
Abstract State Machine Semantics of SDL

Uwe Gl�asser
(Heinz Nixdorf Institut

Universit�at-GH Paderborn, Germany

glaesser@uni-paderborn.de)

Ren�e Karges
(metronet GmbH K�oln, Germany

Rene.Karges@metronet.de)

Abstract: Based on the ITU-T Recommendation Z.100 [27]|also known as SDL-92|

we de�ne a formal semantic model of the dynamic properties of Basic SDL in terms of

an abstract SDL machine. More precisely, we use the concept of multi-agent real-time
ASM [17] as a semantic platform on top of which we construct our mathematical de-

scription. The resulting interpretation model is not only mathematically precise but

also reects the common understanding of SDL in a direct and intuitive manner; it pro-

vides a concise and understandable representation of the complete dynamic semantics

of Basic SDL. Moreover, the model can easily be extended and modi�ed|a particularly

important issue for an evolving technical standard.

In this article, we consider all relevant aspects concerning the behavior of channels,

processes and timers with respect to signal transfer operations and timer operations.

The model we obtain is intended as a basis for formal documentation as well as for

executable high-level SDL speci�cations.

Key Words: SDL, Basic SDL, Semantic Foundations, Telecommunication Systems,

Formal Documentation, Executable Speci�cations, Abstract State Machines

Category: C.2.1, C.2.4, D.2.1, D.3.1, D.3.3, F.3.2

1 Introduction

Abstract State Machines (ASMs)|formerly called Evolving Algebras [18, 19]|
combine declarative concepts of �rst-order logic with the operational view of
transition systems in a common framework for mathematical modeling of dis-
crete dynamic systems. The semantic de�nition of the underlying machine model
constitutes a simple yet powerful formal basis to deal with concurrent and re-

active behavior in a direct and intuitive way; the fact that ASM-based system
models naturally enable operational interpretations is often considered as an
advantage when dealing with complex technical systems (e.g., as in [1, 5, 4])1

We present here a formal semantic model of Basic SDL as de�ned in (Chap. 2
of) the ITU-T Recommendation Z.100 [27]|also referred to as SDL-92. More
precisely, we focus on the dynamic semantics of Basic SDL, which we describe in
terms of an abstract interpretation model based on the concept of multi-agent
real-time ASM (see Sect. 2). The resulting description is intended to be a �rst step
towards a formal documentation of SDL which is not only mathematically precise
but does also reect the common understanding of SDL (e.g., as presented in the

1 For a comprehensive overview on ASM applications, introductory material and sup-
porting tools see also the following URLs: http://www.uni-paderborn.de/cs/asm/
and http://www.eecs.umich.edu/gasm/.

Journal of Universal Computer Science, vol. 3, no. 12 (1997), 1382-1414
submitted: 25/6/97, accepted: 26/11/97, appeared: 28/12/97 Springer Pub. Co.

literature [25, 13, 2]) in a direct and intuitive manner. Such a documentation is
of course meant to complement the natural language description of Z.100 rather
than to substitute it; aiming at a a coherent (and consistent) view, the goal is
to combine both descriptions by embedding the former into the latter.

Our formal de�nition provides a concise yet understandable model, which
can easily be extended and modi�ed|this exibility is particularly important
for an evolving technical standard. In that respect the work presented here is
comparable to our semantic model of the hardware description language VHDL
[6, 5]. Furthermore, the model we obtain provides an excellent basis for mech-
anizing SDL speci�cations, e.g. as required for machine supported analysis and
transformation or the execution and animation of high-level SDL speci�cations.

Formal Semantics of SDL. Z.100 does already come together with a com-
plete formal model of SDL based on a combination of Meta-IV and CSP (Annex
F to [27]). However, the current situation is not really satisfying:

\This annex constitutes a formal de�nition of SDL. If any properties
of an SDL concept de�ned in this document, contradicts the properties
de�ned in Z.100 and the concept is consistently de�ned in Z.100, then the
de�nition in Z.100 takes precedence and this formal de�nition requires
correction." (Annex F1 to [27], page 1)

One reason why Z.100 does not rely on its own formal model is probably the fact
that this model is hardly usable because of its size: the entire formal de�nition
is more than 500 pages.

In fact, there is a considerable variety of formal semantic models of SDL,
which have been developed using various formal methods. Among the approaches
which are mainly concerned with analysis and veri�cation of SDL speci�cations
are the following. In [3], Bergstra and Middleburg de�ne a process algebra se-
mantics of a restricted version of SDL, which they call 'SDL. Broy [10], Holz
and St�len [21] use the stream processing functions of FOCUS to model subsets
of SDL. Fischer and Dimitrov propose extended Petri nets as a formal basis to
verify SDL protocol speci�cations [14]. Rinderspacher employs a term-rewriting
system based modeling concept [26]. Some of these approaches consider only a
relatively small subset of SDL ignoring certain essential features (e.g., dynamic
process creation or basic structuring concepts). An approach aiming at a more
comprehensive semantic model of SDL is provided by Fischer, Lau and Prinz
through their de�nition of BSDL (Base SDL) using Object-Z [15, 24].

This work is organized as follows. Section 2 briey introduces the basic con-
cepts and notions of Abstract State Machines, including the employed model of
real time, as far as these are required here. Section 3 de�nes the ASM represen-
tation of SDL systems and the overall organization of our abstract interpretation
model in terms of an abstract SDL machine. Section 4 addresses the behavior of
channels. The behavior of processes (especially, the e�ect of signal transfer and
timer operations) is represented in Sect. 5, while Sect. 6 models the behavior of
timers. Finally, Sect. 7 contains some brief conclusions.

1383Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

2 Abstract State Machines

We address here (for the convenience of the reader) some essential aspects of
the ASM concepts that are relevant in the sequel of this article in an informal
style. The particular focus is on the speci�c ASM model that will be employed
for the construction of our SDL model. For a rigorous mathematical de�nition of
the semantic foundations of ASMs, we however refer to [19] and [20]. A compre-
hensive treatment of the methodological background on ASM-based modeling,
validation and veri�cation of complex systems can be found in [9].

2.1 The Basic ASM Model

An ASM A is de�ned by its program Prog consisting of a �nite number of tran-
sition rules and its initial state S0. For the de�nition of S0 we assume a given
vocabulary � , where � is a �nite collection of function names and predicate
names, each of a �xed arity. To indicate that a name has a �xed interpretation,
names in � may be marked as static (whereas non-static names may have dif-
ferent interpretations depending on the state of A). � contains an a priori given
set of prede�ned static names including the equality sign, the nullary predicate
names True;False, the nullary function name undef, the universe BOOL, and
the standard Boolean operation names.

States. Mathematically speaking, states of A are �rst-order structures. They
de�ne interpretations of the names in � over a nonempty set X , called the base
set of A. Structures, as considered here, do not contain relations but express
relations through characteristic functions (to which we refer as predicates).

Formally, all functions are total functions on X . Though, it is possible to
imitate partial functions by marking \unde�ned" values with the designated
element undef, except for predicates. By de�nition, the only possible values of
predicates are True;False. Unary predicates have a special role: they are used to
form variants of many-sorted structures on top of ordinary structures2.

Updates. Non-static functions are subject to update operations as follows.
A location of a state S of A is a pair loc = (f; x), where f is a non-static name
in � and x denotes a sequence of elements of X according to the arity of f . An
update of S is a pair � = (loc; y), where y 2 X is the new value to be associated
with the location loc of S.

To �re � at S means to transform S into a state S0 of A such that3 fS0(x) = y,
and all other locations loc0 of S, loc0 6= loc, remain una�ected. An update set

� over S is a set of updates of S. � is consistent , i� it does not contain any
two updates �; �0 such that � = (loc; y) and �0 = (loc; y0) and y 6= y0. To �re a
consistent update set � at a state S means to �re all its members simultaneously
at S, i.e. to produce a new state S0 such that

fS0(x) =

�
y; if ((f; x); y) 2 �
fS(x); otherwise.

2 For instance, the universe BOOL denotes the set of all elements x within the base
set X such that BOOL(x) holds (these are of course only the elements denoted by

True;False).
3
The notation fS0 is used to denote the interpretation of the function f in state S0

.

1384 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

To �re an inconsistent update set means to do nothing (i.e., to produce a state
S0 such that S0 = S). In this way, computations are modeled through (�nite
or in�nite) runs of A as sequences of ASM states S0 S1 S2 : : :, such that Si+1 is
obtained from Si by �ring �Si

on Si (i � 0).
Instructions. Updates are speci�ed by the transition rules of Prog in terms

of update instructions of the basic form

f(t1; : : : ; tn) := t0 (n � 0);

where f(t1; : : : ; tn), t0 are terms over � identifying the location to be changed
and the new value to be assigned. The construction of complex transition rules
out of basic update instructions is inductively de�ned by means of ASM rule
constructors. For brevity, we explain the meaning of ASM rules as employed in
the abstract machine model of SDL (see Sect. 3) only informally and refer to
[19] resp. [20] for a rigorous semantic de�nition. Nevertheless, it should easily
be possible to get a su�ciently detailed understanding without consulting the
formal semantic de�nition.

2.2 Multi-Agent Real-Time ASMs

In the sequel, we concentrate on concurrent and reactive systems that are em-
bedded into some given physical environment to which we refer as the (external)
environment. While performing permanent interactions with the environment,
the operations of these systems are subject to external timing constraints (see
Sect. 2.2.2). The mathematical model we use to describe the behavior of the sys-
tem class considered here is based on multi-agent real-time ASMs as detailed
below.

A particular important modeling aspect is the dependency of the system
behavior on externally controlled conditions and events. To clearly identify the
embedding of a system model into a given environment, it is expedient to classify
ASM functions depending on whether and how they may (or may not) change
during a run.4

{ A static function never changes; the name of a static function has the same
�xed interpretation independent of a particular ASM state.

{ A controlled function can be updated as speci�ed by the ASM program; the
name of a controlled function may have di�erent interpretations in di�erent
ASM states.

{ A monitored function represents a read-only function of the ASM program;
though it must not be updated by the ASM itself, it may be altered by the
external environment. Accordingly, the name of a monitored function can
have di�erent interpretations in di�erent ASM states.

Controlled functions and monitored functions represent non-static mathematical
objects and are therefore also called dynamic functions.

Finally, there is a more subtle class of functions in addition to the ones de-
scribed above. To model interactions between a system and its environment it

4
We use here the terminology introduced in [7], which is essentially based on the

classi�cation scheme de�ned in [9] (though the naming is di�erent).

1385Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

is sometimes required to have functions which are partly controlled and partly
monitored at the same time (as will be exempli�ed in Sect. 3.1.3). These are
called interaction functions. A reasonable integrity constraint for interface func-
tions is that no interference with respect to mutually updated locations must
occur.

2.2.1 Multi-Agent ASMs

A multi-agent
5 ASM A consists of multiple autonomous agents cooperatively

performing concurrent computations of A. Agents communicate asynchronously
through globally shared ASM states. The behavior of an agent a is de�ned
through Prog(a), the program module associated with a. Assuming a statically
de�ned set of modules, a unary dynamic function Mod assigns to each of the
agents one of these modules.6

A special nullary function Self is used by the agents as a self reference (Self
returns di�erent values when called by di�erent agents). Each agent a has its own
partial view Viewa(S) on a given global state S of A on which it �res the rules in
Prog(a) { see Fig. 1. The underlying semantic model ensures (by restricting the
class of admissible runs of A) that the order in which the agents perform their
operations is always such that no conicts arise (for details see the de�nition of
partially ordered runs in [19]).

ASM Agents

a

b

c

ASM Program

Global State S

aView (S)

bView (S) cView (S)

Prog(a)

Prog(b)

Prog(c)

Modules

M1
M2

M3

Self

Figure 1: Multi-Agent ASM scheme with three agents and three modules

5 Formally, the meaning of the notion of multi-agent ASM, as it is used here, is identical
with the meaning of distributed ASM as de�ned in [19] (where the term distributed
actually refers to the distribution of control rather than to the distribution of data).

6 Note thatMod allows to de�ne (or to rede�ne) the behavior of agents dynamically; it
is thereby possible to create new agents at run time. In a given state S of A the agents
of A are those elements a from the underlying base set such that ModS(a) 6= undef.

1386 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

2.2.2 Real-Time ASMs

Telecommunication systems are in principle real-time systems as they must re-
spond within certain time limits7. To model the dynamic properties of SDL,
including timing behavior, we apply the concept of real-time ASMs as de�ned
by Gurevich and Huggins in [17]. Real-time ASMs impose additional constraints
on the notion of run and thereby provide a restricted class of ASMs with agents
performing instantaneous actions in continuous time. For the purpose considered
here, it is important that agents �re their rules at the moment they are enabled.
Additionally, we assume that changes in the environment take also place instan-
taneously. We outline here only the basic idea and refer to the original de�nition
for further details.

SDL uses the expression now to represent the global system time, where the
possible values of now are given by the prede�ned SDL sort Time 8. We therefore
introduce a nullary monitored function now taking values in a corresponding
domain TIME

now : TIME; TIME � R:

For the construction of our model assume a given vocabulary � containing
TIME (but not now) and let �+ be the extension of � with the function symbol
now. Restrict attention to �+-states where TIME is identi�ed with R and now

evaluates to a real number. One can then de�ne a run R of the resulting machine
model as a mapping from the interval [0;1) to states of vocabulary �+ satisfying
the following discreteness requirements, where �(t) is the reduct9 of R(t) to � :

1. for every t � 0, now evaluates to t at state R(t);
2. for every � > 0, there is a �nite sequence 0 = t0 < t1 < : : : < tn = � such

that if ti < � < � < ti+1 then �(�) = �(�).

Based on this notion of run, one can then de�ne a computation model in
which agents �re their rules immediately. Intuitively, that means that an agent
�res a rule as soon as the enabling condition expressed by the guard of the rule
becomes true. Strictly speaking, one has to be more careful about the precise
meaning of `immediate' (as explained in [17]). Nevertheless, we can assume here
that an agent which is enabled at time t to �re a certain rule actually �res
the rule not later than t + � (for some in�nitely small �). By adding further
constraints on how basic functions evolve, the model in [17] is such that internal
updates (as performed by the agents) and external updates (as performed by
the environment) do not interfere.

7
According to [25], time supervision in telecommunication systems is typically used
for purposes such as the following: to control the release of limited resources, to
control answers from unreliable resources, or to issue actions on a regular basis;
whether the time constructs of SDL are su�cient for speci�c real-time requirements
depends very much on the particular application.

8 Time values are actually real numbers with restricted operations (see Appendix D

to Z.100); SDL does in particular not de�ne a notion for scaling time (it is merely

assumed that the same scale of time is used throughout an entire system description).
9
That is, for a given value t, we obtain �(t) from R(t) by ignoring the interpretation
of the function name now.

1387Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

2.3 Notational Conventions

The construction and the understanding of the model is considerably simpli-
�ed through its modular structure. In particular, the use of macros for de�ning
subrules naturally enables stepwise re�nements leading through a hierarchy of
abstraction levels.

To further increase the readability of our formal model, we use the fol-
lowing notational conventions. Macro names are written in Small Caps (e.g.,
DeliverToProcess(::)), domain names in capitalized italics (e.g., BOOL),
function names in small italics, and predicate names are written in italics in
the form CondName. The names of ASM modules are written in Sans Serif (e.g.,
Timer Module).

Closing constructs of rules (like the endif of an if construct) are omitted if
the meaning is clear from the context. For layout reasons we write elif instead
of elseif. Finally, SDL keywords are written in bold font.

3 An Abstract SDL Machine

We de�ne our mathematical model of the dynamic properties of SDL in terms
of an abstract SDL machine using the concept of multi-agent real-time ASM as
a formal basis. To ensure that the resulting description is easily readable and
understandable, our model reects the common view on SDL systems and also
adopts the standard terminology of SDL.

For the construction of the abstract machine model, we assume to have states
of a �xed vocabulary �SDL. The names in �SDL denote various static/dynamic
domains together with various static/dynamic functions and predicates de�ned
on them. Functions are regarded as partial functions (whereas predicates are
total { see Sect. 2.1), where we assume the default value of those locations which
are not explicitly de�ned to be undef resp. False.

Our abstract machine model describes the functional behavior and the tim-
ing behavior of an SDL system in terms of the behavior of its active compo-
nents, namely: processes, timers and channels. Accordingly, we have three basic
ASM modules|called Process Module, Timer Module and Channel Module|to
be executed by a set of concurrently operating ASM agents, where we identify
a separate agent10 with each instance of a system process, each timer instance,
and each delaying channel. We start by de�ning our ASM representation of the
main SDL objects out of which an SDL system is composed.

3.1 ASM Representation of SDL Objects

An SDL system consists of a �xed number of statically interconnected blocks.
Blocks are connected to each other and to the system environment by means of
channels. The concept of block partitioning allows to recursively de�ne the system
structure: blocks may further be decomposed into subblocks connected (to each
other and/or to the enclosing block) through channels; at the bottom level, a
block contains a at collection of processes connected (to each other and/or

10 Recall that the association of ASM agents to the modules they execute is formally
de�ned by the function Mod (see Sect. 2.1).

1388 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

to the enclosing block) through signal routes.11 In Basic SDL the structuring
concept is however restricted to a two-level hierarchy: a system model consists
of blocks containing processes but no further blocks. Figure 2 shows an example.

system X

c1

c3

c2

block Y

r1

r2

r3

r4

Process_A

Process_B

block Z

r5

r6

Process_C

Figure 2: Structural organization of an SDL system
12

SDL de�nes a distributed computation model based on concurrently operat-
ing and asynchronously communicating processes. Processes interact with each
other as well as with the common environment by sending and receiving signals
via channels and signal routes. Each process has its own input bu�er keeping
signals until the process is ready to actively receive them.

Exchange of signals is in fact the only form of interaction between a system
and its environment. Even though the behavior of the environment is basically
unpredictable, it is expected that the environment behaves in an SDL-like fash-
ion through a corresponding set of environment processes. In particular, one can
assume that the environment knows the system speci�cation and acts in com-
pliance with the constraints and requirements given by it.

Types, Instances and Sorts. A fundamental concept of SDL is the distinc-
tion between object types and object instances. Accordingly, a system instance is
organized as a collection of named instance sets (e.g., block instance sets, process
instance sets and Signal instance sets), each of which represents the instances of

11
Note that SDL does in particular not allow to have blocks containing both subblocks
as well as processes.

12
We apply here the graphical representation format of SDL.

1389Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

a particular type; i.e., instance names (e.g., process names and signal names) re-
fer to the type. If the context is clear, we sometimes use a less strict terminology
avoiding to permanently mention the distinction between type and instances; in
particular, we often use `process' as a synonym for `process type' and `signal' as
a synonym for `signal instance'.

In the abstract machine model the various instance sets of an SDL sys-
tem are given through a number of static domains|e.g., BLOCK, CHANNEL,
SIGROUTE, PROCESS and SIGNAL|such that each element of these domains
denotes a particular instance set. The instances itself are represented as follows.

For blocks, channels and signal routes the situation is particularly simple
as there is a one-to-one correspondence between types and instances so that the
elements of BLOCK, CHANNEL and SIGROUTE can directly be identi�ed with
their respective instances. Process instances and signal instances need however
to be represented in a di�erent way, as will be explained in Sect. 3.1.1.

For the representation of (prede�ned and user-de�ned) SDL sorts we intro-
duce another static domain SORT (i.e., the elements of SORT are identi�ed
with the sort names). In our model we need however not to distinguish the sorts
of individual values and therefore assume that all values are uniformly repre-
sented as elements of a domain VALUE. Additionally, we assume to have some
abstract representation for expressions in terms of a domain EXPRESSION in
combination with a corresponding evaluation function:

eval : EXPRESSION! VALUE:

3.1.1 Processes and Signals

Process instances are uniquely identi�ed through process instance identi�ers

(PIds) as represented by a dynamic domain PID. For special purposes (e.g.,
such as initialization) PID contains a designated element null, which does not
refer to a valid process instance. In order to distinguish between system process
instances and process instances within the system environment13, we assume
that PID consists of two disjoint subsets, PID = PIDsys [PIDenv , where PIDsys

and PIDenv respectively denote the instances of system processes and those of
environment processes.

SDL provides four built-in operations on process identi�ers: self, sender,
o�spring and parent (see Sect. 2.4.4 of [27]). We de�ne analogous functions
on PID, namely Self, sender, o�spring and parent, each of which yields a cor-
responding PId value. For a given process instance p 2 PID the meaning is as
follows14: Self is equal to p; sender(p) identi�es the process instance from which p
has most recently received a signal (if de�ned); o�spring(p) identi�es the process
instance most recently created by p (if any); parent(p) yields the process instance
that has created p.15

13 The PId values of environment process instances must be distinguishable from any
of the PId values within the system (see Sect. 1.3.2 of [27]).

14 The default meaning of the function Self in the multi-agent ASM model (see

Sect. 2.2.1) actually coincides with the meaning of the SDL function self.
15

For all process instances present at system initialization, the prede�ned value of
parent is null, and for all newly created process instances, the prede�ned value of
sender and o�spring is null (see Sect. 2.4.4 of [27]).

1390 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

The relation between process instances and process types is de�ned through
the following dynamic function

procname : PID! PROCESS:

The use of formal parameters in the de�nition of processes allows to instanti-
ate certain variables when creating process instances. Assuming a corresponding
domain VARIABLE, the association of processes with their formal parameters
is expressed by the following function

fpar : PROCESS! VARIABLE
�:

Process Instance Sets. Process instance sets may grow and shrink dy-
namically during the execution of an SDL system. For each process type the
initial number and the maximum number of process instances of that type can
be speci�ed by means of two unary static functions

initial instances;maximum instances : PROCESS! N: 16

Representation of Signal Instances. Signal instances form the elemen-
tary units of communication. Our model represents signal instances as elements
of a dynamic domain SIGINST. To access the relevant information associated
with signal instances, we introduce a number of operations on SIGINST, as fol-
lows: signame yields the signal type as an element of SIGNAL; values yields an
optional list of signal values from the domain VALUE

�; senderid and receiverid

refer to elements of PID; and path yields a value from a domain PATH (as will
be explained in Sect. 3.2).

In addition, we de�ne receivername on SIGINST, where env denotes the ex-
ternal system environment (see Sect. 3.1.3).When applied to some si 2 SIGINST,
the expression receivername(si) has the following meaning:

receivername(si) =

(
procname(receiverid(si)); if receiverid(si) 2 PIDsys

env; if receiverid(si) 2 PIDenv

undef; otherwise.

Representation of Input Bu�ers. With each element of PIDsys we as-
sociate a uniquely determined input bu�er (also called input queue in Z.100) as
expressed by means of a dynamic function

bu�er : PID! SIGINST
�;

where the elements of SIGINST � denote (possibly empty) sequences of signal
instances on which we apply standard operations head; tail with their usual mean-
ing. empty bu�er denotes the empty input bu�er.

16
If for some given p 2 PROCESS the de�nition of p leaves the initial num-
ber of instances unspeci�ed, the default value of initial instances(p) is one, i.e. in
the initial state p contains exactly one process instance; an unspeci�ed max-
imum value means that p may contain arbitrary many process instances. (If

initial instances(p) and maximum instances(p) are both de�ned, it is of course re-

quired that initial instances(p) � maximum instances(p).)

1391Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

3.1.2 Channels and Signal Routes

Channels and signal routes form unidirectional or bidirectional connections for
the transportation of signals. Accordingly, they consist of one or two directed
paths, called channel paths respectively signal route paths. A channel may delay
the transmission of a signal for an indeterminate and non-constant time interval.
In spite of this behavior, signals are always conveyed in a FIFO order.

In SDL-92, it is possible to mark a channel as non-delaying (as indicated by
the SDL keyword nodelay), which means that the channel does not introduce
any delay in conveying signals (while the default behavior is delaying). Signal
routes do however always behave like non-delaying channels.

An SDL channel speci�cation has basically the following form

channel channelname
[nodelay]
from fblocknamejenvg to fblocknamejenvg
with signalnamef; signalnameg�;
[from fblocknamejenvg to fblocknamejenvg
with signalnamef; signalnameg�;]

endchannel;

where the from/to-parts denote directed connections between a block and an-
other block or the environment env. The with-part identi�es the signal types
that the channel is able to convey; i.e., a channel can only be used by signal in-
stances of the declared types. Signal routes are analogously speci�ed as directed
connections between processes within the same block or between a process and
its block environment.

signalroute signalroutename
from fprocessnamejenvg to fprocessnamejenvg
with signalnamef; signalnameg�;
[from fprocessnamejenvg to fprocessnamejenvg
with signalnamef; signalnameg�;]

To model channels and signal routes according to the view of SDL, we intro-
duce static domains CH PATH and SR PATH in combination with static unary
functions from; to and with de�ned on CH PATH[SR PATH. from; to yield ele-
ments from BLOCK[PROCESS[fenvg, while with yields subsets of SIGNAL.
To associate the elements of CH PATH and SR PATH|i.e., the underlying di-
rected connections of channels and signal routes|to the corresponding elements
of CHANNEL and SIGROUTE, we use two unary static functions:

channel : CH PATH! CHANNEL; sigroute : SR PATH! SIGROUTE:

SDL reasonably restricts the de�nition of channels and signal routes through
the following constraints:

1. 8x; y 2 CH PATH :
x 6= y ^ channel(x) = channel(y)) from(x) = to(y) ^ from(y) = to(x)

2. 8x; y 2 SR PATH :
x 6= y ^ sigroute(x) = sigroute(y)) from(x) = to(y) ^ from(y) = to(x)

3. 8x 2 CH PATH [SR PATH : from(x) 6= to(x)

1392 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

According to the de�nition of the abstract SDL machine, as given so far, a
delaying channel is identi�ed with a channel agent, i.e. with an element ch 2
CHANNEL such that the following predicate holds

Delaying(ch) � Mod(ch) = Channel Module

(whereas a non-delaying channel ch has no behavior, i.e. Mod(ch) = undef).

Representation of Channel Queues. With each direction of a delaying
channel SDL associates a channel queue

17 holding signals which are presently
in transit on the channel. We model channel queues through a dynamic function
queue as �nite sequences of signal instances.

queue : CH PATH! SIGINST
�

Figure 3 illustrates the representation of delaying channels in the abstract SDL
machine.

Channel_Module

Channel Agent

CH_PATH

Mod(x)
x

CHANNEL

chp2channel()

chp1channel()

chp2

chp1

... ...
chp1queue()

chp2queue()

x

chp

...

∈

∈

...

(channel operations)

j

Figure 3: ASM representation of a bidirectional delaying channel

3.1.3 The External Environment

Consider the dependency of an SDL system from its external environment, es-
pecially, the fact that the functional behavior and the timing behavior of the
system is manipulated in various ways by external conditions and events. Typ-
ical examples are the signal transfer on delaying channels or the representation
of the global system time. Even though such external dependencies are actually
outside the scope of an SDL system description one can often make reasonable as-
sumptions about the behavior of the environment. For instance, one can assume
that time values increase monotonically. Concerning the behavior of channels,
the following constraints are assumed (see Sect. 2.5.1 of [27]): (i) signal transfer
via channels is reliable; (ii) the propagation of signals with respect to a given

17 There are no a priori given restrictions on the length (or size) of channel queues.

1393Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

channel is order-preserving; (iii) the time interval delaying the transfer of a
signal is indeterminate and non-constant but �nite.

To cope with that kind of interface problems, the mathematical concept of
externally alterable functions, viz. monitored functions and interaction functions
(see Sect. 2.2), o�ers a convenient abstraction mechanism; i.e., an instrument to
model the system behavior at a level of detail and precision that reects our
intuitive understanding as close as possible. Even with a vague or uncertain
understanding of the external environment (i.e., without having complete de�n-
itions) one can often restrict the admissible class of functions through integrity

constraints stating assumptions on the expected behavior, as will be illustrated
below.

System Time and Signal Delays. Recall that the monitored function
now (see Sect. 2.2.2) represents the global system time. To model the delaying
behavior of channels, we introduce a monitored predicate InTransit:

InTransit : SIGINST� CH PATH! BOOL:

The meaning of InTransit is as one expects: InTransit(s; chp) holds for some
signal instance s 2 SIGINST and delaying channel path chp 2 CH PATH i� the
following two conditions do so:

(1) s is contained in queue(chp),
(2) the transmission of s on chp has not yet been completed.18

With respect to the SDL requirements on signal transfer via delaying channels, as
stated above, (i); (ii) are formalized by the representation of channel queues (and
the operations on channel queues). Requirement (iii), however, is a necessary
integrity constraint on the predicate InTransit.

Signals from the Environment. In order to receive signals from the
environment19, we allow that the respective channel queues and input bu�ers (as
detailed below) may be updated by the environment, as well. Accordingly, the do-
main SIGINST together with the operations on signal instances (see Sect. 3.1.1)
and the functions bu�er,queue are internally as well as externally alterable under
the integrity constraint that the system and the environment do not interfere.
More precisely, the functions bu�er and queue are externally alterable only at
the locations identi�ed by the two sets Pidext and Chpext (where Pidext will be
de�ned in Sect. 3.2.1):

Chpext = fp j CH PATH(p) ^ Delaying(channel(p)) ^ from(p) = envg:

Environment Processes. The creation and termination of process in-
stances in the environment a�ects the domain PID (through PIDenv) as well
as the operations on PID (see Sect. 3.1.1). That means, PID and the operations
on PID have to be considered as interaction functions. Concurrent updates of
PID, as performed by the system and the environment, cannot cause any con-
icts since PIDenv and PIDsys resp. refer to disjoint sets.

18 The second condition typically depends on external behavior (e.g., of the communi-

cation network); as such it is controlled by the environment and can only be observed
within an SDL system.

19 The transfer of signals in the opposite direction, i.e. from the system to the environ-
ment, will be de�ned in Sect. 5.2.

1394 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

Table 1 gives an overview of the domains, functions and predicates linking
the abstract SDL machine model to the external world.

Identi�er Function Type Intended Meaning

Domains

PIDenv monitored Environment process instances

SIGINST interaction Signal instances

Functions

now monitored Global system time

o�spring interaction

... ... Operations on PID (see Sect. 3.1.1)

sender interaction

signame interaction

... ... Operations on SIGINST (see Sect. 3.1.1)

path interaction

bu�er interaction input bu�ers

queue interaction channel queues

Predicates

InTransit monitored Delaying behavior of channels

Spontaneous monitored Transition behavior (see Sect. 5.3)

Table 1: Interfaces between the model into the external environment

3.1.4 The Initial State

A complete de�nition of the ASM interpretation model for a given SDL system
is obtained by encoding the SDL system representation20 into the internal ASM
representation scheme. In other words, the mathematical objects forming the
initial state of the machine model (i.e., the domains, functions and predicates
de�ned on the underlying base set|except for the prede�ned components) have
to be extracted from the SDL description by means of a preprocessing step.
Since that is primarily a question of mechanization (using standard compiler
techniques and tools) and concerns the static semantics of SDL, we avoid the
details here. Instead, we introduce the employed encoding scheme abstractly by
means of a mapping ` [[]] '. The basic idea is exempli�ed below (for a comprehen-
sive treatment see also [22]).

As a primitive example for the representation of syntactical objects consider
the encoding of an SDL process de�nition. Assume that a process type named
Server is to be de�ned. The initial number and the maximum number of process
instances of type Server is 2 resp. 16. Figure 4 sketches the resulting structure

20
We restrict here on textual representations of SDL systems which are syntactically
correct and consistent with the static and dynamic semantics as de�ned in the Z.100
Recommendation for Basic SDL. Additionally, we assume that shorthand notations,
e.g. as o�ered by the so-called additional concepts of Basic SDL (like RPC or con-
tinuous signal { see Sect. 4 of [27]), have been eliminated by transforming them into
equivalent primitive concepts.

1395Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

(where NAT denotes the domain of natural numbers). For brevity, the main part
of the de�nition, as represented by the body of the process Server, is left out.
As will be explained in Sect. 5.1, the control ow and the SDL statements is to
be encoded into a set of owcharts associated with [[Server]] .

process

endprocess

. . .

Server (2, 16) ;

;

2

16

PROCESS

PID initial_instances

maximum_instancesprocname

Base Set

Encoding

NAT

Server

Figure 4: Encoding of the process Server

3.2 Global Communication via Channels and Signal Routes

The static interconnection structure of an SDL system is de�ned through a �nite
set of communication paths. A communication path consists of a concatenation of
channel paths and signal route paths and forms a directed global connection for
the transportation of signals; as such it is part of the information to be associated
with an SDL signal. To each signal instance a uniquely identi�ed communication
path leading from the sender to the destination is assigned at the moment the
signal instance is created.

In order to simplify the modeling of signal transfer operations (as presented
in Sect. 5), we address here some essential properties of the underlying commu-
nication mechanism. Section 3.2.1 de�nes the abstract machine representation
of communication paths. The representation of a given interconnection structure
is then explained in Sect. 3.2.2 in terms of the resulting reachability constraints.

3.2.1 Representation of Communication Paths

Communication paths are speci�ed by means of connect-statements. A connect-
statement attaches a channel to one or more signal routes of a given scope unit,
where the scope unit for a signal route is de�ned to be the enclosing block. The re-
sulting topological information can directly be represented by means of a binary

1396 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

static predicate Connected. Additionally, we use a unary static function scope to
associate the elements of SIGROUTE with those of BLOCK according to the
scope de�nitions of an SDL description. For given elements ch 2 CHANNEL,
sr 2 SIGROUTE the possible values of Connected are restricted by the following
constraint:

Connected(ch; sr),
9 block 2 BLOCK : scope(sr) = block
^ 9 srp 2 SR PATH : sigroute(srp) = sr
^ 9 chp 2 CH PATH : channel(chp) = ch
^ ((to(srp) = env ^ from(chp) = block)

_(to(chp) = block ^ from(srp) = env)):

To represent the communication paths that can be derived from a given SDL
description (by means of simple static analysis) in a uniform way, we intro-
duce a static domain PATH in combination with a number of path constructors.
As far as Basic SDL is concerned, the situation is particularly simple because
of the restriction to a two-level hierarchy (see Sect. 3.1). We can thereby re-
strict on four basic path constructors to de�ne the elements of PATH|namely,
path within block, path between blocks, path to env and path from env|having
the following meaning: 21

1. path within block : SR PATH! PATH de�nes the encoding of signal routes
between processes of the same block as elements of PATH;

2. path between blocks : SR PATH�CH PATH�SR PATH! PATH represents
paths between processes that are assigned to di�erent blocks;

3. path to env : SR PATH�CH PATH! PATH represents paths leading from
a system process to the environment;

4. path from env : CH PATH � SR PATH ! PATH represents paths leading
from the environment to a system process.

Using the above de�nitions we can now provide the exact meaning of Pidext
(introduced in Sect. 3.1.3):

Pidext = fpid j PID(pid) ^ 9chp; srp; p : CH PATH(chp) ^ SR PATH(srp)
^ PATH(p) ^ p = path from env(chp; srp)
^ :Delaying(channel(chp)) ^ to(srp) = procname(pid)g:

3.2.2 Static Reachability Constraints

Consider the complete set of communication paths of a given SDL system. For
each individual process instance set of the system one can now derive the subset
of all communication paths leading from the respective process instance set to
some other process instance set or to the external environment. Additionally,
one can derive the set of signals that each path is able to convey. As result one

21
Note that we can easily extend this representation to the more general SDL model
with block partitioning. Even though path from env is actually not needed for the
model as presented here (as the behavior of processes in the system environment is

not explicitly addressed), we merely mention this path constructor for the sake of
completeness and symmetry.

1397Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

obtains the so-called Reachability set22 of a process instance set (see Sect. 6.4 of
Annex F3 to [27]), which is required to de�ne the signal output behavior (see
Sect. 5.2).

In general, a Reachability set may contain more than one communication
path that is able to convey a certain signal to a speci�ed destination. To fur-
ther restrict the set of applicable paths, an SDL output statement (as will be
explained in Sect. 5.2) may specify a number of path components (i.e., channel
paths and signal route paths) that a matching path must contain. Neverthe-
less, the destination address and the information on the communication path
may be ambiguous and incomplete; in particular, there may exist several valid
destinations as well as more than one path to reach a certain destination.23

To solve the possible ambiguities, SDL chooses nondeterministically among
the existing alternatives as represented by the respective Reachability set. With
respect to a given output statement (see Sect. 5.2) that means, a matching re-
ceiver/path combination is to be selected depending on the signal type, the des-
tination address (i.e., the to-argument) and the given path constraints (i.e., the
via-argument). If no such combination exists, a signal will not be generated.

Selection of Receiver and Path. We assume here that all possible re-
ceiver/path combinations, as identi�ed by the Reachability set associated with
a process instance set, are represented through a (possibly empty) set of tuples
hp; ri, each of which speci�es a receiver process r 2 PROCESS [fenvg and a
communication path p 2 PATH.

In order to obtain a concise representation, it is convenient to determine the
required reachability information by means of an abstract function

choose reachability : PID� SIGNAL

�(PROCESS [PID [fundefg)
�(SIGROUTE � [CHANNEL

� [fundefg)
! PATH� (PROCESS [fenvg)

such that choose reachability when applied to the arguments as provided by
an SDL output statement|namely: Pid (the sender process instance), SName
(the signal type), ToArg (specifying the receiver), ViaArg (specifying the path
constraints)|yields a tuple hp; ri from the corresponding Reachability set, pro-
vided that this set is nonempty, and hundef; undef i, otherwise. For given ar-
guments Pid, SName, ToArg, ViaArg the meaning of choose reachability is as

22
The computation of the Reachability sets is completely deterministic and can be
carried out by means of a preprocessing step. Sect. 6.4 of Annex F3 to [27] describes
an incremental construction procedure determining for each channel path and each
signal route path of a system the corresponding Reachability set. The basic idea is
to compute the required reachability information on the basis of inductively de�ned
ingoing and outgoing partial Reachability sets, as associated with the adjacent paths
segments of a given channel path or signal route path. With Basic SDL the situation
is particularly simple because of the two-level hierarchy.

23
If an output statement does neither specify a receiver nor a communication path,
any process instance of the system for which there exists a suitable communication
path may actually receive the resulting signal (see Sect. 2.7.4 of [27]).

1398 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

follows:

choose reachability(Pid;SName;ToArg;ViaArg) =(
hp; ri; if 9 p 2 PATH 9 r 2 PROCESS [fenvg :

Reachable(p; r;Pid;SName;ToArg;ViaArg)
hundef; undefi; otherwise;

where Reachable represents a static predicate that holds on the arguments Pid,
SName, ToArg, ViaArg i� the choice of hp; ri is compatible with the combination
of values of ToArg;ViaArg (see Sect. 5.2) and p is able to convey a signal of type
SName from the sender Pid to the destination r.

With respect to a possibly nondeterministic choice to be made in order to
select hp; ri, we additionally assume that the following constraint holds. In case
that the underlying Reachability set contains another matching tuple hq; si, in
addition to hp; ri, and in the given ASM state the process instance set denoted
by s is non-empty than the process instance set denoted by r is non-empty as
well.

4 Behavior of Channels

The module Channel Module consists of a single rule expressing how a channel
agent delivers signal instances to speci�ed receivers. In each computation step
a channel agent c checks for each path chp such that chp is a channel path of
c (i.e., channel(chp) = c) whether there is a signal instance s which has been
conveyed on chp and can now be delivered to its destination.

In the rule below the selection of channel paths to be checked is speci�ed by
means of the do forall-construct. That is, the guarded update instruction in
the body of the do forall-construct is applied to all elements chp in CH PATH

such that channel(chp) = Self. Provided that the condition stated by the aux-
iliary predicate ReadyToDeliver holds on chp, a corresponding signal instance
from the channel queue of chp actually reaches its destination.

Depending on the location of the destination process instance, we can distin-
guish two cases: s is either appended to the input bu�er of some system process
instance (as stated by DeliverToProcess(s)) or it is delivered to the environ-
ment env (as stated by DeliverToEnv(s)). Since the propagation of signals
within the external environment is outside the scope of the model captured by
the de�nition of SDL, DeliverToEnv(s) is consequently left abstract.

DeliverSignals

� do forall chp : CH PATH(chp) and channel(chp) = Self

if ReadyToDeliver(chp) then

queue(chp) := tail(queue(chp))
let s = head(queue(chp)); r = receivername(s) in

if r = env then

DeliverToEnv(s)
else

DeliverToProcess(s; r)
where

ReadyToDeliver(chp)
� 9s : SIGINST(s) ^ s = head(queue(chp)) ^ :InTransit(s; chp)

1399Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

DeliverToProcess(::) needs to distinguish whether the signal instance
SInst is to be delivered to an arbitrary process instance of the process instance
set PName (i.e, if no receiver PId is de�ned) or to a particular process instance
as identi�ed through its PId.

Now, it may of course happen that the speci�ed process instance does not
exist anymore when SInst eventually arrives at the end of the communication
path. Similarly, the nondeterministic choice does not necessarily yield a de�nite
result24 (since all instances of PName may already have terminated their exe-
cution). It is therefore to be checked prior to delivering SInst whether a valid
receiver exists.

Whenever no receiver exists, Z.100 assumes (see Sect. 2.7.4 of [27]) that the
signal instance is discarded25. In our model there is however no need to discard
SInst from SIGINST (what we could easily do) as it will not be referred to any
further.

DeliverToProcess(SInst;PName)
� let PId = receiverid(SInst) in

if PId = undef then

choose p : PID(p) and procname(p) = receivername(SInst)
bu�er(p) := bu�er(p)_hSInsti

else

if PIDsys(PId) then

bu�er(PId) := bu�er(PId)_hSInsti

5 Behavior of Processes

The underlying model of SDL processes is that of an Extended Finite State
Machine. When started, a process performs a start transition and enters its �rst
state. While executing a transition, the process may perform certain actions (e.g.,
sending or receiving signals or assigning values to variables). On completing a
transition the process enters its next state.

Regarding the behavior of processes one can identify two basically di�erent
modeling aspects, namely: modeling of control ow and modeling of signal trans-
fer operations and timer operations. To exemplify the formalization of typical
SDL features, we concentrate here on the latter aspect (Sect. 5.2-Sect. 5.4), while
control ow is addressed only very briey26 (Sect. 5.1). The resulting description
forms the Process Module of the abstract machine model.

24
Note that a choose-construct does not a�ect the ASM state if the underlying set is
empty (i.e., in that case the subrule in the body of the choose-construct is simply

ignored { see [20]).
25 Here arises an interesting question, which is not completely answered by the de�n-

itions of Z.100: does the fact that the environment may continue to send signals to
an SDL system even when no process instances are left mean that such a system still
has a behavior?

26
See [22] for a thorough description of control ow related behavior.

1400 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

5.1 Modeling of Control Flow

We model control ow through operations on transition diagrams, usually called
owcharts

27. Flowcharts provide a direct and intuitive means to formalize the
control ow part as de�ned by the body of an SDL process. For each process
type we derive a collection of owcharts from the textual representation of an
SDL system description. The start transition and each of the state descriptions
in a process body are represented by separate owcharts.

A owchart is a directed graph with attributed nodes and labeled arcs. In our
formal model of owcharts, we represent nodes as elements of a domain NODE;
additional domains|such as STATEMENT, ARGUMENT, LABEL, STATE
and RANGE|are used for the representation of node attributes. Arcs are im-
plicitly given through various operations de�ned on NODE. While processing a
owchart, a process agent or timer agent can then access the relevant information
as explained below (where we consider here only the basic operations).

Consider a collection of owcharts to be associated with some process agent
denoted through Self. The actual owchart node to be examined in a given
abstract machine state is identi�ed by node(Self). start(procname(Self)) yields
the node to start with. For an arbitrary node n the two functions stmt(n) and
args(n) yield an SDL statement together with the corresponding arguments (see
Fig. 5).

start(process)

n
stmt(n)
args(n)

next(n)

Figure 5: Representation of owchart nodes

For the representation of edges we use three di�erent functions. If there is no
branching, next(n) points to the unique successor of node n. Otherwise, there
are two kinds of branching to be distinguished depending on whether an input
statement or a decision statement is to be processed. Below we illustrate the
encoding of input statements in owcharts.

On processing an input statement (see Sect. 5.3) with several alternatives
(i.e., various types of signals that can be consumed or the option of perform-
ing a spontaneous transition) the choice of the successor node is expressed by a
function inputbranch. Fig. 6 shows an example of a owchart fragment as gen-
erated from an SDL state description with two possible inputs. The set of valid
input signals and the set of signals to be saved in state S are given through
corresponding functions inputset and saveset.

27 The idea of modeling control ow by means of owcharts is of course not new; similar
concepts have for instance been applied in ASM-based semantic models of various
other languages (e.g., Occam [8] and C [16]).

1401Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

state S;
 input Sig1;
 task x:=5;
 ...
 input Sig2;
 output Sigout;
 ...
 save Sig3;

inputbranch(n, Sig2)inputbranch(n, Sig1)

S

state
n

node(Self)

output
Sigout

task
x 5:=

Sig1, Sig2}={inputset(n)

Sig3}={saveset(n)

Figure 6: Flowchart generated from an SDL state description

Finally, there are operations on owcharts that allow to switch between the
individual owcharts within the collection of owcharts associated with a process
agent. For instance, in the encoding of a nextstate statement (terminating an
SDL transition) a function stateloc yields the node and the owchart to proceed
with as illustrated in Fig. 7.

As a primitive example of the interpretation scheme controlling the process-
ing of owcharts (as described in [22]) consider the following fragment for an
output statement:

case stmt(node(Self))
.
.
.

output :
OutputSignalInstance(args(node(Self)))
node(Self) := next(node(Self))

.

.

.

endcase

where the rule OutputSignalInstance is de�ned in the Sect. 5.2 on signal
output.

1402 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

state
S

stateloc(processname, S)
nextstate

S

n

Figure 7: Application of the function stateloc

Process Creation and Process Termination. Process instances may
either be created by other process instances or they may be generated as part
of the initial state of an SDL system. In any case, it has to be ensured that the
constraints for the respective process instance set are not violated.

Assuming that PName denotes an element of PROCESS and Params a
matching list of process parameters, the corresponding abstract machine in-
struction CreateProcessInstance(PName;Params) is de�ned below, where
the initialization of variables and the assignment of values is left abstract.

CreateProcessInstance(PName;Params)
� if number of instances(PName) < max instances(PName) then

extend PID with p
procname(p) := PName

Mod(p) := Process Module

parent(p) := Self

o�spring(Self) := p
number of instances(PName) := number of instances(PName) + 1
node(p) := start(PName)
InitializeVars(PName; p)
AssignActualParams(PName;Params; p)

else

o�spring(Self) := null

On processing the SDL statement stop a process instance terminates itself28.
That means, after the interpretation of this statement the process ceases to ex-
ist and thereby also the associated timer instances (see Sect. 5.4) become mean-
ingless. In the abstract machine model a stop condition triggers the following
simultaneous updates to be performed by a process agent (where the subrule
StopTimerInstances is de�ned in Sect. 5.4).

TerminateProcessInstance

�Mod(Self) := undef

PID(Self) := False

StopTimerInstances

28 There is in fact no other way of terminating process instances of an SDL system.

1403Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

5.2 Signal Output

An SDL output statement has basically the following form

output hsignali [(hvalueif; hvalueig�)]
[to hpidi j hprocessi]
[via [all] fhchannelijhsignalroutei f; hchannelijhsignalrouteig�g];

where the signal values, the to-argument and the via-argument are optional;
only a signal name must be speci�ed. The address of a destination process may
either be given explicitly (by the to-argument), implicitly through the system
structure (if there is only one possible destination), or by naming some signal
route or channel in the via-argument.

If the to-argument is de�ned, it either speci�es a PId (i.e., some element
from PIDsys or PIDenv) or it just denotes a process instance set out of which
a receiver process instance is to be selected. Otherwise, if the to-argument is
unde�ned, a destination process instance is to be determined by means of the
associated Reachability set.

The via-argument may state additional constraints restricting the possible
choices of receiver/path combinations. via all represents multicast and is ac-
tually an abbreviation used to send identical copies of a speci�ed signal to all
destinations29 that can be reached (depending on the available paths) from a
given process instance (see Sect. 2.7.4 of [27]); as such it can easily be transformed
into a number of output statements in standard form as part of a preprocessing
step and is therefore not further addressed here.

On processing an SDL output statement a process initiates a send operation
(provided that a valid receiver exists) by creating a new signal instance. In
the corresponding abstract machine instruction30 OutputSignalInstance(::),
as de�ned below, the operations DefSignalInst(::) and SendSignalInst(::)
resp. refer to the creation of the signal instance and to the e�ective output
operation. Note that both operations can occur in the same computation step
of the abstract machine as the new signal instance is not globally visible (and
thus cannot be consumed by another process agent { see Sect. 5.3) prior to the
next computation step.

The arguments of OutputSignalInstance(::) denote the corresponding
parameter values of an output statement, namely the signal type (SName), a
possibly empty list of signal values (Val), the value of the to-argument (ToArg),
and the value of the via-argument (ViaArg). As explained in Sect. 3.2.2, the
function choose reachability is used to determine a matching process instance
set r together with a suitable path p.

Recall that an output statement has no e�ect (i.e., does not generate a signal
instance) in each of the following situations (see Sect. 2.7.4 of [27]):

1. a communication path able to convey a signal of the speci�ed type to the
matching destination does not exist;

29
In combination with the via all option an output statement must not specify any
destination (neither a receiver process instance nor a process instance set).

30
To create a new signal instance s, means to extend the domain SIGINST with some
`fresh', element s (from the base set). The intuitive meaning of this operation is

obvious and requires actually no further explanation. (For a formal treatment of the

semantics of the extend-construct see [20].)

1404 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

2. the speci�ed destination is a process instance which does not exsist;
3. the speci�ed destination is a process instance set which is empty.

OutputSignalInstance(SName;Val;ToArg;ViaArg)
� let hp; ri = choose reachability(Self;SName;ToArg;ViaArg) in

if p 6= undef then

if r = env _ PIDsys (ToArg) _ ValidReceiver(r) then

extend SIGINST with s
DefSignalInst(s)
if PID(ToArg) then

SendSignalInst(s;ToArg; r; p)
else

SendSignalInst(s; undef; r; p)
where

ValidReceiver(r) � PROCESS(ToArg) ^ NonEmpty(r)

NonEmpty(r) � 9x : PIDsys(x) ^ procname(x) = r

DefSignalInst(s)
� values(s) := Val

senderid(s) := Self

signame(s) := SName

path(s) := p
if PID(ToArg) then

receiverid(s) := ToArg

In the de�nition of SendSignalInst(::) the arguments sr; sr0 refer to ele-
ments of SR PATH while chp refers to an element of CH PATH.31

SendSignalInst(SInst;PId;PName;Path)
� if Path = path to env(sr; chp) then

if Delayed(chp) then

EnqueueToChannel(SInst; chp)
else

DeliverToEnv(SInst)
elif Path = path between blocks(sr; chp; sr0) ^Delayed(chp) then

EnqueueToChannel(SInst; chp)
elif PIDsys (PId)then

bu�er(PId) := bu�er(PId)_hSInsti
else

choose p : PID(p) and procname(p) = PName

bu�er(p) := bu�er(p)_hSInsti
where

EnqueueToChannel(SInst; chp)
� queue(chp) := queue(chp)_hSInsti

Delayed(chp) � Delaying(channel(chp))

Even in case that two or more processes concurrently perform send operations
using the same channel path chp of some delaying channel channel(chp), they

31 To improve the readability, we employ here a simple pattern matching notation (with
an obvious meaning) for accessing path components and thereby avoid the explicit
de�nition and use of corresponding selector functions.

1405Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

cannot interfere with each other (as implied by the notion of concurrency in the
semantic model of multi-agent ASMs { see Sect. 2.2.1).

5.3 Signal Consumption

Consider a process instance that is waiting in one of the de�ned process states
(see Sect. 5.1) to perform an input statement. For the process agent processing
the owchart that means that stmt(node(Self)) is equal to state, where node(Self)
identi�es the node in the owchart specifying the current action.

In general, a transition can either be initiated by consuming an input signal
from the input bu�er or, if the process body contains the SDL construct input
none, a transition may as well occur spontaneously (i.e., without consuming
any input signals). The SDL concept of spontaneous transitions allows to choose
nondeterministically between regular transitions and spontaneous transitions.
Formally, this decision can be stated in abstract terms by introducing a unary
monitored predicate Spontaneous 32, as in the following rule.

WaitingInState

� if Waiting then

if RegularTrans then

ConsumeInputSignal

else

SpontaneousTransition

where

Waiting � stmt(node(Self)) = state

RegularTrans

� :(none 2 inputset(node(Self)) ^ Spontaneous(Self))

The dynamic function sender (see Sect. 3.1.1) is used to store the PId of the
sender (as represented by the sender expression of SDL). In case of a sponta-
neous transition, sender refers to the process instance performing the sponta-
neous transition (see Sect. 2.6.6 of [27]). In addition to updating sender accord-
ingly, the process agent switches to the node of his owchart to proceed with,
as identi�ed through inputbranch(node(Self);none).

SpontaneousTransition

� sender(Self) := Self

node(Self) := inputbranch(node(Self);none))

According to the input declaration and the save declaration for SDL states,
there are two disjoint sets of signal types to be associated with a given state. The

32
Note that the value of Spontaneous depends on the particular process instance be-
cause there may be di�erent results for di�erent process instances simultaneously per-
forming such a choice. For the purpose considered here, the ASM choose-construct
o�ers an alternative way of modelling nondeterminism (e.g., by choosing an arbitrary

element from BOOL) with an absolute identical meaning. Whether the decision on

performing a spontaneous transition also depends on the environment (i.e., is treated

as don't-know nondeterminism), as expressed by the predicate Spontaneous, or it

depends only on the abstract machine model (i.e., is treated as don't-care nonde-

terminism), as expressed by the choose-construct, is actually a matter of taste and
has no further impacts on the resulting behavior. In other words, both solutions are
possible.

1406 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

�rst one speci�es which of the signals in the input bu�er are actually considered
as valid input signals. The second one speci�es which signals must be retained
in the input bu�er (to be consumed in another state). Any other signal not
addressed by one of these sets can be discarded through an implicit transition

(some kind of empty transition leading immediately back to the same state).
The detailed input behavior is speci�ed in terms of the abstract machine

instruction ConsumeInputSignal using an auxiliary function next signal (see
below) for computing the content of the actualized input bu�er and the input
signal to be consumed. (For simplicity, the assignment of signal values to the
variables of the process performing the input operation is left abstract).

ConsumeInputSignal

� let hnew bu�er; si = next signal(empty bu�er; bu�er(Self);Self) in

bu�er(Self) := new bu�er

if s 6= undef then

sender(Self) := senderid(s)
AssignValues(inputvars(node(Self); signame(s)); values(s))
node(Self) := inputbranch(node(Self); signame(s))

The recursively de�ned function next signal searches the input bu�er (in a
FIFO order) for a valid input signal. If a matching signal instance is found, it
returns a tuple hnew bu�er; sii consisting of an actualized input bu�er new bu�er

and an input signal instance s; otherwise, new bu�er is identical with the old
input bu�er and s is set to undef.

If the input operation succeeds, new bu�er is obtained from a given input
bu�er by discarding (from the searched part of the input bu�er) the signal
instance which is to be consumed as well as all those signal instances which need
not to be saved in the current state.

Otherwise, if the input operation fails, the input bu�er is completely searched
discarding all signal instances that are not to be saved. (In the owchart the
information on the input signal set and the set of signals to be saved is attached
to node(Self) and can be accessed through corresponding functions inputset,
saveset).

next signal(Saved;Bu�er;Pid) =8>>>>>>>><
>>>>>>>>:

hSaved; undef i; if Bu�er = empty bu�er;
hSaved_Rest; sii; if Bu�er = hsijResti

^ signame(s) in InputSet;
next signal(Saved;Rest_hsii;Pid); if Bu�er = hsijResti

^ signame(s) in SaveSet;
next signal(Saved;Rest;Pid); if Bu�er = hsijResti

^ signame(s) not in SaveSet

^ signame(s) not in InputSet

where

InputSet � inputset(node(Pid)); SaveSet � saveset(node(Pid))

5.4 Timer Operations

An SDL timer is owned by a process instance which controls the timer through
operations set and reset. At any given moment of time a timer may be active

1407Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

or inactive. With an active timer SDL associates either a time value indicating
the expiration time or a timer signal. When a timer expires it creates a timer
signal and appends it to the input bu�er of the owner process in order to notify
the owner process about the timer event. A timer expires as soon as the value
of now becomes equal or greater than the expiration time.

An active timer remains active after it has expired until one of the following
events occur: (1) the timer signal is consumed by the related process instance, or
(2) the related process instance explicitly inactivates the timer through a reset
operation. The latter event also means that the corresponding timer signal is
discarded from the input bu�er of the related process instance.

A process instance may in general employ any number of concurrently op-
erating timer instances, where the timer signals uniquely identify the respective
timer instance they originate from. In other words, timer instances have their
own behavior. The abstract machine model thus identi�es timer instances with
corresponding ASM agents, called timer agents (see Sect. 6). Though several
timer instances of the same process instance may expire simultaneously, they
somehow agree upon the order in which the respective timer signals are to be
appended to the input bu�er of the owner process (as already explained, this
property is ensured by the notion of partially ordered run { Sect. 2.2.1).

Representation of Timer Instances. A timer instance t is uniquely iden-
ti�ed through a triple (Pid,Timer,Params), where Pid denotes the process in-
stance, Timer refers to the name and Params to a list of values33 associated
with t. We therefore introduce a dynamic function

timerinst : PID� TIMER�VALUE
� ! TIMERINST

together with corresponding selector functions owner, timername, params from
TIMERINST into PID, TIMER resp. VALUE �. A dynamic function expire from
TIMERINST to TIME indicates the expiration time associated with t, where
expire(t) is set to undef each time t expires.

ASM agents representing timer instances are created dynamically at the mo-
ment a timer instance is referred to for the �rst time. In general, the �rst use
of a timer may be a set operation as well as a reset operation (see Sect. 2.8 of
[27]),

set (T ime;TName(Params)); reset (TName(Params));

where T ime speci�es a value of TIME, TName speci�es a value of TIMER and
Params is an element from VALUE

�. To introduce a new timer instance, a
process agent performs the following abstract machine instruction34 (where Self

33
In SDL, a timer declaration speci�es a timer name in combination with a (possibly

empty) list of SDL sorts (see Sect. 3.1) representing admissible timer values. Several
timers having the same name may thus be distinguished through di�erent lists of
values associated with the timer name.

34
Recall from the de�nition of multi-agent ASMs (see Sect. 2.2.1) that the function
Mod allows to dynamically assign a behavior to an arbitrarily chosen element from
the underlying base set.

1408 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

identi�es the process agent).

CreateTimerInstance(TName;Params)
� extend TIMERINST with t

timerinst(Self;TName;Params) := t
timername(t) := TName

params(t) := Params

owner(t) := Self

Mod(t) := Timer Module

Finally, we have to formalize the meaning of the rule StopTimerInstances
introduced in Sect. 5.1.

StopTimerInstances

� do forall t : TIMERINST(t)
if owner(t) = Self then

Mod(t) := undef

TIMERINST(t) := False

6 Behavior of Timers

Timer agents execute the module Timer Module consisting of the rules de�ned in
this section. We start by introducing a few auxiliary predicates. To express the
relationship between timer agents and process agents (see Sect. 5.4), we assume
to have a corresponding mapping owner from TIMERINST to PID. Addition-
ally, we assume that timer denotes a mapping from SIGINST to TIMERINST

associating the timer signals in SIGINST with the timers they originate from35.

ActiveTime(t) �

TIMERINST(t) ^ expire(t) 6= undef

ActiveSignal(t) �

TIMERINST(t) ^ 9 s 2 SIGINST : t = timer(s)

A timer t is said to be active (in accordance with the meaning of the SDL
expression active) if the following predicate holds on t.

Active(t) �

ActiveTime(t) _ActiveSignal(t)

A timer agent t watches the activities of owner(t) and becomes involved
each time owner(t) encounters a set or reset instruction (see Sect. 5.4). In the
meantime, i.e. when no set or reset instruction is to be executed, tmerely checks
whether it is currently active and the value of now is already equal or greater
than expire(t) in order to generate a timer signal.

35
Note that for all signals s in SIGINST not being timer signals the value of timer(s)
is undef.

1409Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

In the de�nition of TimerOperation below, the condition MyAction trig-
gers the timer agent. In case that MyAction holds on Self, Action is either set or
reset; otherwise, the value of now is checked against the expiration time.

TimerOperation

� if MyAction(Self) then

if Action = set then

let time = fst(Arg) in

SetExpirationTime(time)
DiscardTimerSignal

else

if Active(Self) then

expire(Self) := undef

DiscardTimerSignal

else

if ActiveTime(Self) ^ now � expire(Self) then

expire(Self) := undef

CreateTimerSignal

where

Action � stmt(node(owner(Self)))

The value of MyAction(Self) depends on the attribute values of the ow-
chart node currently being inspected by owner(Self).36 To denote these values,
we introduce Action and Arg as abbreviations for stmt(node(owner(Self))) and
args(node(owner(Self))). We can then de�ne the precise meaning of MyAction as
follows.

MyAction(Self)
� 9 x 2 TIMER; par 2 VALUE

� : timerinst(owner(Self); x; par) = Self

^((9 t 2 TIME : Arg = ht; x; pari ^ Action = set)
_(Arg = hx; pari ^ Action = reset))

36 Alternatively, we could have modeled the operations set and reset such that they
are executed by the process agent (instead of the timer agent). Nevertheless, there

arises a problem (which is not addressed in Z.100): if a timer is reset at exactly the
moment it expires, then it generates a timer signal which can not be eliminated by
the process agent since it is not yet contained in the input bu�er of the process agent.
Of course, there are solutions to cope with that problem|our model however simply
avoids that problem.

1410 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

The value expressed by the unary function duration in the following rule is
either \0" or a default value derived from the timer de�nition37.

SetExpirationTime(Time)
� if Time = undefthen

expire(Self) := now+ duration(timername(Self))
elif Time � now then

expire(Self) := undef

CreateTimerSignal

else

expire(Self) := Time

Recall the meaning of the function sender de�ned on process instances (see
Sect. 5.3). On receiving a timer signal the PId of the sender of that timer signal
is de�ned to be the PId of the process instance that receives the timer signal
(see Sect. 2.8 of [27]). In the de�nition of CreateTimerSignal below the value
of owner(Self) (i.e., the PId of the owner process) thus identi�es the sender of
the timer signal s.

CreateTimerSignal

� extend SIGINST with s
timer(s) := Self

senderid(s) := owner(Self)
receiverid(s) := owner(Self)
signame(s) := timername(Self)
values(s) := params(timername(Self))
bu�er(owner(Self)) := bu�er(owner(Self))_hsi

DiscardTimerSignal operates on the input bu�er of owner(Self). A re-
cursively de�ned function cleaned bu�er computes the resulting input bu�er
obtained by discarding a timer signal s such that timer(s) = Self. (Note that
bu�er(owner(Self)) contains exactly one such signal s if ActiveSignal(Self) holds.)

DiscardTimerSignal

� if ActiveSignal(Self) then

bu�er(owner(Self)) := cleaned bu�er(empty bu�er; bu�er(owner(Self)))

cleaned bu�er(Searched;Bu�er) =

�
Searched

_
Rest; if Bu�er = hsjResti ^ timer(s) = Self;

cleaned bu�er(Searched_hsi;Rest); if Bu�er = hsjResti ^ timer(s) 6= Self:

37
SDL allows to set a timer without explicitly specifying the expiration time; the
resulting time value is then obtained by adding a default duration to the current
value of now. Furthermore, a timer may be set to a time value which is smaller or
equal to the value of now having the e�ect that the timer expires immediately (see

Sect. 2.8 of [27]).

1411Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

7 Conclusions

The mathematical modeling concept of multi-agent real-time ASM and the SDL
view on asynchronously communicating systems clearly coincide with respect to
essential properties of the underlying computation models. To obtain a concise
representation, we have utilized another important advantage: scalability of the
abstraction mechanism|i.e., the exibility to freely choose and combine various
abstraction levels within a single mathematical model. By avoiding additional (or
unnatural) formal overhead we were able to produce a description of a reasonable
size.

Our interpretation model of Basic SDL, as given here, captures all relevant
aspects of the dynamic semantics, except for the control ow operations (which
are simple to model but are left out for brevity). The complete model (without
the initial state de�nition) has about double the size of the one given here.

An obvious way of extending the current model is to include the full struc-
turing facilities of SDL. Based on our experience with VHDL [5], which o�ers
structuring concepts similar to block partitioning in SDL, we can state that this
does not cause any real problems.

It should also be mentioned that we have tools to run ASM models on real
machines [12, 11]. Provided that the details which we left abstract in our SDL
model (this mainly concerns interfaces to the external environment) are handled
properly (e.g., by specifying them through user inputs, external processes etc.),
we are able to produce an executable version of our SDL model.

Finally, there are existing ASM-based concepts and tools addressing mod-
eling of static semantics [23]. Combining these approaches with our model will
allow to produce a complete semantic model including all static and dynamic
properties of SDL.

Acknowledgements. We thank Giuseppe Del Castillo, Egon B�orger and
Peter P�appinghaus for inspiring discussions contributing to our work as well as
three unknown reviewers for receiving helpful comments and valuable criticism
on a draft version of the work presented here.

References

1. Ch. Beierle, E. B�orger, I. D- urd-anovi�c, U. Gl�asser, and E. Riccobene. Re�ning ab-

stract machine speci�cations of the steam boiler control to well documented ex-

ecutable code. In J.-R. Abrial, E. B�orger, and H. Langmaack, editors, Formal
Methods for Industrial Applications: Specifying and Programming the Steam Boiler
Control, volume 1165 of LNCS (State{of{the{Art Survey), pages 52{78. Springer-
Verlag, 1996.

2. F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol Speci-
�cation. Carl Hanser Verlag / Prentice Hall International, 1991.

3. J. A. Bergstra and C. A. Middleburg. Process Algebra Semantics of 'SDL. Techni-
cal Report UNU/IIST Report No. 68, UNU/IIST, The United Nations University,

April 1996.

4. E. B�orger and U. Gl�asser. A formal speci�cation of the PVM architecture. In

B. Pehrson and I. Simon, editors, Proc. of the IFIP 13th World Computer Congress
1994, Volume I: Technology and Foundations, pages 402{409. Elsevier Science Pub-
lishers B. V., 1994.

1412 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

5. E. B�orger, U. Gl�asser, and W. Mueller. Formal de�nition of an abstract VHDL'93

simulator by EA{machines. In C. Delgado Kloos and P.T. Breuer, editors, Seman-
tics of VHDL, volume 307 of The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, 1995.

6. E. B�orger, U. Gl�asser, and W. M�uller. The semantics of behavioral VHDL'92 de-

scriptions. In Proc. of EURO-VHDL'94 (September 19-20, Grenoble), 1994.
7. E. B�orger and L. Mearelli. Integrating ASMs into the software development life

cycle. Journal of Universal Computer Science (J.UCS), 3(5):603{665, May 1997.

8. E. B�orger, I. D- urd-anovi�c, and D. Rosenzweig. Occam: Speci�cation and compiler

correctness. part i: The primary model. In E.-R. Olderog, editor, Proc. of PRO-
COMET'94 (IFIP Working Conference on Programming Concepts, Methods and
Calculi), pages 489{508. North-Holland, 1994.

9. Egon B�orger. Why use evolving algebras for hardware and software engineering?

In Proc. of SOFSEM'95, volume 1012 of LNCS, pages 236{271. Springer-Verlag,
1995.

10. Manfred Broy. Towards a Formal Foundation of the Speci�cation and Description

Language SDL. Formal Aspects of Computing 3, (3):21{57, 1991.
11. G. Del Castillo, I. D- urd-anovi�c and U. Gl�asser. An evolving algebra abstract ma-

chine. In H. Kleine B�uning, editor, Computer Science Logic, volume 1092 of LNCS,
pages 191{214. Springer-Verlag, 1996.

12. Giuseppe Del Castillo. ASM-SL, a Speci�cation Language based on Gurevich's

Abstract State Machines: Introduction and Tutorial. Technical Report (to appear).

13. O. F�rgemand and A. Olsen. Introduction to SDL-92. Computer Networks and
ISDN Systems, (26):1143{1167, 1994.

14. J. Fischer and E. Dimitrov. Veri�cation of SDL Protocol Speci�cations using Ex-

tended Petri Nets. In Proc. of the Workshop on Petri Nets and Protocols of the
16th Intern. Conf. on Application and Theory of Petri Nets, pages 1{12. Torino,
Italy, 1995.

15. J. Fischer, St. Lau, and A. Prinz. A Short Note About BSDL - Semantic Issues

for SDL. SDL Newsletter, (18), January 1995.

16. Y. Gurevich and J. Huggins. The semantics of the C programming language.

In E. B�orger, H. Kleine B�uning, G. J�ager, S. Martini, and M. M. Richter, edi-

tors, Computer Science Logic, volume 702 of Lecture Notes in Computer Science.
Springer-Verlag, 1993.

17. Y. Gurevich and J. Huggins. The railroad crossing problem: An experiment with

instantaneous actions and immediate reactions. In H. Kleine B�uning, editor, Com-
puter Science Logic, volume 1092 of LNCS, pages 266{290. Springer-Verlag, 1996.

18. Yuri Gurevich. Evolving algebras { a tutorial introduction. Bulletin of the EATCS,
(43):264{284, February 1991.

19. Yuri Gurevich. Evolving Algebra 1993: Lipari Guide. In E. B�orger, editor, Speci-
�cation and Validation Methods, pages 9{36. Oxford University Press, 1995.

20. Yuri Gurevich. ASM Guide 97. CSE Technical Report CSE-TR-336-97, EECS

Department, University of Michigan{Ann Arbor, 1997.

21. E. Holz and K. St�len. An Attempt to Embed a Restricted Version of SDL as

a Target Language in Focus. In St. Leue D. Hogrefe, editor, Proc. of Forte '94,
pages 324{339. Chapmann & Hall, 1994.

22. Ren�e Karges. Formale Semantik von SDL als abstraktes Zustandssystem.

(Diploma thesis), Fachbereich Mathematik-Informatik, Universit�at-GH Paderborn,

March 1997.

23. P. W. Kutter and A. Pierantonio. Montages: Speci�cations of realistic program-

ming languages. Journal of Universal Computer Science, 3(5):416{442, 1997.
24. St. Lau and A. Prinz. BSDL: The Language { Version 0.2. Department of Com-

puter Science, Humboldt University Berlin, August 1995.

25. A. Olsen, O. F�rgemand, B. M�ller-Pedersen, R. Reed, and J. R. W. Smith. Sys-
tems Engineering Using SDL-92. Elsevier Science B. V., 1994.

1413Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

26. Markus Rinderspacher. A Veri�cation concept for SDL systems and its appli-

cation to the Abracadabra Protocol. Interner Bericht 14/94, Institut f�ur Logik,

Komplexit�at und Deduktionssysteme, Universit�at Karlsruhe, 1994.

27. ITU-T Recommendation Z.100. Speci�cation and Description Language (SDL).
International Telecommunication Union (ITU), Geneva, 1994 + Addendum 1996.

1414 Glaesser U., Karges R.: Abstract State Machine Semantics of SDL

