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Abstract: Document archives contain large amounts of data to which sophisticated
queries are applied. The size of archives and the complexity of evaluating queries makes
the use of parallelism attractive. The use of semantically-based markup such as SGML
makes it possible to represent documents and document archives as data types.
We present a theory of trees and tree homomorphisms, modelling structured text
archives and operations on them, from which it can be seen that: many apparently-
unrelated tree operations are homomorphisms; homomorphisms can be described in a
simple parameterised way that gives standard sequential and parallel implementations
for them; and certain special classes of homomorphisms have parallel implementations
of practical importance. In particular, we develop an algorithm for path expression
search, a novel powerful query facility for structured text, taking time logarithmic in
the text size. This algorithm is the �rst example of a new algorithm discovered using
homomorphic skeletons over data types.
Keywords: structured text, categorical data type, software development methodology,
parallel algorithms, query evaluation.
Category: D.1.3 Concurrent Programming { Parallel Programming; D.2.2 Tools and
Techniques; D.3.3 Language Constructs and Features; H.2.3 Languages { Query Lan-
guages; H.3.3 Information Search and Retrieval; I.7.2 Document Preparation.

1 Structured Parallel Computation

Computations on structured documents are a natural application domain for
parallel processing. This is partly because of the sheer size of the data involved.
Document archives contain terabytes of data, and analysis of this data often
requires examining large parts of it. Also, advances in parallel computer design
have made it possible to build systems in which each processor has sizeable
storage associated with it, and which are therefore ideal hosts for document
archives. Such machines will become common in the next decade.

The use of parallelism has been suggested for document applications for some
time. Some of the drawbacks have been pointed out by Stone [Sto87] and Salton
and Buckley [SB88] { these centre around the need of most parallel applica-
tions to examine the entire text database where sequential algorithms examine
only a small portion, and the consequent performance degradation in accessing
secondary storage. While this point is important, it has been to some extent
overtaken by developments in parallel computer architecture, particularly the
storage of data in disk arrays, with some disk storage local to each processor.
As we shall show, the use of parallelism allows such an increase in the power of
query operations that it will be useful even if performance is not signi�cantly
increased.

Parallel computation is di�cult in any application domain for the following
reasons:
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{ There are many degrees of freedom in the design space of the software, be-
cause partitioning computations among processors strongly inuences com-
munication and synchronisation patterns, which in turn have a strong e�ect
on performance. Hence �nding good algorithms requires extensive search in
the absence of other information;

{ Parallelism in an algorithm is only useful if it can be harnessed by some
available parallel architectures, and harnessed in an e�cient way;

{ Expressing algorithms in a way that is abstract enough to survive the re-
placement of underlying parallel hardware every few years is di�cult;

{ It is hard to predict the performance of software on parallel machines without
actually developing and executing it.

The extensive use of semantically-based markup, and particularly the use
of SGML [ISO86], means that most documents have a de facto tree structure.
This makes it possible to model them by a data type with enough formality that
useful theory can be applied. We will use the theory of categorical data types
[Ski94], a particular approach to initiality, emphasising its ability to hide those
aspects of a computation that are most di�cult in a parallel setting. Operations
on structured text are expressed as homomorphic skeletons, homomorphisms on
data types. As usual in parallel computation, the use of structure improves both
the clarity of algorithm description and the ease of designing implementations.

Categorical data types generalise abstract data types by encapsulating not
only representation of the type, but also the implementation of homomorphisms
on it. This approach was pioneered by Bird and Meertens [Bir87] and its use
for software development by transformation has come to be known as the Bird-
Meertens Formalism.

In object-oriented terms, the only methods available on constructed types
are homomorphisms. As a parallel programming model this is ideal, since the
partitioning of the data objects across processors, and the communication pat-
terns required to evaluate homomorphisms can remain invisible to programmers.
Programs can be written as compositions of homomorphisms without any neces-
sary awareness that the implementations of these homomorphisms might contain
substantial parallelism.

Recall that a homomorphism is a function that respects the structure of its
arguments. If an argument object is a member of a data type with constructor
./, then h is a homomorphism if there exists an operation 
 such that

h(a ./ b) = h(a)
 h(b)

This equation describes two di�erent ways of computing the result of applying h
to the argument a ./ b. The left hand side computes it by building the argument
object completely and then just applying h to this object. The right hand side,
however, applies h to the component objects from which the argument was built,
and then applies a glueing operation 
 to the results of these two applications.

There are two things to note about the computation strategy implied by the
right hand side. The �rst is that it is recursive. If b is itself an object built up
from smaller objects, say b = c ./ d, then

h(b) = h(c)
 h(d)

and so
h(a ./ b) = h(a)
 (h(c)
 h(d))
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The structure of the computation follows the structure of the argument. Second,
the evaluations of h on the right hand sides are independent and can therefore
be evaluated in parallel if the architecture permits it. These simple ideas lead to
a rich approach to parallel computation.

Homomorphisms include many of the interesting functions on constructed
data types. In particular, all injective functions are homomorphisms. Further-
more, all functions can be expressed as almost-homomorphisms [Col93], the com-
position of a homomorphism with a projection, and this is often of practical
importance.

Skeletons are an important approach to parallel computing, beginning from
the work of Cole [Col89]. Homomorphic skeletons are particularly attractive
because they come equipped with a useful transformation system, including a
guarantee of expressive completeness [Ski94].

In the next section we review the construction of a type for trees and show
how it may be used to represent structured text. We show how the explicit use of
data types reduces algorithm design for homomorphisms to the simpler problem
of �nding component functions, and illustrate a recursive parallel schema for
computing homomorphisms on trees. In Section 3, we distinguish four special
kinds of homomorphisms that capture common patterns for information ow in
tree algorithms, and for which optimized implementations are worth building.
These are: tree maps, tree reductions, upwards and downwards accumulations.
In the subsequent �ve sections we illustrate the application of tree homomor-
phisms of increasing sophistication, beginning with the computation of global
document properties, then search problems (that is, query evaluation), and �-
nally problems that involve communicating information throughout documents.
We conclude by discussing the practical implementation of these algorithms on
today's architectures, and those likely in the future.

2 Parallel Operations on Trees

We build the type of homogeneous binary trees, that is trees in which internal
nodes and leaves are all of the same type. Binary trees are too simple to represent
the full structure of tagged texts, since any tagged entity may contain many
subordinate entities, but it simpli�es the exposition without a�ecting any of the
complexity results.

In SGML an entity is delimited by start and end tags. The region between
the start and end tags is either `raw' text or is itself tagged. The structure is
hierarchical, and can be naturally represented by a tree whose internal nodes
represent tags, and whose leaves represent `raw' data. All nodes may contain
values for attributes. In particular, tags often have associated text { for example,
chapter tags contain the text of the chapter heading as an attribute, �gure tags
contain �gure captions, and so on. Thus a typical document can be represented
as a tree of the kind shown in Figure 1. In some kinds of documents, such as this
paper, most of the text tends to be near the leaves of the tree. In others, such
as reference works and linguistic corpora, there is likely to be a much more even
distribution of text among the levels of the tree.

Document archives can also be modelled by trees, in which nodes near the
root represent document classi�cations, as shown in Figure 2. The advantage of
treating an entire archive as a single tree, whose documents are subtrees, is that
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Figure 1: Modelling a Document as Tree

queries over the entire archive can be treated in exactly the same way as queries
about a single document. For example, a query asking for the occurrence of some
pattern in a class of documents uses the same syntax, and is about the same
complexity, as a query asking for a pattern in a single document. Furthermore,
there is no a priori commitment to a particular granularity of partitioning for
distribution across parallel storage { it might be sensible to do so at the document
level, but it might not.

We build trees, using the construction of Gibbons [Gib91], over some base
type A that can model entities and their attributes. For our purposes this is
a tuple consisting of an entity name and a set of attributes. In our particular
examples it will su�ce to have one attribute, the string of text associated with
each node of the document.

Trees representing structured text have arbitrary degree. Fortunately there is
a natural way to transform a tree of arbitrary degree into a binary one [Knu73]
and this transformation can be incorporated into the algorithms described here in
a straightforward way [Ski]. Thus we will, for simplicity, describe the algorithms
in the rest of the paper using binary trees.

Trees have two constructors:

Leaf : A! Tree(A)

Join : Tree(A)�A� Tree(A)! Tree(A)

The �rst constructor, Leaf, takes a value of type A and makes it into a tree
consisting of a single leaf. The second constructor, Join, takes two trees and a
value of type A and makes them into a new tree by joining the subtrees and
putting the value of type A at the internal node generated. Thus a tree is either
a single leaf, or a tree obtained by joining two subtrees together with a new
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Figure 2: Modelling a Document Archive

value at the join. A constructor expression describing a tree and the tree itself
are shown in Figure 3.

De�nition 1 [Ski94] A homomorphism, h, on trees is a function that respects tree
structure, that is there must exist functions f1 and f2 such that

h(Leaf(a)) = Leaf(f1(a))

and
h(Join(t1; a; t2)) = f2(h(t1); a; h(t2))

Call f1 and f2 component functions of the homomorphism h. Furthermore there is
a unique correspondence between homomorphisms and their component functions.

Here f2 is the glueing function that relates the e�ect of h on pieces of the argu-
ment to its e�ect on the whole argument. Notice that if h has type Tree(A)! P
then the types of f1 and f2 are f1 : A ! P and f2 : P � A � P ! P . Thus
�nding a homomorphism amounts to �nding such a pair of functions. However,
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Figure 3: A Constructor Expression and the Tree it Describes

�nding h means being aware of the structure of Tree(A), which is usually com-
plex, whereas f1 and f2 are operations on (usually) simpler types and are easier
to �nd. This is a considerable practical advantage. The unique correspondence
between homomorphisms and their component functions justi�es the notation

h = Hom(f1; f2)

for the (necessarily unique) tree homomorphism from (Tree(A); Leaf; Join) to
the algebra (P; f1; f2).

We can now make formal the recursive computation of h that we saw earlier.
The recursive schema for evaluating all tree homomorphisms is shown in pseu-
docode in Figure 4. The two recursive calls to eval tree homomorphism can be

eval_tree_homomorphism( f1, f2, t )

case t of { pattern match on structure of argument }

Leaf(a) :

return f1( a ) ;

Join(Tree(t1), a, Tree(t2)) :

return f2(

eval_tree_homomorphism( f1, f2, t1 ),

a,

eval_tree_homomorphism( f1, f2, t2 ) )

end case

end

Figure 4: Tree Homomorphism Evaluation Schema

executed in parallel. Using this simple approach to parallelism, all tree homo-
morphisms can be evaluated in parallel time proportional to the height of the
tree (if f1 and f2 take only constant time).

Here are some simple examples of tree homomorphisms:
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Example 1. The tree homomorphism that computes the number of leaves in a
tree replaces the value at each leaf by the constant 1, and then sums these values
over the tree. It is given by

number-of-leaves = Hom(K1; f2)

where K1 : A ! N is the constant 1 function and f2 : N � A � N ! N is
f2(t1; a; t2) = t1 + t2. The recursive schema specialises to:

eval_tree_homomorphism( t )

case t of

Leaf(a) :

return K_1 ( a ) ; { = 1 }

Join(Tree(t1), a, Tree(t2)) :

return

eval_tree_homomorphism( t1 )

+

eval_tree_homomorphism( t2 )

end case

end

Example 2. The tree homomorphism that �nds the maximum value in a tree
does nothing at the leaves and at internal nodes selects the maximum of the
three values from its two subtrees and the node itself. It is

treemax = Hom(id;max)

where max is ternary maximum.

The fact that all tree homomorphisms are the same in some sense is useful
in two ways. First, �nding tree homomorphisms reduces to �nding component
functions. Since component functions describe local actions at the nodes of trees,
they are usually simpler conceptually than homomorphisms. There is a separa-
tion between common global tree structure and detailed node computations.
Second, there is a common mechanism for computing any homomorphism, so it
makes sense to spend time optimising that, rather than developing a variety of
ad hoc techniques.

Nevertheless, there are some classes of homomorphisms for which better im-
plementations are possible. These classes have many members that are of prac-
tical interest.

3 Four Classes of Tree Homomorphisms

There are four special classes of homomorphisms that are paradigms for common
tree computations. They are: tree maps, tree reductions, and two forms of tree
accumulations, upwards and downwards.

In our discussion of implementations, we will assume either the EREW
PRAM or a distributed-memory hypercube architecture as the target computer.
The EREW PRAM does not charge for communication, and our implementa-
tions can all be arranged on the hypercube so that communication is always
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with nearest neighbours, except for the tree contraction algorithm used in sev-
eral places. This enables us to include communication costs in our complexity
measures. We use a result of Mayr and Werchner [MW93] to justify the com-
plexity of tree contraction on the hypercube. We will also assume that a tree of
n nodes is processed by an n-processor system, so that there is a processor per
tree node. We return to this very unrealistic assumption later.

A tree map is a tree homomorphism that applies a function to all the nodes
of a tree, but leaves its structure unchanged. If f is some function f : A ! B,
then TreeMap(f) is the function

TreeMap(f) = Hom(Leaf � f; Join � id�f�id) : Tree(A)! Tree(B)

The recursion implicit in evaluating a map as a homomorphism \unpacks" the
argument tree into a set of leaves and internal nodes. These are then joined back
together in exactly the same structure, except that the function f is applied to
each value before it is placed back in the tree. The resulting tree has exactly
the same shape as the argument tree; only the values (and types) at the leaves
and internal nodes have changed. This implementation is therefore unnecessarily
cumbersome. A tree map can be computed directly by skipping the disassembly
and subsequent reassembly and just applying f to each leaf and internal node,
without any communication.

Let ti(f) denote the time complexity of f in i processors. The sequential
complexity of a tree map is given by

t1(TreeMap(f)) = n� t1(f)

and the parallel complexity by

tn(TreeMap(f)) = t1(f)

A tree reduction is a tree homomorphism that replaces structure without
explicitly manipulating values. Applied to a tree, a tree reduction most often
produces a single value. Formally, a tree reduction is a tree homomorphism

TreeReduce(g) = Hom(id; g) : Tree(A)! A

where the type of g is
g : A�A�A! A

Figure 5 shows a tree and the result of applying a reduction to it.
Knowing the result of the reduction on subtrees, the result of the reduction

on the tree formed by joining them requires a further application of g, so that
critical path is the application of gs along the longest branch. Thus tree reduction
takes parallel time proportional to the height of the tree in the worst case. The
sequential complexity of tree reduction is

t1(TreeReduce(g)) = n� t1(g)

and the parallel complexity is

tn(TreeReduce(g)) = ht� t1(g)

where ht is the height of the tree.
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Figure 5: A Tree Contraction

Somewhat surprisingly, tree reduction can be computed much faster for many
kinds of functions g. For theoretical models such as the EREW PRAM and more
practical architectures such as the hypercube, tree reduction can be computed
in time logarithmic in the number of nodes of the tree, subject to some mild
conditions on the function g [ADKP87, MW93]. This is a big improvement over
the method suggested above, since a completely left- or right-branching tree with
n nodes requires time proportional to n to reduce directly, whereas the faster
algorithm takes time logn.

The key to fast tree reduction is making some useful progress towards the
eventual result at many nodes of the tree, whether or not the reductions for
the subtrees of which they are the root have been completed. Naive reduction
applies g only at those nodes both of whose children are leaves. However, for
well-behaved reduction operations it is possible to carry out partial reductions
for nodes only one of whose descendants is a leaf.

We begin by de�ning a contraction operation that applies to any node and its
two descendants, if at least one descendant is a leaf. Suppose that each internal
node u contains a pointer u.p to its parent, a boolean ag u.left that is true if
it is a left descendant, a boolean ag u.internal that is true if the node is an
internal node, a variable u.g describing an auxiliary function of type A ! A,
and, for internal nodes, two pointers, u.l and u.r pointing to their left and right
descendants respectively.

We describe an operation that replaces u, u.l, and u.r, where u.l is a leaf, by
a single node u.r as shown in Figure 6. A symmetric operation contracts in the
other direction when u.r is a leaf. The operations required are

u.r.g  �x. u.g(f2(u.l.g(u.l.a), u.a, u.r.g(x)))

u.r.p  u.p

if u.left then u.p.l u.r else u.p.r u.r

u.r.left  u.left

if u = root then root u.r

The �rst step is the most important one. It `folds' in an application of f2 so
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Figure 6: A Single Tree Contraction Step: Nodes u and u.l are deleted from the tree,
and u.r is updated

that the function computed at node u.r after this contraction operation is the
one that would have been computed at u before the operation. The contraction
algorithm will only be e�cient if this step is done quickly and the resulting
expression does not grow long. We will return to this point below.

The contraction operations must be applied to about half of the leaves on
each step if the entire contraction is to be completed in about a logarithmic
number of steps. The algorithm for deciding where to apply the contraction
operations is the following:

1. Number the leaves left to right beginning at 0 { this can be done in O(logn)
time using O(n= logn) processors [CV89].

2. For every u such that u.l is an even numbered leaf, perform the contraction
operation.

3. For every u that was not involved in the previous step, and for which u.r is
an even numbered leaf, perform the contraction operation.

4. Renumber the leaves by dividing their positions by two and taking the integer
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part.

Su�cient conditions for preventing the lambda expressions in the u.gs from
growing large are the following [ADKP87]

1. For all nodes u, the sectioned function f2( ; a; ) of type A�A! A is drawn
from an indexed set of functions F , and the function u.g is drawn from an
indexed set of functions G. Both F and G contain the identity function.

2. All functions in F and G can be applied in constant time.
3. For all fi in F , g in G, and a in A, all of the functions �x:fi(g(x); a) and

�x:fi(a; g(x)) are in G and their indices can be computed from a and the
indices of fi and g in constant time.

4. For all gi; gj in G, the composition gi � gj is in G and its indices can be
computed from i and j in constant time.

These conditions ensure three properties: that no function built at a node takes
more than constant time to derive from the functions of the three nodes it is
replacing, that no such function takes more than constant time to evaluate, and
that no such function requires more than a constant amount of storage. Together
these three properties guarantee that the tree contraction algorithm executes in
logarithmic parallel time.

Thus we have a parallel time complexity for tree reduction of

tn(TreeReduce(g)[tree contraction]) = logn

since t1(g) must be O(1).
The third useful family of tree homomorphisms are upwards accumulations.

Upwards accumulations are operations in which data can be regarded as ow-
ing upwards in the tree, and where the computations that take place at each
node depend on the results of computations at lower nodes. These are like tree
reductions that leave all their partial results in place. The �nal result is a tree
of the same shape as the argument tree, in which each node holds the result of
a tree reduction rooted at that node. They are thus analogous to parallel pre�x
or scan computations on lists. This is illustrated in Figure 7.

Upwards accumulations are characterized as follows. Let subtrees be the func-
tion that replaces each node of a tree by the subtree rooted at that node. Hence
it takes a tree and produces a tree of trees. Although subtrees is a messy and
expensive function, it is still a homomorphism.

Upwards accumulations are those functions that can be expressed as the
composition of subtrees with a tree homomorphism mapped over the nodes of
the intermediate tree.

upwards accumulation = TreeMap(Hom(f1; f2)) � subtrees

If Hom(f1; f2) : Tree(A) ! X then the upwards accumulation has type signa-
ture Tree(A)! Tree(X).

Computing an upwards accumulation in the way implied by this de�nition is
expensive. The point of de�ning upwards accumulations like this is that the result
at any node shares large common expressions with the results at its immediate
descendants. Therefore, the number of partial results that must be computed in
an upwards accumulation is linear in the number of tree nodes. Thus it is possible
that there is a fast parallel algorithm, provided the dependencies introduced by
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Figure 7: An Upwards Accumulation

the communication involved are not too constraining; and indeed there is. The
algorithm is an extension of tree contraction; when a node u is removed, it is
stacked by its remaining child. When this child receives its �nal value, it unstacks
u and computes its �nal value. Details may be found in [GCS94].

The sequential time complexity of an upwards accumulation is

t1(UpAccum(f1; f2)) = n(t1(f1) + t1(f2))

its parallel time complexity is

tn(UpAccum(f1; f2)) = t1(f1) + ht� t1(f2)

and its parallel time complexity using extended tree contraction is

tn(UpAccum(f1; f2)[tree contraction]) = logn

because f1 and f2 must be O(1).
The fourth useful family of tree homomorphisms are the downwards accumu-

lations. Downwards accumulations replace each node of a tree by some function
of the nodes on the path between it and the root. This models functions in which
the ow of information is broadcast down through the tree.

We �rst de�ne the type of non-empty paths, which are like lists except that
they have two concatenation constructors, left turn, L, and right turn, R. This
type models the paths that occur between the root of a tree and any other node,
where it is important to remember whether the path turns towards a left or right
descendant at each step. The two constructors are mutually associative, that is

(a?b)??c = a?(b??c)

where ? and ?? are either of the constructors. Homomorphisms on paths have
component functions

� : P � P ! P and 
 : P � P ! P
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where � and 
 satisfy the same mutual associativity property. De�ne paths to
be the function that replaces each node of a tree by the path between the root
and that node. A downwards accumulation is a tree homomorphism that can be
expressed as the composition of paths with a path homomorphism mapped over
the nodes of the intermediate tree.

downwards accumulation = TreeMap(PathHom(�;
)) � paths

If PathHom(�;
) : Path(A)! X then the downwards accumulation has type
signature Tree(A)! Tree(X).

A downwards accumulation is shown in Figure 8. The value that results at

a

b c

e

a

a
 ca� b

d

a� b
 ea� b� d

Figure 8: A Downwards Accumulation

each node of the tree depends on the values of the nodes that appear in the path
between the node and the root, together with their structural arrangement, that
is, the combination of left and right turns that appear along the path. Note
that the asymmetric treatment inherited from left and right turns means that
downwards accumulations include functions whose value depends not only on
the content of nodes but also on their relative positions in the tree.

Clearly it is expensive to compute a downwards accumulation by computing
all of the paths and then mapping a path reduction over them. However, there
are again large common expressions between each node and its parent, so that
the total number of expressions to be computed is linear in the size of the tree.
As a result, there is an algorithm that runs in parallel time proportional to the
logarithm of the number of the nodes in the tree [GCS94].

The sequential time complexity of a downwards accumulation is

t1(DownAccum(�;
) = n(t1(�) + t1(
))

its parallel time complexity is

tn(DownAccum(�;
) = t1(�) + ht� t1(
))
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and its parallel time complexity using extended tree contraction is

tn(DownAccum(�;
)[tree contraction]) = logn

because � and 
 must be O(1).
The parallel complexity results so far have been based on the assumption of

one processor per document node. This is clearly unrealistic. However, all of these
homomorphisms can be adapted to use fewer processors by allocating a region
of each tree to each processor, which then applies a modi�ed homomorphism
to that region. The actual partitioning is complex, because a partition of a tree
into regions is not normally itself a tree. However, with some care it is possible
to get implementations of the fast parallel operations above in time complexity

n=p+ log p

for trees of size n using p processors [Ski]. For small p, this gives almost lin-
ear speed-up over sequential implementations, while for large p it gives almost
logarithmic execution times.

4 Global Properties of Documents

We now have a set of homomorphic tree operations that can be evaluated in
parallel e�ectively. We now begin to show how these operations can be applied
to structured text.

We begin with operations that are tree maps or tree reductions. A broad
class of such operations are those that count the number of occurrences of some
text or entity in a document. In such tree homomorphisms, the pair of functions
used are of the general form

f1(a) = if (a = entity name) then 1 else 0

f2(t1; a; t2) = t1 + t2 + (if (a = entity name) then 1 else 0)

with types

f1 : A! N

f2 : N �A�N ! N

Some tree operations can be factored into the composition of a tree map
and a tree reduction. This is often an easy way to understand and compute the
complexity of a homomorphism. Notice that f2 above can be written as

f2 = � � id�f1�id

where � is ternary addition. We can express the `count entities' homomorphism
above as a composition like this:

count entities = TreeReduce(�) � TreeMap(f1)

The tree map can be computed in a single parallel step, taking time t1(f1).
The tree reduction step can be computed using tree contraction in a logarith-
mic number of steps, each involving an application of functions related to f2,
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taking time logn. Thus the total parallel time complexity of evaluating this tree
homomorphism is

tn(total time) = log n + t1(f1) (1)

The following document properties of frequency can be determined in the
parallel time given by Equation 1:

{ number of occurrences of a word (that is, a delimited terminal string),
{ number of occurrences of a structure or entity (section, subsection, para-
graph, �gure),

{ number of reference points (labels).

An extension of these counting tree homomorphisms produce simple data
types as results. For example, to produce a list of the di�erent entity names
used in a document, we use a tree homomorphism with component functions

f1(a) = fentity name ag

f2(t1; a; t2) = [(t1; t2; fentity name ag)

that produces a set containing the entity names that are present. Each leaf is
replaced by the name of the entity it represents. Internal nodes merge the sets
of entity names of their descendants with the name of the entity they represent.
Using sets means that we record each entity name only once in the �nal set. To
determine the number of di�erent entities present in a document, we need only
to compute the size of the set produced by this tree homomorphism.

Changing the set used to a list, we de�ne a tree homomorphism to produce
a table of contents. It is

f1(a) = [a:string]

f2(t1; a; t2) = a:string++t1 ++t2

where ++ is list concatenation, and a:string extracts the string attribute associ-
ated with node a. This homomorphisms produces a list of all of the tag instances
in the document in level order. The parallel time complexity of these tree homo-
morphisms that produce larger and larger partial results is not straightforward
to compute for two reasons: the operations of concatenation and set union are
not necessarily constant time, so the computation of f2 will not be; and the size
of lists grows with the distance from the leaves, creating a communication cost
that must be accounted for on real computers [SC95].

Another useful class of tree homomorphisms computing global properties are
those that compute properties of extent. The most obvious example computes
the length of a document in characters. It is

f1(a) = length(a:string)

f2(t1; a; t2) = t1 + t2 + length(a:string)

Similarly, the tree homomorphism that computes the deepest nesting depth of
structures in a document is

f1(a) = 0

f2(t1; a; t2) = max(t1; t2) + 1
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Again their parallel time complexity is given by Equation 1.
Software is an example of structured text. Some tree homomorphisms that

apply to software are: computing the number of statements, and building a
simple (that is, unscoped) symbol table.

All of these examples are easy, but they do show how apparently-unrelated
operations can be seen as instances of a common pattern. This simpli�es their use
because they can be presented as parameterised occurrences of a single operation,
and simpli�es their implementation, since many of the necessary decisions need
only be made once.

5 Search Problems

Another important class of operations on structured text involve searching them
for data matching some key. Four levels of search can be distinguished:

1. Search on index terms or simple Boolean combinations of index

terms. This requires preprocessing of the document to allocate search terms
(with the attendant problems of choice varying between individuals). It is
usually implemented using an inverted index. Parallelism can be exploited
by partitioning the index.

2. Search on full text using simple Boolean combinations. This can be
implemented by indexing the full text, by using signature �les [FC84, SK86,
ST91], or by using special purpose hardware [Hol85, Hol91]. Parallelism can
be exploited by partitioning the index or signature �le.
Indexes are expensive both in terms of storage requirement (they may be
twice as big as the text itself), and processing time required to create them
(typically days).

3. Search on non-hierarchical tagged regions. This is a more expressive
variant of full text search in which non-hierarchical tags are present in the
text. Searches may include references to tags as well as to content. This ap-
proach is used in the PAT system [GBYS92] for searching the Oxford English
Dictionary. The descriptive markup of historical documents is typically too
ad hoc to be captured by SGML-style tags, but is nevertheless an impor-
tant part of the organisation of the document. The PAT index contains the
strings beginning at each new word or tag position in the document, stored
in a Patricia trie.
Fulcrum use a similar idea with zone tags, associating a set of zones with each
range of the text. Zones are added to the document index, allowing searches
to be based on both content and zone. This allows content references to be
modi�ed by limited context information (e.g. \dog" within a section heading)
[Inc86].

4. Search on full text and structure. This allows search to include infor-
mation about both contents and (properly-nested) tags. This can be done by
using a full text index and then performing signi�cant post-processing on the
information it returns. For example, looking for \dog" within a section re-
quires �nding all occurrences of \dog" and then selecting those that lie within
an enclosing pair of begin section and end section tags. As the complexity of
the pattern increases, so does the complexity of the post-processing. Finding
an occurrence of \dog" within a section within a chapter requires looking up
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all occurrences of \dog" and all tags associated with the beginning and end-
ing of sections and chapters, and then processing them to �nd those that are
correctly contained. Finding an occurrence of \dog" within the seventh sec-
tion of the third chapter requires looking up a large amount of information,
and complex processing of it.
The path expressions query language [Mac91] allows such queries to be ex-
pressed in a simple way. We show in subsequent sections how such searches
may be implemented e�ciently in parallel without the necessity to use in-
dexes.

As we will show, this fourth level of search is no more expensive to implement
in parallel than the previous three. Thus even if parallelism does not provide
absolute performance improvements because of limits on disk speeds, it can
provide improvements in functionality. We explore this style of search further in
the next two sections.

6 Accumulations and Information Transfer

Accumulations allow nodes to �nd out information about all their neighbours
in a particular direction. Upwards accumulation allow each node of a tree to
accumulate information about the nodes below it. Downwards accumulations
allow each node to accumulate information about those nodes that lie between
it and the root. Powerful combination operations are formed when an upwards
accumulation is followed by a downwards accumulation, because this makes ar-
bitrary information ow between nodes of the tree possible. As we have seen,
both kinds of accumulations can be computed fast in parallel if their component
functions are well-behaved.

Some examples of upwards accumulations are: computing the length in char-
acters of each object in the document; and computing the o�set from each seg-
ment to the next similar segment (for example the o�set from each section head-
ing to the next section heading).

Some examples of downwards accumulations are: structured search problems,
that is searching for a part of a document based on its content and its structural
properties; and �nding all references to a single label. Structured search is so
important that we investigate its implementation further in the next section.

Gibbons gives a number of detailed examples of the usefulness of upwards
followed by downwards accumulations in [Gib91]. Some examples that are impor-
tant for structured text are: evaluating attributes in attribute grammars (which
can represent almost any property of a document); generating a symbol table
for a program written in a language with scopes; rendering trees, which is im-
portant for navigating document archives; determining which page each object
would fall on if the document were produced on some device; determining which
node the ith word in a document is in, and determining the font of each object
(in systems where font is relative not absolute, such as LATEX).

Operations such as resolving all cross references and determining all the ref-
erences to a particular point can also be cast as upwards followed by downwards
accumulations, but the volume of data that might be moved on some steps makes
this expensive.

58 Skillicorn D.B.: Structured Parallel Computation in Structured Documents



7 Parallel String Search of Flat Text and Trees

There is a well-known parallel algorithm for recognizing whether a given string
is a member of a regular language in time logarithmic in the length of the
string [Fis75, HS86]. This algorithm is naturally parallel and readily adapted
to document search, even on quite modest parallel computers. Although it was
described for the Connection Machine [HS86] it seems never to have been used
on any real parallel system. It is related to the technique used by Hollaar [Hol85,
Hol91], but is more expressive, since the use of special-purpose hardware limits
the exibility of Hollaar's searches. We review the parallel algorithm and show
how it allows queries that are regular expressions, and hence can search for
patterns involving both content and tags. We then show how to extend it to a
parallel search algorithm for trees.

Suppose that we want to determine if a given string is a member of a regular
language over an alphabet fa; b; cg. The regular language can be de�ned by a �-
nite state automaton, whose transitions are labelled by elements of the alphabet.
This automaton is preprocessed to give a set of tables, each one labelled with a
symbol of the alphabet, and consisting of pairs of states such that the labelling
symbol labels a transition from the �rst pair in each state to the second. For
example, given the automaton in Figure 9, the tables are:

a

b

c a

c

b

s0

s1

s3

s2

Figure 9: A Simple Finite State Automaton

a b c

(s0; s1) (s0; s2) (s2; s1)
(s1; s2) (s2; s3) (s1; s3)

The homomorphism (on lists) consists of two functions:

f1(a) = Table(a) = f(si; sj) j 9transition si
a
! sjg

f2(t1; t2) = f(si; sk) j (si; sj) 2 t1; (sj ; sk) 2 t2g
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It will be convenient to write f2 as an in�x binary operation, 
, on tables.
The function f1 replaces each symbol in the input string with the table de�ning
how that symbol maps states to states. The function f2 then composes tables
to reect the state-to-state mapping of longer and longer strings. Consider 

applied to the tables for a and b.

a b ab

(s0; s1) 
 (s0; s2) = (s1; s3)
(s1; s2) (s2; s3)

At the end of the reduction, the single resulting table expresses the e�ect of
the entire input string on states. If it contains a pair whose �rst element is the
initial state and whose second element is a �nal state, the string is in the regular
language.

All of the tables are of �nite size (no larger than the number of transitions in
the automaton). Each table composition takes no longer than quadratic in the
number of states of the automaton. The reduction itself takes time logarithmic in
the size of the string being searched on a variety of parallel architectures [Ski90].

The regular language recognition problem is readily adapted for query pro-
cessing (although there are some subtleties [CC95]). Suppose we wish to deter-
mine if some regular expression, RE, is present in an input string. This regular
expression de�nes a language, L(RE), that is then extended to allow for the
existence of other symbols and for the string described by the regular expres-
sion to appear in a longer string. Call this extended language L(RE)0. Then the
search problem becomes: is the text s in the language L(RE)0? There is a �nite
state automaton corresponding to L(RE)0. It is based on the �nite state au-
tomaton for L(RE) with the addition of extra transitions labelled with symbols
from the extended alphabet. It can be as large as exponential in the size of the
regular expression, but is independent of the size of the string being searched.
An example of the automaton corresponding to the search for the word \cat" is
shown in Figure 10 and the resulting algorithm on an input string \bcdabcat"
in Figure 11.

0 1 2 3

c

a,t,?

c

a t

c,a,t,?

a,?

ct,?

Figure 10: Finite State Automaton for \cat"
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b c d a b c a t
0; 0 0; 1 0; 0 0; 0 0; 0 0; 1 0; 0 0; 0
1; 0 1; 1 1; 0 1; 2 1; 0 1; 1 1; 2 1; 0
2; 0 2; 1 2; 0 2; 0 2; 0 2; 1 2; 0 2; 3
3; 3 3; 3 3; 3 3; 3 3; 3 3; 3 3; 3 3; 3

0; 1 0; 0 0; 1 0; 0
1; 1 1; 0 1; 1 1; 3
2; 1 2; 0 2; 1 2; 0
3; 3 3; 3 3; 3 3; 3

0; 0 0; 3
1; 0 1; 3
2; 0 2; 3
3; 3 3; 3

0; 3
1; 3
2; 3
3; 3

Figure 11: Algorithm Progress for the Search

Queries that are boolean expressions of simpler regular language queries could
be evaluated by evaluating the simple queries independently and then carrying
out the required boolean operations on the results. However, the closure of the
class of regular languages under union, intersection, complementation, and con-
catenation means that such complex queries can be evaluated in a single pass
through the data by constructing the appropriate deterministic �nite state au-
tomaton. For example, a query of the form \are x and y in the text" amounts
to asking if the text is a string of the augmented language of the intersection of
the regular languages of the strings x and y.

We now show how regular language recognition for strings may be generalized
to trees. The �rst step applies a tree map that replaces each node of the tree by
a table, mapping states to states, that is the tree homomorphism:

Hom(f1(a) = Leaf � Table(a); f2 = Join � id�f1�id)

The second step is a tree reduction, in which the tables of a node and its two
subtrees are composed using a ternary generalisation of the composition operator
used in the string algorithm above:

Hom(id; f2(t1; t2; t3) = 
(t2; t1; t3))

where table composition has been generalized to a ternary operation


(t2; t1; t3) = f(si; sl) j (si; sj) 2 t2; (sj ; sk) 2 t1; (sk; sl) 2 t3g

Notice that the composition of tables composes the table belonging to the in-
ternal node �rst, followed by the tables corresponding to the subtrees in order.
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This represents the case where the text in the internal node represents some
kind of heading. The order may or may not be signi�cant in an application, but
care needs to be taken to get it right so that strings that cross entity boundaries
are properly detected. The extension of the search in a linear string to a tree is
shown in Figure 12.

This algorithm takes parallel time logarithmic in the number of nodes of
the tree, using the tree contraction algorithm discussed in the previous section.
The automaton can be extended as before to solve query problems, giving a fast
parallel query evaluator for a useful class of queries.

Query evaluation problems that are of this kind include: word and phrase
search, and boolean expressions involving phrase search. Such queries are of
about the complexity of those permitted by the PAT system.

Because the tree structure of structured text encodes useful information, we
now turn to extending this search algorithm to a new kind of search in which
not only the presence of data but also its relationships can be expressed in the
query. This increases the power of the query language substantially. It turns out
that such structured queries can still be computed in parallel within logarithmic
time bounds, making structured queries of practical importance.

8 Parallel Structure Search of Trees

Queries on structured text involve �nding nodes in the tree based on information
about the content of the node (its text and other attributes) and on its context
in the tree, particularly its relative context such as \the third section". Here are
some examples, based on [Mac91]:

Example 3. document where (`database' in document)
This returns those documents that contain the word `database'.

Example 4. document where (`Smith' in Author)
This returns those documents where the word `Smith' occurs as part of the

Author structure within each document. This query depends partly on structural
information (that an Author substructure exists) as well as text. Notice that the
object returned depends on a condition on the structure below it in the tree.

Example 5. Section of document where (`database' in document)
This returns all sections of documents that contain the word `database'. The

object returned depends on a condition of the structure above it in the tree. Notice
that there is a natural way to regard this as a two-step operation: �rst select the
documents, then select the sections.

Example 6. Section of document where (`database' in SectionHead-
ing)
This returns those sections whose headings contain the word `database'. Notice

that the object returned depends on a condition of a structure that is neither above
or below it in the tree, but is nevertheless related to it.

All of these queries describe patterns in the tree; patterns may include \don't
care"s in both the nodes and the branch structure. Queries are relative to a
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Figure 12: Algorithm Progress for Tree Search
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particular node in the tree (usually the root) and return a bag of nodes cor-
responding to the roots of trees containing the pattern (bags are sets in which
repetitions count; we want to know all the places where a pattern is present,
so the result must allow for more than one solution). Allowing queries to take
a bag of nodes as their inputs, so that searches begin from all of these nodes,
allows queries to be composed. Note that a node is precisely identi�ed by the
path between itself and the root, so we might as well think of node identi�ers as
paths.

There are two di�erent kinds of bag operations in the query examples above.
The �rst are �lters that take a bag of nodes and return those elements of the bag
that satisfy some condition. The second are moves that take a bag of nodes and
return a bag in which each node has been replaced either by a node related to it
(its ancestor, its descendant, its sibling to the right) or by one of its attributes.
A simple query is usually a �lter followed by the value of an attribute at all the
nodes that have passed the �lter. More complex queries such as the last example
above require more complex moves.

This insight is the critical one in the design of path expressions [Mac93], a
general query language for structured text applications. The crucial property of
path expressions that we require is that �lters can be broken up into searches
for patterns that are single paths, and are therefore expressible as regular ex-
pressions over paths.

Such �lters can be computed by replacing each node of the structured text
tree by the path from it to the root, and then applying the regular string recogni-
tion algorithm, extended to include left and right turns, to each of these paths.
Those nodes for which the string recognition algorithm returns True are the
nodes selected by the �lter.

For example, a query about the presence of a chapter whose �rst section
contains the word \About" is equivalent to asking if there is a path in the tree
that contains the following:

(entity = chapter) L (entity = section) ^ (\About" 2 section:string)

A tree annotated with left and right turns is shown in Figure 13, and the
result of applying the paths function to it is shown in Figure 14.

The regular language recognition algorithm for strings can be extended to
paths straightforwardly. The query string may contain references to right and
left turns, and so may the extended regular language. Otherwise the operations
of table construction and binary table composition (
) behave just as before.

Filters can be expressed as

�lter = TreeMap(PathHom(Table;
)) � paths

The right hand side replaces the text tree with the tree in which each node
contains the path between itself and the root. The TreeMap then maps the
regular language recognition algorithm for paths over each of these nodes. Those
that �nd an instance of the string are the roots of subtrees that correspond to
the query pattern.

But we have already seen that operations that can be expressed as maps
over paths are downward accumulations, and hence can be computed e�ciently
in parallel when the component functions are well-behaved. We have also seen
that table composition is a constant-time, associative function and so satis�es
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Figure 13: A Tree Annotated with Turn Information
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Figure 14: The Result of Applying the paths Function

the requirements for tree contraction. Thus there is a logarithmic time parallel
algorithm for computing such �lters

tn(filter) = logn

Path expression queries may therefore be included in structured text systems
without additional cost, dramatically improving the sophistication of the way in
which such resources can be queried.

The algorithm above may be adapted to run on p (p < n) processors, with
parallel time complexity n=p + log p. It can also be extended to multiple trees
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sharing structure, such as those which arise in corpus linguistics and multiple
document views [RS].

9 Implementing Path Expression Search

The parallel search algorithm described in the previous section is not, at present,
competitive with existing index-based search algorithms. There are two reasons.
The �rst is that the current generation of parallel machines does not e�ectively
integrate disk storage with processors, although this is changing. Instead, a set
of processors is typically connected to an array of disks via a high-bandwidth
switch. Thus there is no locality of reference. The algorithm described here care-
fully partitions data and computations in a way that is balanced and requires
little communication. This care cannot be taken advantage of on today's ar-
chitectures. However, within a decade parallel architectures can be expected to
provide substantial disk storage local to each processor. When that happens, our
algorithm will be more useful.

The second reason why our algorithm is not competitive is that, in common
with most parallel algorithms, it traverses the whole structure being searched. In
contrast, algorithms based on inverted indexes, and simple parallel adaptations
of them, avoid this, at the expense of creating and storing large indexes. Although
almost nothing is know about indexing structures in a way that would improve
the performance of parallel algorithms, there is some hope that new techniques
[Ski95] will reduce this handicap. Our algorithm may also be useful in situations
where the text archive is highly dynamic, making indexing impractical.

It is also the case that most document structure resides within single �les, per-
haps connected in a hierarchical directory structure. Thus the logical structure
implied by SGML does not match the physical structure well. This is changing as
new �le structure mechanisms, such as DFR [ISO87], are developed, in response
to the acknowledged weakness of hierarchical �le structures.

10 Conclusions

The SGML approach of structural tagging of entities makes it possible to model
structured text as a data type. This in turn makes it possible to use the ma-
chinery of categorical data types to describe trees and to express and compute
homomorphic skeletons on trees. The underlying regularities that this exposes re-
veals the similarities between apparently di�erent operations on structured text,
shows how their discovery and construction can be simpli�ed to the construction
of component functions, and suggests both sequential and parallel implementa-
tions for them.

In particular we have shown how tree contraction and its extensions can be
used to build fast parallel implementations of standard text processing tech-
niques. A major contribution of the paper is the discovery of a fast parallel
implementation for searches based on path expressions. These allow much sim-
pler implementations of sophisticated searching than existing query languages
and may eventually be able to provide better performance. The algorithm is of
theoretical interest as the �rst novel algorithm to be found using the categorical
data type approach. It is unlikely that this algorithm would have been found
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from �rst principles. This adds support for the idea that homomorphisms on
data types are useful tools for �nding parallel algorithms.
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