
An Asynchronous Calculus Based on the Absence of
Actions 1

Padmanabhan Krishnan
Department of Computer Science

University of Canterbury, PBag 4800
Christchurch, New Zealand

E-mail: paddy@cosc.canterbury.ac.nz

Abstract: In this article we present a process algebra in which the behaviour in the
absence of certain actions can be speci�ed. Processes of the form [: S, P] represent a
behaviour which is speci�ed by P but only in an environment which cannot perform
any action in S. If the environment can perform an action in S, the process is sus-
pended. This is useful in specifying priority, time outs, interrupts etc. We present a
few examples which illustrate the use of the extended calculus. A bisimulation relation
induced by a labelled transition system is then considered. We present a few properties
which form the basis for a sound and complete axiomatisation of a bisimulation equiv-
alence relation. This requires an extension of the syntax. This is because the absence
of information from the environment used in the operational semantics is captured
syntactically. A comparison with other approaches is presented.

Key Words: process algebra, absence of information, bisimulation

1 Introduction

Most approaches to concurrency and synchronisation are based on the presence
of information. The rules that govern behaviour usually state that if a certain
type of behaviour is possible, then another type of behaviour is also possible. But
such a framework is not su�cient especially when one has to include concepts
such as interrupts and priorities. To specify the semantics (and hence to imple-
ment) features such as interrupts and priorities, it is essential to have both the
presence of and the absence of information. That is, we need to specify that if a
certain behaviour is impossible, then some other behaviour is possible. The use
of negative information has many uses including default reasoning in arti�cial
intelligence [Reiter, 1980] and the select-else construct in Ada [Ada, 1983]. In
the default reasoning situation, the classical example is the assumption that all
birds can y which is discarded when penguin is a bird and penguins cannot y
is asserted. Thus the validity of the assertion that all birds can y requires the
absence of information on penguins. In Ada, the `else' alternative in a `select'
statement is executed only if the other `entries' cannot be accepted. To execute
the `else' alternative, knowing that there are no pending entry calls is essential.

While there have been various approaches to include priorities and interrupts
in the context of concurrency, the work reported in [Saraswat et al., 1995] is the
only one that we are aware of to consider a general framework for the absence
of information. But their main concern is that of a non-monotonic logic and its
denotational semantics.

Process algebras such as ACP [Bergstra and Klop, 1988], CCS [Milner, 1989]
and CSP [Hoare, 1985] are a popular approach to study concurrency. Unlike the
work in [Saraswat et al., 1995] which studies negative information in the context

1 A preliminary version appeared at the Eighth International Symposium on Inten-
sional Programming: ISLIP'95

Journal of Universal Computer Science, vol. 3, no. 12 (1997), 1415-1428
submitted: 22/7/97, accepted: 13/10/97, appeared: 28/12/97 Springer Pub. Co.

of logic programming, we present a calculus with negative information using ideas
from process algebra.

Within the context of concurrency, there are a number of approaches which
deal with speci�c concepts such as priority. A few typical examples include
[Baeten et al., 1987], [Cleaveland and Hennessy, 1990] and
[Camilleri and Winskel, 1991]. Preemption or interrupts is considered
in [Baeten et al., 1986] and [Berry, 1993]. But they do not consider behaviour in
the context of the absence of information. We present a calculus where the be-
haviour in the absence of information is speci�ed as part of the syntax. Section 4
presents a more in depth comparison with other approaches and discusses a few
potential extensions.

While studying negative information, one can de�ne a calculus whose syntax
does not include negative information but whose semantics is based on absence
of information. However, if such calculi are to be meaningful (i.e., have a sound
semantics) the operational rules have to follow certain rules. The work reported
in [Groote, 1990] and [Verhoef, 1994] discusses a number of the technical issues.
In certain situations the ideas expressed in [Camilleri and Winskel, 1991] are
also applicable. We present a calculus where the behaviour in the absence of
information is speci�ed as part of the syntax and the operational semantics does
not use any negative rules.

The syntax we consider is a variant of CCS. As usual we will consider a
countable set of actions (say Act) with a bijection (�) such that for every action
� in Act, � = �. The bijection identi�es complimentary actions which are used
for synchronisation. The synchronisation of two processes is represented by a
special � action. We let the set Actions denote (Act [f�g). For the sake of
simplicity we do not consider relabelling. The novel aspect of this work is a
syntax for specifying behaviour in the absence of actions.

P ::= 0 (��P) [: S, P] [[: S, P]] (P + P)
(P j P) (P n H) X (rec X:P)

where � 2 Actions, H � Act and S � Actions.

The intuitive semantics of processes expressed in the above syntax is as fol-
lows. The process 0 represents termination (or deadlock) and make no further
progress. The process (�� P) can exhibit the action (�) and then behave as P .
The process [: S, P] represents behaviour where the state of the environment
is considered. If the environment in which [: S, P] executes cannot exhibit any
action in S, the behaviour as speci�ed by P is exhibited. The process [[: S, P]]
is a stronger recursive version of [: S, P], in that the requirement of : S persists
for the entire behaviour of P . Strictly speaking, this form is not essential. One
can use recursion and [: S, P] over the entire behaviour of P . But the stronger
form is useful when specifying behaviour and acts a convenient shorthand. The
combinators +, j and n represent non-deterministic choice, concurrency and hid-
ing respectively. When considering (P j Q) we consider Q be in the operating
environment of P and vice-versa. The term X and (rec X:P) is used to de�ne
recursive processes. We assume that in (rec X:P) the term P is well guarded so
that the recursive process is well de�ned.

Before we present the formal details a few examples to illustrate the use of
negative information are presented.

1416 Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

Example 1. Given two Ada tasks A and B de�ned as follows:
task A . . . accept a do P else accept b do Q . . .
task B . . .A.b or A.a
This speci�es that the entry a has higher priority than entry b. Task A can

be translated into our calculus as:

([:fag, b�Q] + a�P)

where the issuing of the entry calls in task B is translated as a and b respectively.
Thus the overall system will be

(([:fag, b�Q] + a�P) j (b�0 + a�0)) n fa,bg

In this particular situation the behaviour is equivalent to (� �P)nfa,bg.
If instead of task B one had task B and task C as follows:
task B . . .A.b
task C . . . A.a

the entry call from C will accepted while entry call from task B will be suspended.
The system in this case will be

(([:fag, b�Q] + a�P) j (b�0 j a�0)) n fa,bg

In both the cases, the presence of : fag ensures that a has higher priority
over b. The presence of the term a�P indicates that the action a can be selected.

Example 2. The behaviour of a CPU can be speci�ed as a cyclical execution of
the sequence fetch, decode and execute. This can be interrupted by an interrupt
say (i) at any given instant in the cycle. When the interrupt line is lowered

(and hence the action i disappears) the cycle is resumed. The above behaviour
is speci�ed below.

CPU = [[:fig, NB]]
NB = fetch � decode � execute �NB

The process generating and holding the interrupt can be speci�ed as

Intr = start �Do
Do = [: fdoneg, i�Do] + done�Intr

The CPU can continue processing till the interrupt generator is started. Once it
is started, the processDo holds the interrupt till it receives a request to complete
in which case it reverts back to Intr. The negative information for Do ensures
that action done has a higher priority than i and hence cannot be ignored by the
process Do Thus on completing the interrupt handling, the process Do has to
disable i, letting the process CPU continue its regular processing. The absence
of information is required if the techniques used in [Krishnan, 1994] are to be ex-
tended to verify the behaviour of a CPU in the presence of interrupts. For exam-
ple, the general behaviour of traps in the SPARC v9 [Weaver and Germond, 1994]
architecture can be speci�ed as follows.

NB = fetch � decode�(preciseTrap�NB + defTrap�NB + nonTrap�NB)
PrTH = preciseTrap� (wait�0 j AH)
DefTH = defTrap � delay� (wait�0 j AH)

Retry = retry � wait� Retry
Sys = ([[: fwaitg, NB]] j PrTH j DefTH j Retry)n

fwait,preciseTrap,defTrap,retryg

1417Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

The process NB is a re�nement of the process NB described earlier. After
the decoding phase various trap types can be indicated. If a precise trap were
raised (the action preciseTrap), the action wait suspends the behaviour of NB
immediately while a deferred trap has a delay action before NB is suspended.
On issuing a retry instruction (the action retry), the wait action disappears and
NB can continue its regular behaviour. The process AH is left unspeci�ed and
represents the actual trap handler. But we assume that the process AH will
issue the action retry. The action nonTrap indicates a normal instruction and
is not handled by any other process.

The advantage of including absence of information in the syntax is demon-
strated. The normal behaviour of a system can be described without undue
worry about the operating environment and without a description of the poten-
tial interrupts. Later during system composition, the appropriate interrupts can
be included as a wrapper over the normal behaviour.

Example 3. Our �nal example concerns imprecise computation [Lin et al., 1987].
An imprecise computation involves some form of iterative improvement of some
value. Either the computation is allowed to reach its natural conclusion or in the
case of some signi�cant event (like the arrival of some deadline) the computation
is terminated. The result of the computation is the current value. Hence if the
computation reached its natural conclusion, the result will be best possible,
otherwise it is as close to the best as possible given other constraints.

An example in our calculus is presented below.

C = r1 � r2 � : : : rn�1�Final
F inal = rn�Final
Muncher = [[: fhurryg, r1�r2 . . . �0]]
T = deadline�(obtain�0 j HL)
HL = hurry�HL

V al = obtain�
X

i21:::n

ri � vi � 0

Sys = (C j T j Muncher j V al) nf obtain; r1; r2; : : : ; rn g

The process C is the main computation process whose body is speci�ed as
a sequence of actions whose normally termination is indicated by the process
Final. That is, the process Final represents normal termination and hence no
improvement is possible (it always exhibits rn). The process T is a timer which
after the action deadline activates both hurry (via process HL) which is per-
sistent and a process V al which inspects the state of C. The process V al in-
spects C (via synchronisation) and prints an appropriate value (vi). The process
Muncher, in the absence of hurry, synchronises with C thus letting C progress
from ri to ri+1.

It is important to note that the hiding involves the ri's. Hence if the process
Muncher is absent, the process C will be unable to advance as it will be unable
to exhibit the ri's due to the restriction on Sys. The key to our example is the
fact that the process Muncher cannot advance after hurry has been enabled.
After the action deadline has been exhibited, the only possible synchronisation
is between C and V al. Also the process V al is activated only after exhibiting
deadline as it is awaiting synchronisation on the action obtain. If the action

1418 Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

deadline occurs after process C has �nished, the action hurry has no e�ect as
the process Muncher has terminated.

Here again the bene�ts of having absence information in the syntax is clear.
One can describe regular computation without worrying about the imprecise
nature of the desired computation. By constructing Muncher etc. the desired
semantics of imprecise computation can be obtained. Note that in general, the
process C will be the most complex while process such as Muncher, T , HL can
be reused in many situations without much change.

2 Formal Details

An operational semantics based on labelled transition systems [Plotkin, 1981] is
given in �gure 1. To de�ne the semantics of absence of information, it is essential
to know the state of the environment. The environment is also characterised as a
process and hence we introduce a notion of a system which is a pair of processes.
The pair hP ,Qi represents the process P in the environment Q. Hence to know
the state of the environment, a ready set which can be computed from the syntax
of the process is de�ned as follows.

De�nition 1. De�ne the set of possible actions a process (say P) can make
available (written as ready(P)) as follows.

ready(0) = ;
ready(� � P) = f�g
ready(P +Q) = ready(P) [ready(Q)
ready(P j Q) = ready(P) [ready(Q)
ready([: S; P]) = ready(P)
ready([[: S; P]]) = ready(P)

ready(P n H) = ready(P) - (H [H)
ready(recX : P) = ready(P)

The labelled transition relation �! is de�ned to be a subset of Sys� Actions

�Process where Process is the set of all possible processes and Sys is the set
of all process pairs.

The intuition is that given a process P and an environment E, the relation
speci�es the action that can be exhibited by P and a new process P 0 that is
derived from P . The behaviour of P 0 is then described in the context of its
environment. Thus to know if a particular process can exhibit a particular action,
its operating environment also needs to be speci�ed. As the behaviour of a
process may be dependent only on the ready set of its environment, we need not
consider all possible structures of the environment. Thus, in the semantics for
(P j Q) in the context of E, the behaviour of P is determined by the ready set
of both Q and E. It does not really matter whether one considers (Q j E) or
(E j Q). Hence only of the rules is presented. As a notational convenience, we

abuse notation slightly when we write (P
�
�! Q) where P and Q are processes

when we should have written (hP ,0i
�
�! Q).

Following [Milner, 1989] a bisimulation relation induced by �! can be de-
�ned. A direct de�nition of a bisimulation relation (�) based only on observa-
tional behaviour would not be a congruence. This is due to the presence of the

1419Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

h��P , Qi
�

�! P

hP ,Qi
�

�! P 0

h[: S, P],Qi
�

�! P 0
S \ ready(Q) = ;

hP ,Qi
�

�! P 0

h[[: S, P]]; Qi
�

�! [[: S, P 0]]
S \ ready(Q) = ;

hP1,P2i
�

�! P 0

1

h(P1 + P3),P2i
�

�! P 0

1

h(P3 + P1),P2i
�

�! P 0

1

hP1,(P2 j P3)i
�

�! P 0

1

h(P1 j P2),P3i
�

�! (P 0

1 j P2)

h(P2 j P1),P3i
�

�! (P2 j P
0

1)

hP1,(P2 j P3)i
�

�! P 0

1

hP2,(P1 j P3)i
�

�! P 0

2

h(P1 j P2), P3i
�

�! (P 0

1 j P2)

h(P2 j P1), P3i
�

�! (P2 j P
0

1)

hP ,Qi
�

�! P 0

h(P n H),Qi
�

�! (P 0 n H)
(�, � 62 H)

hP ,Qi
�

�! P 0

h(rec X:P),Qi
�

�! P 0(X/(rec X:P))

Figure 1: Operational Semantics

j combinator. If two processes are equivalent, it is essential that their behaviour
be identical in all environments. The de�nition of � is as follows.

De�nition 2. A relation R is a bisimulation, if for every (P , Q) belonging to
R, for every process E the following conditions hold.

hP ,Ei
�
�! P 0 implies that hQ,Ei

�
�! Q0 and (P 0, Q0) belong to R.

hQ,Ei
�
�! Q0 implies that hP ,Ei

�
�! P 0 and (P 0, Q0) belong to R.

hE,P i
�
�! E0 implies that hE,Qi

�
�! E0

Two processes P and Q are bisimilar (P � Q) if there exists a bisimulation
containing (P ,Q).

The third condition for the bisimulation relation is required as not only can
the environment process a�ect P and Q, P and Q can act as part of the envi-
ronment for other processes as well. In other words, not only can the process E

1420 Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

can either be viewed as an environment for P (and hence Q), the processes P
(and Q) can be viewed as the environment for E.

We now present a few laws that are satis�ed by �.

Proposition3. If P and Q are CCS processes (that is do not use the absence of
information construct) and P are Q are bisimilar under the semantics presented
for CCS, P and Q are indeed bisimilar under the semantics presented here.

The above proposition shows that our extension is consistent with CCS. That
is, the new rules do not distinguish/identify extra processes in the absence of
the use of negative information.

Although, the de�nition of bisimulation involved a universal quanti�er, the
following proposition is useful when it comes to detecting bisimilarity.

Lemma4. If [: S1, P] � [: S2, Q] and P
�
�! P 0, S1 = S2.

Proof: Let [: S1, P] � [: S2, Q] such that S1 and S2 are di�erent. Without
loss of generality assume �0 belongs to S1 but not to S2. The system h[: S1, P],
�0 � 0i cannot exhibit any action while h[: S2, Q], �

0 � 0i can exhibit the action
�0. Hence they cannot be bisimilar as assumed. 2

The requirement (P
�
�! P 0) is essential. The process [: S1,0] is bisimilar to

the process [: S2, 0] as in both cases the process 0 cannot exhibit any action.

Proposition5. Other properties of bisimulation are presented below.

1.
X

i2I

ai � Pi � [:;,
X

i2I

ai � Pi]

2. [: S1 , [: S2,P]] � [: (S1 [S2), P]
3. [: S, (�1 � P1 + �2 � P2)] � [: S, �1 � P1] + [: S, �2 � P2]
4. [: S, P] n H � [: S, (P n H)]
5. (P + Q) n H � (P n H) + (Q n H)
6. [: S1, 0] � [: S2, 0]

7. (��P) n H � 0 if (� or � 2 H) and ((ready(P) \ (H [H)) = ;)
8. (��P) n H � �(�P n H) if � and � 62 H

While all the bisimulations can be proven, we only provide an intuitive ex-
planation for some of them. Statement 1 indicates that a process which is not
disabled by any action in its environment is related to a basic CCS-like process.
As the ready set is computed from the syntax of the process and the fact that
the ready set can be used to disable other processes, it is essential that the ready
sets of bisimilar processes be identical. This requirement is partially captured in
statement 7. This issue is taken up in more detail in the rest of the paper.

We now address the issue of obtaining a sound a complete equational char-
acterisation for the bisimulation equivalence. As we are still within the domain
of interleaving semantics for the `j' combinator, we should be able to obtain a
form of expansion theorem. The use of the ready set, which is based on the syn-
tactic structure of processes, causes some di�culty in obtaining a satisfactory
expansion theorem as the following example shows.

1421Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

Example 4. Let P be [:fag, b�0] and Q be [:fbg, a�0]. Operationally the process
(P j Q) behaves as 0. However, (P j Q) is not bisimilar to 0, as the process
[:fa,bg,c�0] (say R) can be used to distinguish the e�ect of P and Q. This is
because the ready set of 0 is empty while the ready set of (P j Q) is fa,bg though
neither action can be exhibited. The process R in the context of 0 can exhibit
the action c. However, the process R in the context of (P j Q) cannot exhibit c
as the the presence of actions a and b disable the process R.

Thus we could leave the parallel combinator as an essential primitive in the
syntax. But this is unsatisfactory especially in the context of an interleaving
semantics. What is necessary is the ability to remember the original ready set
even when the underlying process is changed. Hence we extend the syntax to
include what we term as kill sets. The purpose of the kill set is to indicate
which actions can result in interrupting other processes (even if they never really
occur). This is necessary as we de�ned the ready set purely syntactically and
this information needs to be preserved by semantic transformations.

Thus the process {(K;P) represents the behaviour P with a kill set K where
K is the set of actions. For the purposes of extending the operational semantics
the ready set of {(K;P) is de�ned to be the union of K and the ready set of P .
That is formally speci�ed as: ready({(K;P)) = K [ready(P)

The operational behaviour of {(K;P) is derived to be identical to that of P .
This precise rule is as follows.

hP ,Qi
�
�! P 0

h{(K;P),Qi
�
�! P 0

We did not consider {(K;P) to be part of the original syntax as there was
no particular use of the kill set. We have preferred to leave it as a part of the
extended syntax purely for the purposes of a satisfactory expansion theorem.

Now the lemmas 6 and 7 which are variations of the original expansion the-
orem are valid.

Lemma6. Let P be {(K1; [: S1,
X

i2I

ai � Pi]) andQ be {(K2; [: S2,
X

j2J

bj �Qj]).

Let Rp = ready(P), Rq = ready(Q) and K = Rp [Rq.

1. If (S1 \ Rq) 6= ; and (S2 \ Rp) 6= ;, then (P j Q) � {(K;0)

2. If (S1 \ Rq) = ; and (S2 \ Rp) 6= ; then (P j Q) � {(K;R) where

R = [: S1,
X

i2I

ai � (Pi j Q)]

3. If (S2 \ Rp) = ; and (S1 \ Rq) 6= ;, then (P j Q) � {(K;R) where

R = [: S2,
X

j2J

bj � (P j Qj)]

Proof: We prove part 2 of the above lemma. The other cases are similar.
Consider the relation A de�ned as

f((P j Q), {(K;R)) P , Q, R and K as above g [f(X ,X) X any processg.

1422 Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

We show that A is a bisimulation.
Consider any process E such that ready(E) \ S1 = ;.

Now, h(P j Q), Ei
ai�! (Pi j Q). This is because S1 \ Rq = ;. For the same

reason, hR,Ei
ai�! (Pi j Q) due to which h{(K;R),Ei

ai�! (Pi j Q). As identical
processes belong to A, the relation is a bisimulation.

As S2 \ Rp 6= ;, h(P j Q), Ei 6
bj
�!, only the behaviour of P needs to be

considered. The behaviours of hE, (P j Q)i and hE, {(K;R)i are identical. That

is, hE, (P j Q)i
�
�! E0 i� hE, {(K;R)i

�
�! E0.

This is because the ready set of (P j Q) is identical to the ready set of {(K;R),
namely, K.

Again as identical processes belong to A, it is a bisimulation.
2.

In the above lemma, the negative information guard is maintained as the
bisimilarity has to be preserved over all contexts. If one removes the negative
information guard in R, it is easy to devise an environment (as shown in the
following example) where they are not bisimilar. Similarly the union of the kill
sets are also maintained.

Example 5. Consider the process [:fag, b�0] j [:fbg, c�0]. This process is bisimilar
to {(fb; cg; [:fag, b�(0 j [:fbg, c�0])]).

This is because the presence of b prevents the exhibition of c. If the :fag
at the top level is removed, the behaviours of the two processes in the context
of a�0 are not identical. For a similar reason the guard for the action c is also
retained.

Lemma 6 represents some form of merging when a process is disabled due to
the presence of certain action. The following proposition represents an uncon-
strained progress of two processes which do not disable each other.

Lemma7. Let P be {(K1; [: S1,
X

i2I

ai � Pi]) andQ be {(K2; [: S2,
X

j2J

bj �Qj]).

Let K = ready(P) [ready(Q).
If S1 \ ready(Q) = S2 \ ready(P) = ;, then (P j Q) � {(K;R) where

R = [: S1 ,
X

i2I

ai � (Pi j Q)] +

[: S2 ,
X

j2J

bj � (P j Qj)] +

[: (S1 [S2) ,
X

i2I;j2J;ai=bj

� � (Pi j Qj)]

Proof: The result follows directly from the following observations. Using this, a
bisimulation relation can be exhibited.

The �rst observation is that if (ready(E) \ S1 = ;) then

hP , (Q j E)i
ai�! Pi.

The second is that if (ready(E) \ S2 = ;), hQ, (P j E)i
bj
�! Qj

1423Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

Hence if (ready(E) \ S1 = ;) and (ready(E) \ S2 = ;) both asynchronous

and synchronisation moves are possible. The later is possible only if (ai = bj) in

which case h(P j Q), Ei
�
�! (Pi j Qj).

If E is blocked/enabled by (P j Q) then E will be blocked/enabled by {(K;R)
as the ready sets are identical.

Formally, the relation
f((P j Q), {(K;R)) P;Q;R and K as above g [f(X ,X) X a processg
can be shown to be a bisimulation. 2

The above result is straightforward generalisation of the expansion theorem
for CCS. Lemmas 6 and 7 together cover all possible interleaved behaviour.

Proposition8. Other properties involving kill sets include

1. {(;; P) � P
2. {(K1; P1) j {(K2; P2) � {((K1 [K2); (P1 j P2))
3. {(K1; P1) + {(K2; P2) � {((K1 [K2); (P1 + P2))
4. [:S, {(K;P)] � {(K; [: S; P])
5. {(K1; {(K2; P)) � {((K1 [K2); P)
6. {(K;P) � {(K 0; P) where K 0 = K [ready(P)
7. {(K; (� � P) nH) � {(K 0;0) if � or � 2 H and K 0 = K [ready(P nH)

An intuitive explanation for some of the properties are presented below.
Item 1 states that an empty kill set has no e�ect. As the kill sets are nothing
more than a form of superset of the ready set, they can be combined with the
ready sets. This is indicated in item 2. Item 4 recognises the fact that the kill set
only disables process belonging to the enviroment. Hence it does not interefere
with the disabling set. Item 7 is useful in simplifying process that cannot exhibit
any action due to restriction. As the ready set is calculated syntactically, it is
essential for the kill set to reect the ready set. The de�nition of the ready set
makes it clear that � cannot belong to the ready set of ((� � P) nH).

It is easy to derive a sound and complete axiomatisation of the bisimulation
relation for �nite processes. That is we do not consider recursion and [[]]. One
can translate the above rules into equations (and add a few axioms such as
associativity, commutativity, idempotence etc.) to obtain the axiomatisation.
The proof follows the usual lines of de�ning a standard form and proving that
every bisimilar process can be reduced to the same standard form. The standard
form that needs to be considered is {(K; [:S; P]) where P is in CCS standard

form (i.e., of the form
X

i2I

ai �Pi where each Pi is in standard form). The following

propositions formalise the above description.

P + P = P 0 j P = P
P + 0 = P 0 n H = 0

P + Q = Q + P P j Q = Q jP
(P + Q) + R = P + (Q + R) (P j Q) j R = P j (Q j R)

Figure 2: Equations

1424 Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

De�nition 9. A process is in CCS standard form if it is of the form
X

i2I

ai � Pi

where each Pi is in standard form. Note that 0 is in CCS standard form as 0
can be expressed as an empty choice.

A process in our calculus is in pre-standard form if it is of the form [: S, P]
where S is a set of actions (perhaps empty) and P is in CCS standard form.

A process in our extended calculus is in standard form if it is of the form
{(K;P) where K is a set of actions and P is in pre-standard form.

Proposition10. Every process can be converted to a process in standard form
using the equational form of the results related to bisimulation and the axioms
in �gure 2.

The use of standard forms is to get a handle on the structure of process, given
a speci�c behaviour. That is, given that a process P is in standard form, and
if P can exhibit an action (say �), the syntactic structure of P can be assumed
to be of the form [:S, (��P1 + P2)]. This observation is then used to prove the
following lemma.

Lemma11. Absorption Lemma If P and Q are in standard form such that
(P � Q), then P + Q = P = Q.

Proof: The proof is essentially by structural induction on the processes.
If P and Q are both of the form {(K; [:S;0]) and the result is obvious.

Otherwise as (P � Q), for every R, hP ,Ri
�
�! P 0 implies that hQ,Ri

�
�! Q0

such that P 0 � Q0.
As P and Q are in standard form, one can assume that P must be of the

form {(K; [:S; (� � P1 + P2)]) and Q of the form {(K; [:S; (� �Q1 +Q2)]) where
P1 is identical to P0 and Q1 is identical to Q

0.
By a simple extension of lemma 4 both P and Q must have identical K and

S sets. By induction hypothesis, P1 = Q1.
Thus {(K; [:S; (� � P1 + P2)]) + {(K; [:S; � �Q1]) is equal to

{(K; [:S; (� � P1 + P2 + � �Q1)]) which is equal to P.
By repeating the above step, the process Q2 can also be absorbed into P . 2

Lemma12. If P � Q, it can be proved that P = Q.

Proof: Follows directly from proposition 10 and lemma 11. 2

3 Modal Logic

The modal �-calculus [Stirling, 1989] has been used to obtain a logical charac-
terisation of bisimulation in CCS. However in our case it is not clear how the
semantics of satisfaction of a formula by a process of the form [: S, P] should
be de�ned. One can adopt the view that [: S, P] j= ' i� P j= '. This view is
satisfactory as far as observational behaviour of processes is concerned. However,
this is not su�cient to characterise bisimulation as both [:;,��0] and [:fbg,��0]
satisfy h�iTrue but clearly the two processes are not bisimilar.

While it is possible to de�ne satisfaction of a formula ' for the term [: S,
P] as

1425Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

[: S, P] j= ' i� 8 R, h[: S, P] j Ri j= ')

the de�nition is unsatisfactory. The reason is that a process of the form [: S,
a � 0] where S is not empty can never satisfy the formula haiTrue. The universal
quanti�cation over the set of processes (R) leads to the undesirable property.
Hence a more discerning form of satisfaction is essential and this is a topic of
future work. Thus we do not have a satisfactory logical characterisation of the
bisimulation equivalence in our original calculus nor do we have a satisfactory
answer for the extended calculus using the kill sets.

But we can present a few results related to the simple standard de�nition
of satisfaction for processes whose behaviour depends on the absence of other
actions. These preliminary results are su�cient to check various properties of
the systems we have considered.

Proposition13. If P j= haiTrue, and Q j= [a]False, then if ([: S, P] j Q) j=
haiTrue, then for every � 2 S, Q j= [�]False

As Q cannot perform an a action, and P can, the only way for ([: S, P] j
Q) to exhibit an a action was for Q not to disable P . Hence the ready set of
Q cannot contain any action in S. Thus the stronger requirement of Q being
unable to exhibit any action in S holds.

Proposition14. Let Q be a standard CCS process. If P j= haiTrue, and Q j=
[a]False, then if ([: S, P] j Q) j= [a]False, then 9� 2 S, Q j= h�iTrue.

This result is the dual of the above one. If the combination of P and Q cannot
exhibit an a action, Q clearly has to disable P . The requirement on Q to be a
standard CCS process is best illustrated by the following example.

Example 6. Let P be [:, fag c � 0]. Let Q be ([: fbg, d � 0] j [: fdg, a � 0]).
The ready set of Q will contain a and d and hence Q will disable P . However,
Q cannot exhibit the action a. If Q cannot use negative information, the above
proposition will indeed be satis�ed.

Proposition15. If P j= [a]False and Q j= [a]False (P jQ) j= [a]False

The above proposition states that as long as P cannot perform an a action,
placing it in an environment which cannot perform a a action (the process Q)
will not magically enable a.

4 Related Work

[Berry, 1993] provides a calculus for preemption based on the synchronous lan-
guage Esterel. But the main drawback of the work is the need for a large number
of constructs to express various types of preemptions. They also do not present
any algebraic laws. We are able encode these operators in terms of our much
simpler operators (although in fairness it must be said that not all encodings are
perspicuous) which satisfy certain algebraic properties. Furthermore, our de�ni-
tions are based on asynchronous behaviour. It is possible to modify the seman-
tics to specify instantaneous behaviour by extending the environment (using the

1426 Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

ready set) to include the current process whose behaviour is to be determined.
Our calculus can be perceived as a partially synchronous one (i.e., synchronous
only when absence comes into play and asynchronous otherwise).

[Bolognesi and Lucidi, 1991] present two calculi in the context of real-time
systems. The �rst deals with urgent actions and is restricted to a single process.
That is, if a process can perform an urgent action, it cannot idle. In the termi-
nology of [Berry, 1993], it is a form of must preemption applied to choice. Hence
this is useful in controlling choice in the presence of time outs. The second calcu-
lus deals with a binary operator which is used to disable other processes. Once
a process is disabled, it does not make any contribution to further behaviours.
They achieve their main aim of de�ning only one but powerful operator. Even
with the powerful binary combinator, it is hard to specify concepts such as tem-
porary suspension. Furthermore, being a binary operator, the environment has
to be encoded in. In our case we can �rst specify the system and then worry
about the environment. Of course, we have not added any concept related to
time. But that is easily achieved using the well known techniques developed in
[Krishnan, 1992] and [Yi, 1991].

[Camilleri and Winskel, 1991] describes the addition of priority choice (!j)
to CCS. The operational rules appear to be more complex due to the assumption
of an implicit environment. We have a simpli�ed presentation as the environment
is represented as another process. Every process using !j can be expressed in

our calculus. For example, (a�0 !j b�0 !j c�0) can be represented as [:fa,bg,
c�0] + [:fag, b�0] + a�0.

Apart from simplifying the presentation of the operational semantics, by
incorporating absence of action information in the syntax of processes, we have
done away with need for a bi-level syntax. They required a bi-level syntax to
avoid giving semantics to processes such as (a�0!j b�0) j (b�0!j a�0). Hence they
outlaw this by imposing constraints on the syntax. In our case this process will be
equated with 0. This is because in the de�nition of ready for non-deterministic
choice, the union of all possibilities is taken.

Acknowledgements

This work has been partially supported by UoC Grant No. 1787123.Many thanks
to the anonymous referees for their helpful comments.

References

[Ada, 1983] (1983). Ada programming language (ANSI/MIL-STD-1815A). Washing-
ton, D.C. 20301.

[Baeten et al., 1986] Baeten, J., Bergstra, J., and Klop, J. (1986). Syntax and De�ning
Equations for an Interrupt Mechanism in Process Algebra. Fundamenta Informati-
cae, IX(2):127{168.

[Baeten et al., 1987] Baeten, J., Bergstra, J., and Klop, J. (1987). Ready Trace Se-
mantics for Concrete Process Algebras with the Priority Operator. The Computer
Journal, 30(6):498{506.

[Bergstra and Klop, 1988] Bergstra, J. A. and Klop, J. W. (1988). Process Theory
Based on Bisimulation Semantics. In Linear Time, Branching Time and Partial Or-
der in Logics and Models for Concurrency, volume LNCS 354, pages 50{122. Springer
Verlag.

1427Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

[Berry, 1993] Berry, G. (1993). Preemption in Concurrent Systems. In Foundations
of Software Technology and Theoretical Computer Science, volume LNCS 761, pages
72{93. Springer Verlag.

[Bolognesi and Lucidi, 1991] Bolognesi, T. and Lucidi, F. (1991). Time Process Alge-
bras with Urgent Interactions and a Unique Powerful Binary Operator. In deBakker,
J., editor, Proceedings of the REX Workshop on Real-Time: Theory in Practice, vol-
ume LNCS 600, pages 124{148. Springer Verlag.

[Camilleri and Winskel, 1991] Camilleri, J. and Winskel, G. (1991). CCS with pri-
ority choice. In IEEE Symposium on Logic in Computer Science, pages 246{255,
Amsterdam, The Netherlands.

[Cleaveland and Hennessy, 1990] Cleaveland, R. and Hennessy, M. (1990). Priorities
in Process Algebra. Information and Computation, 87:58{77.

[Groote, 1990] Groote, J. F. (1990). Transition System Speci�cations with Negative
Premises. In Baeten, J. C. M. and Klop, J. W., editors, CONCUR 90, volume LNCS-
458, pages 332{341. Springer Verlag.

[Hoare, 1985] Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice
Hall International.

[Krishnan, 1992] Krishnan, P. (1992). A Calculus of Timed Communicating Systems.
International Journal of Foundations of Computer Science, 3(3):303{322.

[Krishnan, 1994] Krishnan, P. (1994). A Case Study in Specifying and Testing Archi-
tectural Features. Microprocessors and Microsystems, 18(3):123{130.

[Lin et al., 1987] Lin, K., Natarajan, S., and Liu, J. W. (1987). Imprecise results:
Utilizing partial computations in real-time systems. In IEEE Real-Time Systems
Symposium, pages 210{217.

[Milner, 1989] Milner, R. (1989). Communication and Concurrency. Prentice Hall
International.

[Plotkin, 1981] Plotkin, G. D. (1981). A Structural Approach to Operational Seman-
tics. Technical Report DAIMI FN-19, Computer Science Department, Aarhus Uni-
versity.

[Reiter, 1980] Reiter, R. (1980). A logic for default reasoning. Arti�cial Intelligence,
13:81{132.

[Saraswat et al., 1995] Saraswat, V., Jagadeesan, R., and Gupta, V. (1995). Default

Timed Concurrent Constraint Programming. In 22nd ACM Symposium on Principles
of Programming Languages.

[Stirling, 1989] Stirling, C. (1989). An Introduction to Modal and Temporal Logics
for CCS. In Joint UK/Japan Workshop on Concurrency, volume LNCS 491, pages
2{20.

[Verhoef, 1994] Verhoef, C. (1994). A congruence theorem for structured operational
semantics with predicates and negative premises. In Jonsson, B. and Parrow, J.,
editors, CONCUR 94, volume LNCS-836, pages 433{448. Springer Verlag.

[Weaver and Germond, 1994] Weaver, D. L. and Germond, T. (1994). The SPARC
Architecture Manual: Version 9. Sparc International.

[Yi, 1991] Yi, W. (1991). CCS+Time = An Interleaving Model for Real-Time Systems.
In ICALP -91, volume LNCS 510, pages 217{228, Madrid, Spain. Springer Verlag.

1428 Krishnan P.: An Asynchronous Calculus Based on the Absence of Actions

