse themselves by contemplating an
analogy with Riemann surfaces. Itis as though the graph structure corresponded to the
magnitude of an analytic function and the markings and garbage corresponded to the
phase; and there was a singularity in the “bad cell” of Fig. 11.
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Go Cg
f—
A
Ga

Fig. 11 Filling in the Church-Rosser diamond.

one order of execution steps iff it holds for the other; but it is rather obvious that this is

so. (Note in particular that the lemmas involving rewrite steps are insensitive to wheth-

er or not a default rule is being used when a normal rule is demanded by definition 3.1.)
©

Lemma 8.2 LetG, =[Gy ... Gy] be a transitive coercing preexecution of a MONSTR
systemR. Suppose the hypotheses of one of lemmas 7.1 — 7.7 apply. With the notation
used in that lemma (or the obviously analogous notation in the subscrigfs) 3G,

.Gy ...Hy ... KjJandK , =[Gy ... Gy ... Hs ... K] be the transitive coercing pre-
executions oR constructed in the relevant lemma, andjleK; — K, be the marking
preserving isomorphism (oot quitemarking preserving isomorphism), constructed in
that lemma. Then

(1)  An active nodé of Hj hasryy; i, (t) active inK; iff for no graphM; in H; ... Kj is
Iy, mi(t) the chosen root. For such, &, v, (t) = iy, wv;(t) for everyM;.
(2) For every active nodeof H; such tharHl‘Kl(t) is active inKq, ¢orH1’K1(t) is

active inKo.

(3) For every active nodeof H, such thatHz’Kz(t) is active inK,, er’Kz(t) is in the

range ofy, andyory, k(1) is active ink;.
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(4) A nodexOKj is non-idle iffp(x) O K, is non-idle.

Proof. This requires an examination of the individual cases in lemmas 7.1 — 7.7. For
the notification/notification, suspension/suspension and notification/suspension cases,
things are helped by the facts that:Hga).. K; consists of at most one step; (b) the graph
structure is not changed by any of the steps involved, anfl;j$@ marking preserving
isomorphism.

Thus for the notification/notification case, the only active markings remov&d.irk;

are the ones on the notification roots, hence (1), (2) and (3). Similarly for the suspen-
sion/suspension case. Also for the notification/suspension case, excejt .thag;

might be trivial.

For the rewrite/notification case if the notification is last, its root is the only node whose
active marking is removed it ... Kg; and if the rewrite is last, likewise féf; ... K;;

with the observation that if the rewrite reactivated the notification root, a final notifica-
tion is there to fix things.

For the rewrite/suspension cagemay no longer be marking preserving, but in any
case the discrepancy amounts to a differing number of suspensions on the suspension
root, which does not affect the conclusions. Otherwise the reasoning is much as in the
previous case.

For the rewrite/rewrite case, there are two subcases: (A) dealt with in lemma 7.6, cov-
ering two rewrites which either do not belong to the same critical cone or if they do,
their use of the common stateholder is read-only. In thisgasay no longer be mark-

ing preserving, and we need to check more carefully that the required conclusions hold.
The failure ofy to be marking preserving concerns two kinds of nodes suspended on
the stateholder: either contractum nodes introduced during one or other rewrite, or ex-
isting nodes of5,. Both kinds of nodes are suspendetijiion the shared stateholder
(apart from the contractum nodes which are due to be introducedIprtherite which

do not exist yet if;), so cannot cause the conclusions to fail. For other nodes we have
the conclusions because neither a rewrite nor a notification can remove an active mark-
ing, except from its own root.

The final subcase is (B), dealt with in lemma 7.7, covering two rewrites which belong

to the same critical cone and one of which is a resuspension. The reasoning here is sim-
ilar to but simpler than in the previous subcase, as none of the awkward circumstances
of that subcase arise because of the simple nature of resuspending rules. It is also the
only case in which the direction in whighgoes matters, ag : K, — Kgis not onto.

This makes it necessary to have differing clauses (2) and (3) in the lemma.

Clause (4) follows from a trivial inspection of the conclusions of lemmas 7.1 9©7.7

Lemma 8.2 does little above stating the obvious, namely that performing one execution
step does not destroy other potential sites for performing execution steps. Still there is
more to it than meets the eye. For instance, the “iff” of the first clause does not hold for
other semantic models that have been considered in this series of papers. More impor-
tant, is the granularity of the implications in the clauses (2) and (3), which directly relate
properties of; to ones oK, without pausing to involve any of the intermediate graphs
along the way. Contemplating going only in small steps, i.e. proving a series of finer
grained implications that relate the active nodes of each graph .inK; to the active

nodes of its successor is perfectly possible, but would cause clauses (2) and (3) to fail.
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For example, the differences in markings that we were able to ignore in discussing re-
write/rewrite subcase (A), would become visible to the hypotheses of these mini-impli-
cations, and we would not be able to cross the gap described byfuhetions. Not

being able to do so would cause our proof strategy for the Church-Rosser theorem to
fail in cases wherg refers to an exceptional case, as we would not be sure that any ex-
ecution step that we needed to perform on one sheet, could be mimicked on another. On
the other hand, we onheedto do this for execution steps that occurred irottginal
preexecutions (and some necessary notifications), not other ones that merely happen to
be permitted as a result of the subcommutativity cells that we construct in the brocess
This is exploited by the handrail construction in the main theorem, which is vital for
propagating the proof in the presence of the flaking, and shows why the correct granu-
larity of the implications is so important here.

Now for the main result.
Theorem 8.3 LetR be a MONSTR system. Suppose

(@  Forevery two distinct normal ruls# D; in R, whereD; = (L; O P;, root, Red,
Act) andD; = (L; O Pj, root, Req, Act), we have thak; andL; are not graph
unifyable, (i.e. there is nG and nog; : L - G, g; :Lj - G, with g(root;) = g;(-
root;)). Similarly for every two distinct default rules.

(o)  For every rule oR, every redirection is to an activated node or non-idle node.
(c)  Every critical cone that arises in any executioR df safe.

LetG, =[G, ..., Ga] andGg = [Gy, ..., Gg] be transitive coercing preexecutiongof
Then there are extensiofg = [G, ..., G,, ..., G andG, =[Gy, ..., G, ..., Gy] of
G, andGg such that

(1) There are subgrapla* of Gy, andG,* of G,, and a graph structure isomor-
phismO,,* : Gy* - G*

(2) All nodes and arcs i, — Gy*, and inG, —G,* are garbaged roots (and their
out-arcs) of resuspending rewrites. In partic@dqr,contains LSGG) andG, *
contains LSGGy ).

Proof. Let us set the scene informally for the moment. We assum@thafGy, ...,

G,] consists ofa steps, ands; = [Gy, ..., Gg] of B steps. So the Church-Rosser dia-
mond divides up into a grid @fs cells. We will coordinatise the diamond, refering to
a cell by its coordinates,(b), where I<a<A, and 1< b < B, so roughly speaking, cell
(a, b) produces graph (or graphs, because of the flapgy), fromG,_; b1y, where
the graphs o6, andG; are identified with grapts, ) such that one or other coordi-
nate is zero.

The filling in of the Church-Rosser diamond will attempt to work by well founded re-
cursion on a partial order < over the coordinates, wleels € (@, b") iff a<a' andb

<b', ora<a andb <b'. We will call this setup the base coordinate system and base
partial order. We can fill a cell, i.e. construct the graph(s) at its highest coordinates by

1. To put it more brusquely, we do not négdandK, to be bisimilar.
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using a subcommutativity lemma, once all the graphs at lower coordinates w.r.t. < have
been constructed. This process requires the consideration of two technical points.

The first technical point is that not all the subcommutativity lemmas close their cells
(i.e. construcH; ... K; say) using a single execution step. In one case there is no step
at all which is no problem at all, since we just introduce a suitable marking preserving
isomorphism to act as a step, but in others several steps are needed. The latter possibil-
ity requires the consideration of two points in and of itself.

On the one hand we need to amplify the indexing system in the Church-Rosser diamond
to cope with these extra graphs — this we can do for example by introducing a decimal
point and naming the first graph on the way fiGgg p to sayG, p+1) asGa b.1) the
secondG,, p.2) and so on; introducing a second decimal point if perhaps the step
G(a+1,b.1) t0 Ga+1, b.2) SAY, Subsequently needs to be subdivided itself Gg p1.1)

etc. The partial order < extends pointwise and lexicographically to these pairs of index
sequences in the obvious way: the least significant index variable changes fastest in
both dimensions. We will call this generalised setup, the refined coordinate system and
refined partial order.

On the other hand, and more seriously, this process potentially causes the construction
to diverge as the hierarchy of newly introduced steps might potentially have an un-
bounded number of levels, and might require at least some sort of limit treatment. How-
ever we notice that all the additional steps introduced, in any of the subcommutativity
lemmas, are always notifications. It takes only a moment to check that notifications
subcommute on the nose with all other execution steps, so the phenomenon we feared
does not happen. In fact bearing in mind that the worst behaved of the subcommutativ-
ity lemmas is 7.6, where up tmotifications are introduced in either closing sequence

of the cell (wherev is the maximum cardinality of the MapNodes set of any function
used during eitheG, or Gg), we can calculate that when an execution sequence of
lengtha, is projected over another of lengthwe get a closing sequendg{ =G,

., Gx=G4, g] Of length at mosti2.A.B.

The second technical point concerns the flaking of the construction into sheets, which
we have already mentioned. To keep things reasonable, for cases wheregheomap
structed in any of the subcommutativity lemmas is actually a genuine marking preserv-
ing isomorphism, let us agree that the cell in question is closed by a single graph, rather
than an isomorphic pair. We call such cells good cells; others will be bad cells. Max-
imising the number of good cells in the construction requires that we view execution
steps as being defined up to marking preserving isomorphism in general, and our nota-
tion throughout the paper has been fussy enough to transplant without change to this ap-
proach. More specifically, given the specific constructions for the various execution
steps defined in Section 3, which prescribe how to obtain from the startingGytaph

result grapiH and the injection and redirection functiogs, andrg y, if Wis a graph

which is marking preserving isomorphicHp via an isomorphisri : H - W, thenW

is an equally acceptable result of the execution step, provided we equip it with the in-
jection and redirection functiong \y = 60ig yy andrg = 0org 1. This allows us to

close all the good subcommutativity cells on the nose, and bad cells are consequently
ones which cannot be closed on the nose despite marking preserving isomorphisms.
Since all cases involving notifications are unproblematic, we see that all the extra steps
that get introduced in closing the more complicated cells (whether good or bad), do not
introduce additional flaking, and thus we easily estimate that the maximum number of
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distinct non marking preserving isomorphic graphs we can generate at coordinate posi-
tion (A, B) is overestimated by flaking once per base coordinate cell on each sheet gen-
erated. The total thus generated being the binomial coefitiEnt (

In principle the flaking can interfere rather badly with the coordinate construction, as
graphs on different sheets at a given coordinate position might conceivably spawn in-
compatible subsequent behaviour, leading to ambiguity in the construction of later co-
ordinates. But we will in fact see that such unwelcome behaviour will not arise.

With the above preamble, we turn to the more formal construction. We start with the
special case in which no flaking occurs; so all cells are good. This proceeds by a simul-
taneous recursive construction of, and induction on, the refined coordinate system and
partial order.

If both G, andGg are trivial, consisting dBg only, then the theorem holds trivially, tak-
ing G, =G, =Gy =G, andO,,* to be the identity. If only one &, or G is trivial,

let it beG,; then takeG, = G, = G,, with ©,,* an identity as before. There remains
the non-trivial case. This involves considering the situation illustrated in Fig. 12.

G(a, b) G p)

G(a, b)

Fig. 12 Lines at the start of an induction step.

The induction hypothesis consists of the following clauses.

()  The construction thus far, has constructed the refined coordinate system to in-
clude all coordinates lower thaa, p), (a, b), (a, B) in the refined partial order.

(i)  In the refined coordinate system thus faiis the successor afin the vertical
direction, and3 is the successor bfin the horizontal direction

(i)  The construction thus far is complete up to at least coordinate posi&ions (
(a, b), (@ B), in that it has built the graphs required at these coordinate positions.

1. That is to say, any cell to the left of [Fig. 12] has its top and bottom at coorglinates
andg, wherep < a, anda < g in the refined partial order. Similarly for any cell above
Fig. 12.
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(iv) The dashed lines connecting a gr&gh p) to a graptG ) or a graptG, p)
are of two kinds. Each is either: (a), a marking preserving isomorphism; or (b),
an execution step.

The rest is relatively straightforward. We just have to complete the square in Fig. 13,
and re-establish the induction hypothesis for the new gra@p(sj)) (and perhaps oth-
ers), and arrow§q ) .. Gq, gy anNdGg, ) --- G(q, p) illustrated.

Gea,b) G p)

N E——

Fig. 13 The objective of an induction step.

The two different kinds of line generate three cases to consider, by symmetry.

If both lines are marking preserving isomorphisms, then w&lgfg) be yet another
marking preserving isomorphic copy®f, p) andGq, p) andG,, p), and we let the re-

quired arrows be the obvious marking preserving isomorphisms. If only one line is a
marking preserving isomorphism, we complete the square with a marking preserving
isomorphism and a marking preserving isomorphic copy of whatever execution step the
other line was, so that the isomorphisms and execution steps respectively face each oth-
er across the square. In these cases, the coordinate system does not require further re-
finement, so all clauses of the induction hypothesis are easily seen to be preserved.

Now suppose both lines are execution steps. Then either the same active node is the
chosen root of both steps@, p,) or not. If yes, then both lines are the same step, since

if either is a notification or suspension, the other can only be the same; and if either is a
rewrite, then hypothesis (a) of the theorem ensures that in MONSTR'’s prioritised rule
selection strategy, only one rule will match at the chosen root so it must be the same one
in both cases. At any rate in any of these cases, the cell can be closed with a marking
preserving isomorphic copgq, g), of the already marking preserving isomorphic

G(q, b) andG, p); the requwed arrows being the obvious isomorphisms. As previously,

ali clauses of the induction hypothesis are easily seen to be preserved.

Suppose then that the roots are different. In such a case we call on the subcommutativ-
ity lemmas to help. Where there are two rewrites involved and they are not in the same
critical cone, then lemma 7.6 applies; if both are in the same critical cone, the safety
hypothesis (c) of the theorem, assures us that either both uses of the stateholder are read-
only so that lemma 7.6 applies again, or that one rewrite is a resuspension rewrite, and
then lemma 7.7 applies. Apart from that, the subcommutativity lemmas apply unreserv-
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edly. In each possible case, the relevant lemma allows us to complete the square on the
nose, by assumption.

In the case of natification/suspension, if the suspension comes second, it may become
trivial. In this case, the corresponding arrow of the construction is a marking preserving
isomorphism, dealt with rather as above. In other cases, the arrows may contain several
execution steps. In this case we refine the coordinate system further, for example on the
bottom arrow, making the successorssgf p) in turn,G(q, b 1), G(q, b.2) G(q, b.3) tC.,

until the last graph is calleg, g as in previous cases. This establishes that the induc-
tion hypothesis is preserved. This completes the treatment of the special case.

For the general case, we start by using the special case as far as we can. We fill in some-
thing like the shaded region of Fig. 14. The two not quite enclosed squares are bad cells
that do not close on the nose. Extending the construction into the area south east of such
cells, requires the handrail construction, a kind of strip lemma, next.

Fig. 14 Bad cells block the Church-Rosser construction.

Consider the situation in Fig. 1% XGPRis an instance of a bad cell, WhRQRSis

a strip filled entirely by good cells. We claim that there is an extensiGRGE{XY to
GoGnXYZ such that the natural analogue of lemma 8.2 holds. ThiigJeR — Y be

they map provided by the appropriate subcommutativity lemma. (A completely anal-
ogous result holds ifyg: Y — Ris given instead). We will prove that there is a map
Wsz:S - Z (respzs:Z — S such that the following hold.
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R N; S

X

Y 4

Fig. 15 The handrail construction.

(1) RSandYZare of the same length, and contain similar execution steps in the same
order; in particular, rewrites occur at the same places in both.

(2) Wsz:S- Z(respWyzs:Z — 9 is a graph structure isomomorphism except when
YXGPRis an instance of lemma 7.7, when there is an extra garbage node and
its out-arcs not related hlys, (resp.Wz9 to the other graph.

(3) Anactive nod¢of Q haergt) active inSiff for no graprBj inQ... Sier,Bj(t)
the chosen root. For suchn,aQ’Bj(t) = iQ,BJ.(t) for everyB;.

(4)  For every active nodeof Q such thatg Ht) is active inS, YsAt) is active inz,
(resp.ro t) is in the range ap andy—,4rq 1)) is active inz) .

(5) A nodet O Sis non-idle iffygAt) (resp.qJ‘lzgt)) is non-idle.

Now if YXGPRis an instance of lemma 7.7, the only difference betireandy is
some garbage. By the soundness results for garbage in Section 5, we caiZ thake
same afkS up to this garbage, and the claim holds.

Otherwise the claim is substantiated by induction on the lend@®ofif this is trivial

then the claim holds trivially by lemma 8.2. Otherwise we go by cases on the next step
in PQ, sayM; — M;;;. LetN; close the span ¢fM; andPRas in Fig. 15, and 1é¥;,.1
closePM;,; andPR N,; ... Nj;; may consist of more than a single step. \Webe the

graph ofYZcorresponding tdl; by induction hypothesis. Our job is to const\t..

W, 1 corresponding tdY; ... Nji1.

If M; - M4 is an isomorphism step, it subcommutes with everything on the way from
M; ... N;, so stef\; — N;4; in RSis an isomorphism, and we make the corresponding
stepW — Wi, in YZan isomorphism too. If the stéfy - M;.q is a notification, this
commutes with everything, and by the hypotheses, we can\WakéAi, 1 in YZa no-
tification too. This works, provided nothinghj ... N; is thesamenotification, other-

wise we have isomorphisms again from a certain point on. In such a case, the



1332 Banach R.: MONSTR YV - Transitive Coercing Semantics ...

corresponding node W is already idle by the induction hypothesis, and we make
W - W, an isomorphism too. It is easy to see that the claim holds.

If the stepM; — M, is a suspension, then either some steyy; in. N; is a notification

that trivialises the suspension, in which case the induction hypothesis assures us that the
corresponding node W is already idle and we maké — W, an isomorphism, or

not. If not, then apart from notifications and isomorphisms, of which there may be sev-
eral,M; ... N; contains exactly one rewrite or suspension (this is because we are discuss-
ing a strip with exactly one bad cell on the left). If it is a suspension, the two of them
either subcommute, and the corresponding ¥fep W, becomes a suspension, or
they are the same, in which case we get an isomorphism. If it is a rewrite, then the re-
write and suspension subcommute (on the nose, because we B§3R®is covered

by good cells), with perhaps the addition of some notifications as per lemma 7.5. The
extra notifications mak®; ... N, into a multistep sequence but are easy to deal with.
Hence we construdt ... W4 as a sequence consisting of a suspension, followed by
the requisite notifications. Establishing the claim is easy.

Finally the stepM; — M;,1 might be a rewrite. This will subcommute with any isomor-
phisms or natifications iN; ... N; giving a corresponding step fof — W _ 4, leaving
suspensions and rewrites to consider. If we have a suspension, the situation is as in the
previous paragraph with the roles reversed. If we have a rewrite, then either the two of
them are the same, and we have the inevitable isomorphisms, or not. If not then by as-
sumptionPQRSis covered with good cells, so the rewrites subcommute with the addi-
tion of the appropriate notifications, avd... W, becomes a sequence consisting of
some notifications, a rewrite, and some more notifications. The natifications are again
easy to deal with and it is easy to see that all the clauses of the induction hypothesis are
properly established. This completes the inductive step for the construcH@n of

So we have the handrafZ In itself this is not enough to completely fill in the whole
Church-Rosser diamond, as a bad cell to the rigixQxhight block further progress.
For this let us examine Fig. 16.

Fig. 16 Two bad cells in the same strip.

There are various possibilities depending on the relationship be@&serdUV, where
we intend thallV is a subsequence @S First of allUV must be “the same” execution
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step as wa&§X. Therefore ifQU is non-trivial, it must consist of notifications and iso-
morphisms, and the same hold¥'8is non-trivial. So there are four cases. If bQth
andVSare trivial, it is easy to extend the argument used already to extend the handrail
YZtoY', and then to notice that the same hypothesis applRsatadY’ as applies to

P" andY’, and thence to continue the extensiod'tpindependently of the construction

of YZ'. If QU is trivial butVSis not, we must first construct the hand¥ad', then fill

in the projection ofVSalong it (this will contain only good cells), and finally build
ZY'Z'" which can be done as aboveV8is trivial butQU is not, we must consider the
extension oPQtoP''Q" in order that the induction hypothesis for the extensiotyaf

to XYZY'Z" does not reveal differing markings on nodes that correspoddaimd Z.
SinceQU consists of isomorphisms and notifications only, only good cells occur be-
tweenQP'Q" andUP'Q'’ so this is easy; then the handrail construction proceeds as for-
merly. If bothQU andVSare non-trivial, we must do both things.

Once we can build handrails, we can extend the filling in of the Church-Rosser diamond
to the various sheets generated. Roughly speaking, proceeding inwards into the interior
from the given preexecutiorfs, andGg, ensures that we can always make progress
even ifPQ, P'Q orP'Q" are themselves partly handrails. (We leave to the interested
reader the construction of the partial order, over whose induction the filling in of the
Church-Rosser diamond can be more formally described.) Because the relationships
between corresponding graphs at the same coordinates on the pairs of sheets we gener-
ate are, apart from garbage, graph structure isomorphisms which preserve the idle/non-
idle property of nodes, it is clear from definition 3.1 and the hypotheses, that for an ar-
bitrary coordinate position and arbitrary choice of direction of progress east or south,
we always perform “the same step” from corresponding roots on different sheets, i.e.
either always an isomorphism, or notification, or suspension on the same arguments, or
always a rewrite using the same rule. This also ensures that the construction of the re-
fined coordinate system and partial order is unambiguous. Because the original preex-
ecutions are finite, and we flake once per sheet per base cell at most, we complete the
whole process in a finite number of iterations. When the construction reaches coordi-
nates 4, B), erasing the isomorphism steps from the extensidag émdG; generated,

gives us th&, andG, we need.

It remains to constru&,*, G,* and®,.*, and show they have the right properties. We
construct similar objects for all pairs of graphs on different sheets, for all coordinate po-
sitions. Then the ones required will just be a particular case.

If only good cells occur, then everything commutes on the nose, there is only one sheet,
and we can tak&,* = Gy, G,* = G, and®,,* as the obvious identity; the same thing
holds for all coordinates.

Otherwise the structure of the sheets and their graphs can be discerned from the collec-
tion of bad cells. Each bad cell is identified by the coordinates of its southeast corner,
(a, b) say. For each bad cell, one sheet is obtained by going east then south from its
northwest corner, call this the + sheet; and the other sheet is given by going south then
east, call it the — sheet. Any graph at coordinady on any sheet, and the sheet itself,

can be named by a function mapping all bad cells into the set {+, -}, and ignoring the
values at all bad cells at coordinate’s If') > (a, b). The collection of such functions
restricted tod, b') < (a, b) names the set of sheets which are distinct at coordirzates (

b), so all graphs created can be nat@ggbf where &, b) gives the coordinates, amd

is the function value naming the sheet.
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Now we proceed by recursion on the flakings pertaining to bad cells. These are ordered
by < which is a finite partial order. Consider a <-maximal bad ceill,§3)((on some

sheet with sheet nanT® which is about to flake for the last time giving sh@atand

T2, so T1 andT2 are the two possible extensions of the m@j The construction of

the handrails from the two different grapg g™ andGq g)"?involves the construc-

tion of homomorphismg as described above. Since similar steps are performed on the
handrail and the corresponding normal execution, all the graphs constructed with coor-
dinates 4, b) > (a, B), are isomorphic up to markings or garbage. If they are isomorphic

up to markings, SeG(G, B){TO}’T]'* = ( B)Tl (a, B){TO}’TZ* = ( B)TZ, and

O, gy ™12 1 Gq, T = G, pTT2" = as constructed by the relevant lem-

ma, and do similarly for coordinates b) > (o, B). If they are isomorphic up to extra
garbage, colour the relevant garbage node and arcs black (for example) in whichever of
G(a, )" OrG(q, gy'* has it, and propagate the colouring via the, _ ) maps to§, b)

> (@, B). SetGy, ™" = the uncoloured subgraph@®fy, g™, G, )™ ™" = the
uncoloured subgraph @y ™2 andOy g™ ™12 : Gy T L Gy B){TO}’TZI
=y as constructed by lemma 7.7 and restricted to the uncoloured fBsgf ™

andGq, B){TO}'TZ*. Do similarly for coordinatesa(b) > (a, B). In this notatio{T0}
indicates how far the construction has progressed (i.e. the common part of the names of
sheets processed), antdandT2 refer to the sheets themselves. So much for the base
case.

For the recursive step, we have done all of the above for all bad cells at positions (

B > (a, B) and located on the sheets that flake from the current bad cell on the current
sheet whose sheet namé&issay. Lefrx referto a typlcal bad ceduccessoof TO, so

we have generated partial isomorphi gy {TX}T' - Gy Kis

T say, between graphs on sheets belonglng to all baé cel descend‘azntWaf have

done this for all bad cell successsof T0, so for a typicaBq:, gy!™ "7, the{Tx}

is the common part of the names of a set of sheets already processed, such that all the
sheet names in the set agree wWithon bad cells (a, ) and with each other on one
further bad cell successox of TO.

If (a, B) is not alemma 7.7 bad cell, ttyegenerated for it is bijective, so we extend the
construction in the expected way, noting that all cells involved at any coordinate posi-
tion are graph structure isomorphic, and building the relevant |somorp@k§r9)éT°}

T where the notatiofT0} refers the common part of the previgus sets. If @, B)

is a lemma 7.7 bad cell, the relevant garbage node and arc are coloured black, the col-
ouring is propagated wherever it will reach via (r__) maps, and the subgraphs built
previously have to be further restricted to keep them uncoloured, for half of the sheets
in question.

Eventually we complete the construction, getting subgraphs and isomorphisms

O ™™ 1 Gy - Ga ™", between subgraphs on arbitrary sheets at any
(&, b)

given coordmatesa( b) where{} names the set of all sheets, being the empty function.

Now one of thes, {}T , the one pertaining to the graﬁp is theG,* we seek, and
another isG,*. 'éhe graph structure isomorphig@y,* : - Gy* is the relevant
O, B){}'T"TJ. It clearly has the required properties. We are dane.
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Corollary 8.4 LetR be a MONSTR system. Assume the notation and hypotheses of
theorem 8.3. Then there is a preexecutioR,d, = [Gy, ..., G;] such that

(1) There are subgrapla** of G.* of Gy, andG,** of G,* of G,, and a graph
structure isomorphis®,, ** : G,** - G **.

(2) Allnodes and arcs B, —G,**, and inG, —G,** are garbaged roots (and their
out-arcs) of resuspending rewrites. In particulgg* contains LSGGy) and
G,** contains LSG(y).

(3) There are graph structure isomorphi@gs: G, —» G**, and Oy, : G, - G,**,
such that@,, = Oy, ** 00,y.

(4)  0,(LSG(G,)) 0 LSG@Gy) and®,,(LSG(G,)) [ LSGGy).

Proof. We describe how to constris;. View the edges of the various cells on the
various sheets constructed in the preceding theorem as the edges of a directed graph.
We start fromGg and head for the diagonally opposite corner by an arbitrary path tra-
versing edges downwards and to the right only (i.e. in the direction of the execution
steps), and avoiding resuspending rewrite and suspension step edges; thereby generat-
ing a preexecution (with isomorphism stefs). It may be impossible to proceed be-

yond some particular point without traversing a resuspending rewrite or suspension step
edge if both outgoing edges of some graph g8) say, are resuspending rewrite or sus-
pension step edges. But rather than doing such a step, we jump by a marking preserving
isomorphism to the diagonally opposite corner of the cell in questipf’) say, with-

out performing any execution step at all. The gragh,othat we have au(, B'), dif-

fers from the graph in the construction built in theorem 8.3 at the same coordinates, by
the absence of some garbage, and by the fact that the root(s) of the resuspending re-
write(s) or suspension step(s) is (are) still active. This cannot prevent subsequently
tracking a path towards (B) as the>,” graph is at least as ready to perform any exe-
cution step as any compatriot in the Church-Rosser diamond at the same coordinates is,
and this property persists. We generate none of the garbage nodes and arcs that lemma
7.7 takes pains to describe or that a suspension step might create, and futhermore, if
there is a critical cone within the Church-Rosser construction such that some resuspend-
ing rewrite is not forced to subcommute with a non-resuspending rewrite, the relevant
garbaged resuspension root and out-arcs survivéifitand G, * because there is no
instance of lemma 7.7 in the construction to throw them out. However the construction
of G,” omits the creation of such garbage, hence the subgrapfr06G,**, that we

need to relat&, to may be a proper subgraprGyf. We now gefs, fromG, by eras-

ing all the isomorphism steps, and the conclusions follow easily, clause (4) in particular
following from the soundness of garbage and induction on the length of the preexecu-
tion. ©

9 Conclusions

In the preceding sections, we have described the structure of MONSTR, studied at
length in previous papers, and have given it the most elegant of the semantic models
considered in this series. Most elegant that is with respect to its having desirable prop-
erties, rather than having the simplest description: in fact its description is the most in-
volved of all the models considered, and also the furthest from the term rewriting
origins that inspired the original term graph rewriting model ([Barendregt et al.
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(1987)]). Nevertheless the more complex collection of primitives offered in the model
seems to be more than justified by the strong properties it possessesM-Frome

infer a good serialisability property as regards finegrained implementation, and in this
paper we showed that the Church-Rosser property holds, despite the lack of exact sub-
commutativity which looked more than once as though it might bring down the whole
enterprise.
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