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Abstract: The major results of Robertson and Seymour on graph well-quasi-ordering
establish nonconstructively that many natural graph properties that constitute ideals
in the minor or immersion orders are characterized by a �nite set of forbidden sub-
structures termed the obstructions for the property. This raises the question of what
general kinds of information about an ideal are su�cient, or insu�cient, to allow the
obstruction set for the ideal to be e�ectively computed. It has been previously shown
that it is not possible to compute the obstruction set for an ideal from a description
of a Turing machine that recognizes the ideal. This result is signi�cantly strengthened
in the case of the minor ordering. It is shown that the obstruction set for an ideal
in the minor order cannot be computed from a description of the ideal in monadic
second-order logic.
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1 Introduction

The celebrated results of Robertson and Seymour [RS83, RS85, RS94] prove
the existence of �nite obstruction sets for arbitrary minor and immersion order
ideals, of which there are many natural examples. Planar graphs are famously a
minor ideal for which the obstructions areK3;3 andK5 (Kuratowski's Theorem).
These fundamental results are not e�ective, in the sense that knowing only a
decision procedure for an ideal F does not provide enough information to be
able to compute the obstruction set for F [FL89a]. In fact, this noncomputability
result is essentially a straightforward corollary to Rice's Theorem, and has little
speci�cally to do with graph minors.

We are naturally led to investigate what sorts of further information about an
ideal might allow the obstruction set for the ideal to be systematically computed.
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There are a number of apparently di�cult unresolved problems in this general
area. For example, it is unknown whether the obstruction set for an arbitrary
union of ideals F = F1 [ F2 can be computed from the two corresponding
obstruction sets O1 and O2, although this can be accomplished if at least one of
these obstruction sets includes a tree [CDDFL97].

The main theorem of this paper signi�cantly extends the negative result of
[FL89a]. We prove the following for the minor ordering.
Theorem 1. There is no e�ective procedure to compute the obstruction set for
a minor ideal F from a monadic second order (MSO) description of F .

This should be contrasted with general positive results concerning the com-
putation of obstruction sets. Fellows and Langston proved in [FL89b] that if we
have access to the three pieces of information:
(i) A decision algorithm for F .
(ii) A bound B on the maximum treewidth (or pathwidth) of the graphs in the
set O of F obstructions.
(iii) A decision algorithm for a �nite index congruence for F .
Then O can be e�ectively computed.

Perhaps surprisingly, the algorithm of [FL89b] has been implemented and
nontrivial, previously unknown obstruction sets for interesting ideals have been
successfully computed [CD94, CDF95].

Since (i) and (iii) can be e�ectively derived from an MSO description of F
[Co90a], our Theorem 1 shows that (ii) is essential in the earlier positive result
of [FL89b]. Other work on the systematic computation of obstruction sets has
appeared in [APS90, CDDFL97, GI91, Kin94, KL91, LA91, Lag93, Pr93].

2 Preliminaries

All of our discussion concerns �nite simple graphs. A graph H is a minor of
a graph G if a graph isomorphic to H can be obtained from G by a sequence
of operations chosen from the list: (i) delete a vertex, (ii) delete an edge, (iii)
contract an edge. (When applying the edge contraction operation, any multiple
edges or loops that are formed are removed.) This de�nes the minor partial order
on graphs, denoted G �m H .

A graph H is immersed in a graph G if a graph isomorphic to H can be
obtained from G by a sequence of operations chosen from the list: (1) delete a
vertex, (ii) delete an edge, (iii) lift an edge. (The meaning of the lift operation
is that a pair of edges uv and vw are replaced by a single edge uw.) This de�nes
the immersion order, denoted G �i H .

An ideal J in a partial order (U ;�) is a subset of U such that if X 2 J and
X � Y then Y 2 J . The obstruction set for J is the set of minimal elements of
U � J .

A �lter is a subset J � U such that if X 2 J and X � Y then Y 2 J . The
�lter JS generated by a set S � U is de�ned to be the set of all elements of U
that are greater than or equal to some element of S:

JS = fY : 9X 2 S Y � Xg

The syntax of the monadic second order (MSO) logic of graphs includes the
usual logical connectives ^;_;:, variables for vertices, edges, sets of vertices and
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sets of edges, the quanti�ers 8; 9 that can be applied to these variables, and the
�ve binary relations:
(1) The membership relation u 2 U where u is a vertex variable and U is a
vertex set variable.
(2) The membership relation d 2 D where d is an edge variable and D is an edge
set variable.
(3) The incidence relation �(d; u) where d is an edge variable, u is a vertex
variable, and the interpretation is that the edge d is incident on the vertex u.
(4) The adjacency relation �(u; v) where u and v are vertex variables, and the
interpretation is that u and v are adjacent vertices.
(5) Equality for vertices, edges, sets of vertices and sets of edges.

If � is a well-formed formula of MSO, then the set of �nite graphs that are
models of � is denoted F(�). That a graph G is a model of � is denoted G j= �.
The basic reference on MSO graph properties is [Co90a].

3 The Main Result

We will use the following lemma due to Courcelle concerning the description in
MSO logic of generated �lters in the minor order.
Lemma 1 [Co92]. Given an MSO formula �, we can e�ectively produce an
MSO formula �0 such that F(�0) is the �lter generated in the minor order by
F(�). 2

Proof Sketch. A graph G has a graph H as a minor if and only if if is possible
to identify a set of disjoint connected subgraphs Gv of G indexed by the vertex
set of H , such that if u and v are adjacent vertices of H , then the corresponding
subgraphs Gu and Gv of G are \adjacent" in the sense that there are vetices
x 2 Gu and y 2 Gv such that xy 2 E(G). The formula �0 can be constructed by
expressing in M2O the statements:
(1) There exists a set of edges that forms a forest in G.
(2) The exists a set V0 of roots for the trees of the forest of (1), with one root
for each tree.
(3) There exists a set E0 of edges between the trees of the forest, in the sense of
\adjacency" described above.

The formula �0 consists of this preface, followed by � modi�ed by some
substitutions and restrictions:
(4) Quanti�cation is restricted to V0 and E0. (These are in some sense the
\virtual" vertices and edges of the minor H of G that the preface asserts to
exist. We are now concerned with expressing that this H is a model of �.)
(5) Incidence and adjacency terms in � are replaced by statements concerning
suitable paths in the forest of (1). (In other words, incidence and adjacency
statements about the virtual vertices and edges, V0 and E0, are interpreted with
the means provided by (1), (2) and (3).) 2

The following proposition is a corollary of a theorem of Trakhtenbrot [Tr50]
on the undecidability of the �rst order logic of graphs (see [Co90b] for a discus-
sion). We remark that Seese has shown that undecidability still holds even for
planar graphs [Se75, Se91].
Proposition 1 ([Tr50, Se91]). Given an MSO formula �, there is no algorithm
to decide if there is a �nite graph G such that G j= �. 2

We can now prove our main result.
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Theorem 1. There is no e�ective procedure to compute the obstruction set for
a minor ideal F from a monadic second order description of F .
Proof. We argue that if there were such a procedure, then we could solve the
problem of determining whether a formula � of MSO has a �nite model, con-
tradicting Proposition 1. Let �0 denote the formula computed from � by the
e�ective procedure of Lemma 1. Let  = :�0. We note the following.
� If no �nite graph is a model of �, then the set of models of �0 is empty, and
every �nite graph is a model of  . Thus  describes an ideal for which the set
of obstructions is the empty set.
� If � has a �nite model, then �0 describes a nontrivial �lter and  describes
a nontrivial ideal complementary to �0 for which the set of obstructions is
nonempty.

By computing the obstruction set for the ideal described by  we can there-
fore determine, on the basis of whether this obstruction set is empty or nonempty,
whether any �nite graph is a model of �. 2

4 Summary Discussion

The central question that forms the context of this work is: what sorts of in-
formation about lower ideals allow obstruction sets to be e�ectively computed?
The main previous results in this area are the following:
(1) The obstruction set for an ideal cannot be e�ectively computed from the
description of a Turing machine that recognizes the ideal [FL89a].
(2) Obstruction sets can be computed from the three pieces of information: (i)
a Turing machine that recognizes the ideal, (ii) a bound on the maximum ob-
struction treewidth, and (iii) a �nite-index congruence for the ideal [FL89b].
These results hold for both the minor and immersion orders.

In this paper we have strengthened the negative result (1) for the minor
order, since (i) and (iii) can be derived from an MSO description of an ideal in
either the minor or immersion orders.

Does our main theorem also hold for the immersion order? Our proof can
be adapted to the immersion order if an analog of Lemma 1 for the immersion
order can be proved. The di�culty is in �nding a \virtual" representation of
the vertices and edges of an immersed graph, without knowing in advance how
many vertices and edges there are. (Given this information, the job becomes
much easier, since the edge representations can then be quanti�ed by separate
sets.) It is conceivable, of course, that an analog of Lemma 1 does not hold for
the immersion order, even though for any �, we know (nonconstructively) that
a �0 describing the �lter generated by F(�) in the immersion order exists.
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