
Compression of Silhouette-like Images

based on WFA �

Karel Culik II, Vladimir Valenta

Department of Computer Science

University of South Carolina

Columbia, S.C. 29208, U.S.A.

Jarkko Kari

Department of Computer Science

University of Iowa

Iowa City, IA 52242-1419

Abstract

We describe a new approach to lossy compression of silhouette-

like images. By a silhouette-like image we mean a bi-level im-

age consisting of black and white regions divided by a small

number of closed curves. We use a boundary detection al-

gorithm to express the closed curves by chain codes, and

we express the chains as one function of one variable. We

compress this function using WFA over two letter alphabet.

Finally, we use arithmetic coding to store the automaton.
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1 Introduction

The objective of this paper is to design a lossy fractal compression

method for silhouette-like bi-level images that would have an ex-

cellent quality to compression rate ratio. This is our second and

better performing approach to this problem. First we discuss the

background.

Weighted Finite Automata (WFA) have been introduced in [1, 2]

as a way to specify real functions on [0; 1]n, in particular, for n = 2

grayscale functions (grayscale images). In [2] a theoretical inference

algorithm for WFA was given and �nally in [3] a recursive infer-

ence algorithm for WFA which led to well performing data-image

compression software, see also [12]. In [8, 9] we have described the

�rst approach to compression of bi-level images based on �nite au-

tomata. Since in the case of a bi-level image we need to de�ne the

set of black pixels instead of the grayness function, we have not

used WFA but rather Generalized Finite Automata (GFA) where

the generalization means that we used rotations, ippings and nega-

tions when expressing subsquares of each state in the terms of the

other states. However, no weights were used. It turned out that

for GFA it was not advantageous to allow nondeterminism, i.e. to

express some subsquares as unions of the other states. That led

to a nonrecursive, fast encoding algorithm which performed well,

however, comparatively not as impressively as the recursive WFA

algorithm for grayscale and color images. Further considerable im-

provement was obtained by using vector quantization for the small

(8� 8) subsquares.

Here, we are returning to WFA. We will reduce the problem

of the encoding of a silhouette-like bi-level image to the encoding

of two one-variable functions describing the boundary (-ies) of the

black and white regions of the given image. Our method assumes

that the given bi-level image consists of black and white regions
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separated by k closed curves c1; : : : ; ck, for relatively small k. Using

the algorithm from [11] we �nd k NESW (north-east-south-west)

chain codes for the regions. We convert each chain code into two

functions xi; yi expressing ci in parameterized form for i = 1; : : : ; k.

Now we combine the 2k functions (tables) x1; : : : ; xk, y1; : : : ; yk into

one function (longer table) z by concatenating the domains. Finally,

we compress the function (table) z by the one-dimensional version

of the recursive WFA algorithm.

We measure the quality of the regenerated images by the per-

centage of wrong pixels. Subjectively, they look even better, in par-

ticular, the smooth features, notice that the regenerated images have

some features smoother than the originals. We show the performance

of our method on some examples.

Our new method extends to cartoon-like color images in the same

way as it is described in [9] for our GFA method. An image with

less than 2m color values is expressed by m bitplanes and then each

bitplane is encoded as a bi-level image. A further advantage is that

the automata encoding di�erent bitplanes can share states.

2 Weighted �nite automata and their in-

ference

In [1] the weighted �nite automata (WFA) were introduced as devices

computing real functions on [0; 1]n for any n. In [2, 3, 4] we used

the case n = 2 interpreted as the grayscale function specifying a

grayscale image. Here we will use two functions of one variable to

specify the color boundary. In order to compress tables for these

functions we will need to infer one-dimensional (n = 1) WFA. The

inference algorithms from [2, 3, 4] work for any n � 1, we will use

the recursive algorithm from [3]. We remind the de�nition of WFA

for the speci�c case n = 1, in this case we use alphabet � = f0; 1g.
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Figure 1: WFA de�ning constant, linear or quadratic function.

Binary words in �? are interpreted as addresses of subintervals of the

interval [0; 1]. The whole interval is addressed by ", then recursively

the left half of the interval with address w is addressed by w0, the

right half by w1. For example, the address of the interval [1
8
; 3

16
] is

0010. The words over � of length n are denoted by �n, all the words

over � by �?. Hence, a function g : �n
! IR can be interpreted

as a table of length 2n of a real function (R is the set of reals). A
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function f : �?
! R is a multiresolution speci�cation of a function,

i.e. speci�es a table of length 2n for all n � 1. We use a WFA

to specify a multiresolution function f : �?
! R and possibly a

function f̂ : [0; 1]! R as the limit of tables of size 2n for n!1.

An m-state WFA A over � = f0; 1g is de�ned by

(1) a row vector I 2 R1�m, the initial distribution,

(2) a column vector F 2 Rm�1, the �nal distribution,

(3) two weight matrices W0;W1 2 Rm�m, the weight matrices for

input 0 and 1,

respectively.

WFA A de�nes the multiresolution function fA : �?
! R speci�ed

for all a1a2 : : : ak 2 �
? by fA(a1a2 : : : ak) = I �Wa1 �Wa2 : : :WakF . A

diagram of (small) WFA is similar to that used for �nite automata.

States are represented by nodes (circles), the components of the

initial and �nal distribution are shown inside the circles. If, for

a = 0; 1, (Wa)i;j 6= 0, then there is an directed edge from node i to

node j labeled by a : (Wa)i;j:

Example. The WFA in Fig. 1(a) speci�es the constant function

f1(x) = c, for initial distribution (c). The WFA in Fig. 1(b) speci�es

the linear function f2(x) = ax + b for initial distribution (a; b). The

WFA in Fig. 1(c) speci�es the quadratic function ax2 + bx + c for

the initial distribution (a; b; c). Hence, it can specify any polynomial

of degree up to 2. In [1] we give a �xed WFA with n + 1 states

with initial distribution (a0; a1; : : : ; an) that generates the polyno-

mial a0x
n + a1x

n�1 + : : :+ an, for any a0; a1; : : : ; an, thus any poly-

nomial of degree smaller or equal to n.

In [3] there is discussed an e�cient algorithm for inferring a WFA

generating the greyness function of an image in pixel form. Here we
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need a simple version of this algorithm. It infers a WFA generating a

function of one variable speci�ed by a table. We de�ne size(A) to be

the actual storage space in bytes required to store the WFA A. The

quality of the regenerated function will be measured by the square

of the L2-metric: Let f and g be two multiresolution functions, and

let k be a positive integer. De�ne

dk(f; g) =
X

w2f0;1gk

(f(w)� g(w))2:

Given a function f at resolution 2k, the algorithm tries to �nd a

WFA A that would minimize the value of

dk(fA; f) +G � size(A); (1)

where G is a positive real number. Parameter G controls the com-

pression ratio and the quality of the regenerated function. With

large values of G a small automaton with poor approximation of f

is produced. When G is made smaller, the approximation improves

while the size of the automaton increases.

The main structure of the recursive inference algorithm is given in

Table 1. The algorithm uses global variables n (the number of states

in the automaton at the moment), and  1;  2; : : : ;  n (the functions

corresponding to the states). A recursive call make wfa(i; k;max)

processes state number i: Each quadrant of  i is expressed either

as a linear combination of existing states or by introducing a new

state. The new state is processed by a recursive call to make wfa.

The function  i is studied at level k, and is considered an function

of size 2k. The algorithm tries to minimize the value of

cost = dk( i;  
0

i) +G � s; (2)

where  0i denotes the approximation of the function  i that is ob-

tained, and s is the increase in the size of the automaton caused by
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the new states and edges that are added to the automaton in order

to compute  0i. If cost > max function make wfa returns value 1

(indicating that max could not be improved), otherwise it returns

cost .

During the recursive call all four quadrants of  i are approxi-

mated in two di�erent ways: by linear combinations of existing states

(step 1 in Table 1), and by adding a new state corresponding to the

function in the present quadrant and recursively using make wfa to

approximate it (steps 2 and 3). Whichever alternative yields a better

result is chosen (steps 4 and 5).

Finally, we replace the present quadrant in  i with the approx-

imation that was obtained, and we then update the other function

 1;  2; : : : ;  n that depend on  i (step 6). If this is not done, in any

future approximation the "ideal"  i is used instead of the "real",

slightly di�erent approximation of  i. This would cause further er-

rors. Note that before we know the "real"  0

i we have no alternative

but to use the "ideal"  i in the linear combinations in step 1. This

causes errors that are di�cult to deal with, but at least we should

use the "real" value as soon as we know it. One possible way to

avoid the uncontrolled errors is not to use a state in linear combi-

nations until we know the real function it represents. This is the

approach used in our present implementation. It has the drawback

of not allowing loops in the WFA.

Initially, before calling the recursive function make wfa for the

�rst time, we must set n 1 and  1  f , where f is the image that

needs to be approximated at level k. The approximation is done by

calling make wfa(1; k;1).

The algorithm produces a WFA with �xed initial distribution

I1 = 1, Ii = 0 for all i � 2. Therefore, the initial distribution

does not need to be stored. See [3] for details related to storing the

automaton using arithmetic coding.
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Figure 2: Function sin(x) and its approximation by a six state WFA

A �xed set of functions can be used in all linear combinations

starting from step 1 of the algorithm. Such functions are said to

form an initial basis. Before calling make wfa for the �rst time, we

set n N +1,  1  f , where f is the image to be compressed, and

 2;  3; : : : ;  N+1 are set to be the N �xed images in the initial basis.

The functions in the basis can be chosen arbitrarily | they do not

need to be de�nable by a WFA. The choice of the initial basis can

of course depend on the application, that is, on the type of images

one wants to compress. The initial basis resembles the code book

in vector quantization [14] which can be viewed as a very restricted

version of our method. Here we have used the initial basis containing

three functions: constant x ! 1, linear x ! x and quadratic x !

x2. All quadratic functions x ! ax2 + bx + c can be expressed as

their linear combinations, so the basis functions alone provide good

piecewise approximations of smooth functions.

Fig. 2 shows the graph of function sin(x) on the left and its

approximation by a WFA with six states inferred by our algorithm.
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Figure 3: original 512 � 512, 396 bytes, 0.01208 bpp, 0.11% wrong

pixels

3 Compression algorithm and results

Given a bi-level image as input we start by using the algorithm

from [11] to obtainNESW chain code for each segment i, i = 1; : : : ; k

where k is a number of segments. We convert each chain code into

two parametric functions xi; yi for i = 1; : : : ; k in the following way.

Denote ai(j) to be a j-th letter in chain code i. We set xi(0) =

yi(0) = 0 for all i. We continue generating xi; yi functions as follows:

ai(j) =

8>>>>><
>>>>>:

E : xi(j) = xi(j � 1) + 1; yi(j) = yi(j � 1)

W : xi(j) = xi(j � 1)� 1; yi(j) = yi(j � 1)

N : yi(j) = yi(j � 1) + 1; xi(j) = xi(j � 1)

S : yi(j) = yi(j � 1)� 1; xi(j) = xi(j � 1)

We merge the 2k functions (tables) into one function (longer

table) z by concatenating the domains. Next, the function z is

compressed using the inference algorithm described in the previous

chapter. The inference algorithm produces a WFA A such that the

function fA it de�nes is a close approximation of function z (under

MSE metric). The WFA is then compactly stored using arithmetic

coding, as explained in detail in [13].

The decoder works in the following way: �rst we compute the

function fA de�ned by WFA A using the fast decoding algorithm
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Figure 4: original 512 � 496, 496 bytes, 0.01514 bpp, 0.25% wrong

pixels

from [2]. Then we decompose function fA into k parts �xi; �yi for

i = 1; : : : ; k. Since we conducted a lossy compression, functions

�xi and �yi only approximate functions xi and yi, respectively. Fi-

nally, let li denote a length of the table specifying function xi (the

length of yi is the same). We reconstruct the segment i for each

i = 1; : : : ; k as follows: we connect by a straight line each pair of

points [(�xi(j); �yi(j)); (�xi(j + 1); �yi(j + 1))], for j = 0; : : : ; li, and

also the pair [(�xi(li); �yi(li)); (�xi(0); �yi(0))].

The results of three of our experiments are shown in Figures 3, 4

and 5. The original images are on the left, the reconstructed images

on the right. Note that the lossy compression actually smoothes

some jagged lines, e.g. the wheel and the barrel of the cannon. This

is because, within the allowed error, the automaton describing the

smooth curve is simple and hence results in small cost.

Conclusion. The new method outperforms the GFA method in case

if high quality of regenerated images is desired. We could expect

further improvement of this method if the inference algorithm stops

subdividing the tables specifying the functions at the size 16 and
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uses vector quantization at this point.

Figure 5: original 512 � 512, 511 bytes, 0.01559 bpp, 0.19% wrong

pixels
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make wfa(i,k,max) :

If max < 0 then return(1);

If k=0 return(d0(f; 0));

cost  0;

do the steps 1{5 with  = ( i)a for a = 0 and 1:

1. Find r1; r2; : : : rn such that the value of

cost1  dk�1( ; r1 1 + : : :+ rn n) +G � s

is small, where s denotes the increase in the size of the au-

tomaton caused by adding edges from state i to states j with

non-zero weights rj and label a, and dk�1 denotes the distance

between two multiresolution functions at level k � 1.

2. n0  n, n  n+ 1,  n   and add an edge from state i to

the new state n with label a and weight 1. Let s denote the

increase in the size of the automaton caused by the new state

and edge.

3. cost2  s+make wfa(n,k-1,minfmax�cost,cost1g�s);

4. If cost2 � cost1 then cost  cost + cost2;

5. If cost1 < cost2 then cost  cost + cost1, remove all outgoing

transitions from states n0+1; : : : n (added during the recursive

call), as well as the transition from state i added on step 2. Set

n  n0 and add the transitions from state i with label a to

states j = 1; 2; : : : n with weights rj whenever rj 6= 0.

6. Update functions  1;  2; : : : ;  n to reect the error done in

quadrant a of  i.

If cost � max return(cost) else return(1);

Table 1: Outline of the recursive inference algorithm for WFA.
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