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Abstract: We prove that any Chaitin {2 number (i.e., the halting probability of a
universal self-delimiting Turing machine) is wtt-complete, but not tt-complete. In this
way we obtain a whole class of natural examples of wtt-complete but not tt-complete
r.e. sets. The proof is direct and elementary.
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1 Introduction

Kucera [8] has used Arslanov’s completeness criterion* to show that all random
sets of r.e. T-degree are in fact T-complete. Hence, every Chaitin {2 number is
T-complete. In this paper we will strengthen this result by proving that every
Chaitin 2 number is weak truth-table complete. However, no Chaitin 2 number
can be tt-complete as, because of a result stated by Bennett [1] (see Juedes,
Lathrop, and Lutz [9] for a proof), there is no random sequence x such that
K <4 x.5 Notice that in this way we obtain a whole class of natural examples
of wtt-complete but not tt-complete r.e. sets (a fairly complicated construction
of such a set was given by Lachlan [10]).

We continue with a piece of notation. Let N, Q be the sets of non-negative
integers and rationals. Let X' = {0, 1} denote the binary alphabet, X* is the set
of (finite) binary strings, ¥'™ is the set of binary strings of length n; the length of
a string z is denoted by |z|. By z|r we denote the prefix of length r of the string
z. Let p(z) be the place of z in X* ordered quasi-lexicographically. Let X the
set of infinite binary sequences. The prefix of length n of the sequence x € X¢
is denoted by x|n. For every X C X*, X X¢ stands for the cylinder generated
by X, i.e., set of all sequences having a prefix in X.
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Y Anr.e. X is Turing equivalent to the halting problem iff there is a Turing computable
in X function f without fized-points, i.e. Wy # Wy(s), for all z; see Soare [12], p.
88.

® To keep the paper self-contained, a direct simple proof for Bennett result will be
included.
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Fix an acceptable godelization (¢, ),ecx+ of all partial recursive (p.r.) func-
tions from X* to X*, and let W, = dom(y,) be the domain of (¢;). Denote
by K the set {z € ¥* | z € W, }. A Chaitin computer (self-delimiting Turing

machine) is a p.r. function C' : £* % ¥* with a prefix-free domain dom(C). The
program-size (Chaitin) complexity induced by Chaitin’s computer C' is defined
by Ho(z) = min{|y| | y € £¥*,C(y) = z} (with the convention min @ = c0).

A Chaitin computer U is universal if for every Chaitin computer C, there is
a constant ¢ > 0 (depending upon U and C) such that for every z there is 2’
such that U(z') = C(z) and |z'| < |z| + ¢;® c is the “simulation” constant of C
onU.

A Martin-Lof test is an r.e. sequence (V;);>o of subsets of X¥* satisfying the
following measure-theoretical condition:

p(Vize) <27,

for all 7 € N. Here u denotes the usual product measure on X“, given by
p({w}xe) = 271%l for w € X*.

An infinite sequence x is random if for every Martin-Lof test (V;)i>0, X ¢
Niso AiX“. A real a € (0,1) is random in case its binary expansion is a random

sequence.”
The halting probability of Chaitin’s computer C' is

¢ = p(dom(U)2¥) = Y 27l
zedom(C)

Any real {2¢ is recursively enumerable (r.e.) in the sense that the set {q €
(0,1)NQ | g < ¢} is r.e. (see more about r.e. reals in [3]). Reals of the form
Ny, for some universal Chaitin computer U, are called Chaitin (£2) numbers
(see [4, 6, 2]). Chaitin [4] has proved that every Chaitin number is random. See
Calude [2] for more details.

For a set A C X* we denote by x4 the characteristic function of A. We
say that A is Turing reducible to B, and we write A < B, if there is an oracle
Turing machine 92 such that o2 (z) = x4(z). We say that A is weak truth-table
reducible to B, and we write A <, B, if A <7 B via a Turing reduction which
on input z only queries strings of length less than g(z), where g : ¥* — N is a
fixed recursive function. We say that A is truth-table reducible to B, and we write
A <4 B, if there is a recursive sequence of Boolean functions {Fj}ycx+, F :
Yretl — ¥ such that for all z, we have ya(z) = F.(x(0)x5(1) - xB(r:)).
An r.e. set A is tt(wtt)-complete if K <; A (K <, A). See Odifreddi [11] for
more details.

2 Main Results

In what follows we will fix a universal Chaitin computer U and write H = Hy,
N =0y.

6 In fact, ¢ can be effectively obtained from U and C.
" Actually, the choice of base is irrelevant, cf. Theorem 6.111 in Calude [2].
8 Note that in contrast with tt-reductions, a wtt-reduction may diverge.
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Theorem 2.1 The set H = {(z,n) | = € £*,n € N, H(z) < n}° is wit-
complete.

Proof. We will refine the proof by Arslanov and Calude in [7]. To this aim we
will use Arslanov’s Completeness Criterion (see Theorem II1.8.17 in Odifreddi
[11], p. 338) for wtt-reducibility

an r.e. set A is wtt-complete iff there is a function f <y, A without
fized-points

and the estimation due to Chaitin [4, 5] (see Theorem 5.4 in Calude [2], pp. 77):

max H(z) = n+ O(logn). (1)

First we construct a positive integer ¢ > 0 and a p.r. function ¢ : ¥* > X*
such that for every z € X* with W, # 0,

Up(z)) € W, (2)

and
[ (z)] < p(z) +c (3)

Consider now a Chaitin computer C' such that C(0?(*)1) € W, whenever
W, # 0. Let ¢’ be the simulation constant of C on U, and let § be a p.r. function
satisfying the following condition: if C'(u) is defined, then U (0)(u) = C(u) and
|0(u)| < |u|+c'. Put ¢ = ¢’ + 1 and notice that in case W, # 0, C(0°(*)1) € W,,
50 B(0P(®)1) is defined and and belongs to W,. Finally, put ¥ (z) = (0P®)1) and
notice that

lih(z)| = |0(0P@1)| < [0P@) 1| + ¢ = p(z) +c.

Next define the function

F(y) = min{z € X* | H(z) > p(y) +c},

where the minimum is taken according to the quasi-lexicographical order and ¢
comes from (3). In view of (1) it follows that

F(y) = min{z € X* | H(z) > p(y) + ¢,|z| < p(y) + c}-

The function F is total, H-recursive and U (¢(y )) # F(y) whenever W, # 0.
Indeed, if W, # 0 and U(¢( )) = F(y), then t¢(y) is defined, so U(¢(y)) € W,
and |¥(y)| < p(y) +c. But, in view of the construction of F, H( (y)) > ply) +c
an inequality which contradicts (3): H(F(y)) < [ (y)| < p( ) +ec

Let f be an H-recursive function satisfying W) = {F(y)}. To compute
f(y) in terms of F(y) we need to perform the test H(z) > p(y) + ¢ only for those

 This set is essential in deriving Chaitin’s information-theoretical version of incom-
pleteness, Chaitin [4].
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strings z satisfying the inequality |z| < p(y)+c, so the function f is wtt-reducible
to H.

We conclude by proving that for every y € X%, Wy(,) # W,. If Wg(,) = W,
then W, = {F(y)}, so by (3), U(¥(y)) € W, that is U(¢»(y)) = F(y). Conse-
quently, by (2) H(F(y)) < |¥(y)| < p(y) + ¢, which contradicts the construction
of F. |

Theorem 2.2 The set H is witt-reducible to f2.

Proof. Let g : N — X" be a recursive, one-to-one function which enumerates
the domain of U and put w, = > 1v, 27190, Given z and n > 0 we compute
the smallest ¢ > 0 such that

Wt Z 0.9001 e Qn

i From the relations

0.0091 .Qn S wr < wt + Z 27|g(s)\ =N< O.anl .Qn _+_27n
s=t+1

we deduce that |g(s)| > n, for every s > t+ 1. Consequently, if z is not produced
by an element in the set {g(0),g(1),...,9(t)}, then H(z) > n as H(z) = |g(s)],
for some s > t + 1; conversely, if H(z) < n, then £ must be produced via U by
one of the elements of the set {g(0),g(1),...,9(¢)}. O

Since the result in Juedes, Lathrop, and Lutz [9] is obtained in a rather
indirect way, we conclude the paper by proving directly that K £;; x, for every
random sequence X.

Theorem 2.3 If K <4 x, then x is not random.

Proof. Assume x is random and K <y x, that is there exists a recursive
sequence of Boolean functions {F,},cx+, F, : Y™ — X such that for all
w € X*, we have ya(w) = Fy(zox1 - - Ty, ). We will construct a Martin-Lof test
V such that x € ,,~, V»X*, which will contradict the randomness of x.

For every string z let

M(z) = {u € 5t | F,(u) = 0}.

Consider the set 1
{2 €27 [ u(M(2)Z%) > 5}

of inputs to the tt-reduction of K to x where at least half of the possible oracle
strings give the output 0. This set is r.e., so let W,, be a name for it. From the
construction it follows that

20 € K@FZO(xgzl---xrzo) =1,

hence if we put r =r,, + 1 and

Vo= {ue I | u(M(2)2%) > = & F,,(u) = 1}

N =
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we ensure that V is r.e. and p(VoX*) < 1. Moreover x € VpX¥, because if
u = x|r, then

1
w(M(z0)X¥) > 3 € K & F,(u)=1.

Assume now that z,,V, have been constructed such that x € V, X% and
u(V, 29y <2771 Let 2,41 € {20,21,---,2n} be such that

W, ={ue X | w(M(u)Z®NV,5%) > % u(VaZ¥) ).

Zn41 =

Then

Znt1 € K & p(M(w) XY NV, EY) > - - u(V,EY).

DN | =

Finally put r =7, ., 11 and

(Ve 2¥)

DN | =

Vigr ={u € X" [ulry, € Vo A (u(M (2p41) X9 NV E¥) >

& Fp(w) = 1)}

and note that V,,;; isr.e., x € V,,41 and

p(Vas1 B9) < o - p(Va 29) < 27772

DN | =

Consequently, (V;,),, is a Martin-Lof test with x € [, Vo Z¥. a
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