
TOY LISP INTERPRETER ON A CONNEX MEMORY

MACHINE
1

Bogdan M�̂t�u
Center for New Electronic Architecture, Armata Poporului 1{3, sect. 6, Bucharest,

Romania, email: bogdan@hera.gef.pub.ro.

Corina M�̂t�u
Institute of Microtechnology, Armata Poporului 1{3, Sect. 6, Bucharest, Romania,

email: tara@hera.gef.pub.ro.

Abstract: The Connex Memory is a new memory structure proposed by G. S�tefan
as a hardware support for symbolic processing. The powerful set of memory access
functions supported by the CM is expected to allow a faster and less resource consuming
execution of functional languages on dedicated architectures. This paper presents an
interpreter of Chaitin's Toy LISP written for a CM{based system with stack controller.

1 Introduction

The Connex Memory is a new memory structure proposed in [2] and [3] as
a hardware support for symbolic processing. Paying a price in increasing the
complexity of the memory cell by a reasonable constant, the CM makes available
a set of powerful memory access functions.

The CM consists of a content addressable list implemented as a bidirectional
shift register (the shift can begin at any speci�ed point in the list). While a
conventional CAM uses �x dimension large words in arbitrary order, the CM
content is a string of symbols in a natural representation, consecutive symbols
in the string being stored in consecutive cells. This particular feature of the CM
supports a simple accommodation of variable length words since any string of
symbols can be located in time proportional to the length of the string. Working
with the CM is much like using a text editor: a cursor can be moved to the left,
to the right, or placed after the �rst occurrence of a given string. At the cursor
position a symbol can be inserted or deleted while preserving the continuity of
the CM content. As a consequence, the search of a string in CM is a parallel
one, rather then a sequential one.

This paper presents a string reduction interpreter of Chaitin's Toy LISP [1]
written for a CM-based system [4] with stack controller. The CM functions were
emulated by the following PASCAL subroutines2:

FIND(m,s) marks with marker m each symbol immediately following an oc-
currence of the string s; the leftmost symbol marked (the \output") is stored
in OutCM[m].

1 C. Calude (ed.). The Finite, the Unbounded and the In�nite, Proceedings of the
Summer School \Chaitin Complexity and Applications",Mangalia, Romania, 27 June
{ 6 July, 1995.

2 All the software can be obtained sending an e-mail to bogdan@hera.gef.pub.ro.

Journal of Universal Computer Science, vol. 2, no. 5 (1996), 427-438
submitted: 13/5/96, accepted: 13/5/96, appeared: 28/5/96  Springer Pub. Co.

INSERT(m,s) inserts the symbol (string) s at the position of the leftmost
marker m; the marker m is moved one place after the string inserted.

DELETE(m) deletes the leftmost symbol marked with marker m ; the following
symbol is marked and stored in OutCM[m].

RIGHT(m) moves the markers one place to the right; the leftmost symbol
marked with marker m is stored in OutCM[m].

LEFT(m) moves the markers one place to the left; the leftmost symbol marked
with marker m is stored in OutCM[m].

NOOP(m) the leftmost symbol marked with marker m is stored in OutCM[m]

(useful when the current marker is changed).
SETPOINTER(m,k) the �rst symbol marked with m is also marked with k.
ENDSEX(m) moves the marker m one s-expression to the right.
BACKSEX(m) moves the marker m at the beginning of the current s-expression.
CLRBR(m) deletes the parentheses enclosing the current s-expression.

The last three functions do not belong to the original set of CM functions
[2]. They were initially implemented as subroutines, but since they proved to be
frequently called by the interpreter, solutions were found to implement them in
the CM hardware and they were added to the CM set of functions as atomic
operations.

2 The Interpreter

When the interpreter is started, the CM should contain both the s-expression to
be evaluated and the context of evaluation, if any, as a string of symbols of the
form: @environment$s-expression% where @ and $ are special symbols indicating
the beginning of the environment and of the s-expression, respectively. During
the evaluation process the length of the environment and of the s-expression
varies. The evaluation terminates with the original s-expression replaced by its
value and with the marker m placed at the beginning of the result (see �gure 1).

@[x('(abcd))$�(+(-x))%

...

@[x('(abcd))$(+(-(�'(abcd))))%

...

@[x('(abcd))$(+(�-(abcd)))%

...

@[x('(abcd))$(�+(bcd))%

...

@[x('(abcd))$�b%

Figure 1: Example of an s-expression evaluation

428 Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

The environment consists of pairs variable-value of the form [xv where [is a
special symbol, unique for each environment. The distinction between di�erent
environments that may coexist is necessary for the function EVAL which requires
an evaluation in a new environment, initially void. In our interpreter these special
symbols are graphical symbols starting with ASCII code 179. All the functions
of the toy LISP presented in [1] were implemented with the exception of the
function TRY.

The interpreter was tested using some recursive functions, most of them from
[1]. They are listed below together with their execution time (in CM cycles) and
memory requirement (the maximum number of CM cells used at any one time).

{ Name First atom of ((((a)b)c)d)

@$(('(&(F)(F('((((a)b)c)d)))))('(&(x)(/(.(,x))x(F(+x)))))))%

Value a

Time 1076
Maximum length 115

{ Name Concatenation of (ab) and (cd)

@$(('(&(C)(C('(ab))('(cd)))))('(&(xy)(/(.(,x))y(*(+x)(C(-x)y

))))))%

Value (abcd)

Time 884
Maximum length 122

{ Name Flatten (a(b)c)

@[C(&(xy)(/(.(,x))y(*(+x)(C(-x)y)))))$(('(&(A)(A('(a(b)c))))

)('(&(x)(/(=x())()(/(.x)(*x())(C(A(+x))(A(-x))))))))%

Value (abc)

Time 4455
Maximum length 307

{ Name Flatten (a(b(c)d)e)

@[C(&(xy)(/(.(,x))y(*(+x)(C(-x)y)))))$(('(&(A)(A('(a(b(c)d)e

)))))('(&(x)(/=x())()(/(.x)(*x())(C(A(+x))(A(-x))))))))%

Value (abcde)

Time 8194
Maximum length 422

{ Name Last of (a(b)c)

@$(('(&(L)(L('(a(b)c)))))('(&(x)(/(.(-x))(+x)(L(-x))))))%

Value c

Time 734
Maximum length 95

{ Name Reverse (abcd)

@[C(&(xy)(/(.(,x))y(*(+x)(C(-x)y)))))[L(abcd)$(('(&(R)(RL)))

('(&(x)(/(.(-x))x(C(R(-x))(*(+x)()))))))%

Value (dcba)

Time 3324
Maximum length 295

429Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

{ Name Unshu�e (abc)(123)

@[C(&(xy)(/(.x)y(*(+x)(C(-x)y))))[R(/(.(-x))x(C(R(-x))(*(+x)

())))[X(abc)[Y(123)$(('(&(S)(SXY)))('(&(xy)(/(=x())()(*(+x)(

*(+y)(S(-x)(-y))))))))%

Value (a1b2c3)

Time 1482
Maximum length 249

3 Conclusions

We have presented a toy LISP interpreter and some running examples on a LISP-
oriented architecture. The heart of this architecture is a new memory structure
called the Connex Memory which supports a natural representation and a simple
manipulation of the list structures.

Due to the powerful set of functions o�ered by the CM, the interpreter has
a compact form|only 350 lines of PASCAL code. The few running examples
presented here are certainly not enough for a proper evaluation of the interpreter
performance, but they suggest that the interpreter is also fast and uses a small
amount of CM cells. The use of this interpreter in Chaitin's construction of
a diophantine equation corresponding to the number Omega might result in a
signi�cant simpli�cation of this equation.

References

1. G. Chaitin, Algorithmic Information Theory, Cambridge University Press, 1987.
2. G. S�tefan, \The Connex Memory. A Physical Support for Tree/List Process-

ing," Technical Report, Center for New Electronic Architecture of the Romanian
Academy, Feb. 1994.

3. Z. Hascsi, G. S�tefan, \The Connex Content Addressable Memory (C2AM)," Proc.
21-th ESSCIRC'95, Lille-France, Sep. 1995, pp. 422-425.

4. G. S�tefan, Mihaela Malitza, \Chaitin ToyLisp on Connex Memory Machine," this
volume.

5. P. H. Winston, B. K. P. Horn, LISP, Addison Wesley, 1981.

430 Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

A ToyLISP Interpreter

{Toy LISP Interpreter}

var R, gencar, env_top, bara, bara_def : char;

e, v : byte;

procedure COPY(s, d: integer); { (abc) --> (abc)...(abc) }

begin

SETPOINTER (p6, s);

ENDSEX (p6);

INSERT (p6, ']');

while OUTCM [s] <> ']' do begin

R:= OUTCM [s];

INSERT (d, R);

RIGHT (s);

end;

DELETE (s);

LEFT (d);

BACKSEX (d);

end;

procedure MOVE (s, d:integer); { .(abc)..... -->(abc). }

begin

SETPOINTER (p6, s);

ENDSEX (p6);

INSERT (p6, ']');

while OUTCM [s] <> ']' do begin

R:= OUTCM [s];

DELETE (s);

INSERT (d, R);

end;

DELETE (s);

end;

procedure CLRSEX (m: byte); { ...(abc)... --> }

begin

SETPOINTER (p6, m);

ENDSEX (p6);

INSERT (p6, ']');

repeat

DELETE (m);

until OUTCM [m] = ']';

DELETE (m);

end;

procedure LISTA_VIDA; { ...()... --> ...()... }

begin

LEFT (m);

end;

431Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

procedure EVAL; forward;

procedure ATOM; { ..x.. --> ..1.. }

begin { ..().. --> ..1.. }

DELETE (m); { ..(abc).. --> ..0.. }

EVAL;

if OutCM [m] <> '(' then begin

DELETE (m);

INSERT (m, '1'); end

else begin

RIGHT (m);

if OutCM [m] = ')' then begin

LEFT (m);

INSERT (m, '1'); end

else begin

LEFT (m);

INSERT (m, '0'); end;

CLRSEX (m); end;

BACKSEX (m);

CLRBR (m);

end;

procedure PUT_IN_ENV; { @$...xv --> @|[xv$... }

begin

R := OutCM [m];

FIND (e, env_top);

INSERT (e, bara_def);

INSERT (e, bara);

INSERT (e, R);

RIGHT (m);

MOVE (m, e);

end;

procedure DEFINE; { (&xa) --> @[xa..$.. }

begin

DELETE (m);

if OutCM [m] <> '(' then begin

RIGHT (m);

EVAL;

LEFT (m);

PUT_IN_ENV;

BACKSEX (m);

CLRBR (m); end

else begin

RIGHT (m);

R := OutCM [m];

DELETE (m);

LEFT (m);

INSERT (m, '&');

432 Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

LEFT (m);

LEFT (m);

INSERT (m, R);

LEFT (m);

PUT_IN_ENV; end;

end;

procedure DO_PAIRS; { ...xy...ab... --> @[xa[yb... }

begin

FIND (e, env_top);

INSERT (e, env_top);

LEFT (e);

NOOP (m);

while OutCM [m] <> ')' do begin

R := OutCM [m];

INSERT (e, bara);

INSERT (e, R);

NOOP (p5);

MOVE (p5, e);

DELETE (m);

end;

end;

procedure REMOVE_PAIRS; { @[xa[yb...@$... --> @$... }

begin

FIND (e, env_top);

while OutCM [e] <> env_top do

if OutCM [e] = bara_def then begin

RIGHT (e);

RIGHT (e);

RIGHT (e);

ENDSEX (e); end

else DELETE (e);

DELETE (e);

end;

procedure LAMBDA; { ((&(xy)f)ab) --> @[xa[yb..$..f.. }

begin

LEFT (m);

ENDSEX (m);

while OutCM [m] <> ')' do begin

EVAL;

ENDSEX (m); end;

BACKSEX (m);

DELETE (m);

SETPOINTER (p5, m);

ENDSEX (p5);

CLRBR (m);

DELETE (m);

DELETE (m);

433Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

DO_PAIRS;

DELETE (p5);

DELETE (m);

EVAL;

REMOVE_PAIRS;

end;

procedure NEW_ENV;

begin

FIND (e, env_top);

INSERT (e, env_top);

bara := chr (ord (bara) + 1);

end;

procedure OLD_ENV;

begin

bara := chr (ord (bara) - 1);

FIND (e, env_top);

LEFT (e);

repeat DELETE (e) until OutCM [e] = env_top;

end;

procedure EV; { @[xv[va$...(!x) --> ...a }

begin

DELETE (m);

EVAL;

NEW_ENV;

EVAL;

LEFT (m);

CLRBR (m);

OLD_ENV;

end;

procedure QUOTE; { ('(abc)) --> (abc) }

begin

DELETE (m);

LEFT (m);

CLRBR (m);

end;

procedure EVAL_ATOM; { @[xv...$...x... -->v... }

begin

R := OutCM [m];

FIND (e, bara+R);

if OutCM [e] <> #12 then begin

DELETE (m);

COPY (e, m);

end;

end;

434 Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

procedure EVAL_FUNC_ARG; { @[f+$..(f('(ab))).. --> ..a.. }

begin

EVAL;

LEFT (m);

EVAL;

end;

procedure CAR; { (+('(abc))) --> a }

begin

DELETE (m);

EVAL;

if OutCM [m] = '(' then begin

RIGHT (m);

if OutCM [m] = ')' then LEFT (m)

else begin

ENDSEX (m);

while OutCM [m] <> ')' do CLRSEX (m);

BACKSEX (m);

CLRBR (m);

end;

end;

LEFT (m);

CLRBR (m);

end;

procedure CDR; { (-('(abc))) --> (bc) }

begin

DELETE (m);

EVAL;

if OutCM [m] = '(' then begin

RIGHT (m);

if OutCM [m] <> ')' then CLRSEX (m);

LEFT (m); end;

LEFT (m);

CLRBR (m);

end;

procedure CONS; { (*a(bc)) --> (abc) }

begin

DELETE (m);

EVAL;

ENDSEX (m);

EVAL;

if OutCM [m] <> '(' then begin

DELETE (m);

BACKSEX (m);

CLRBR (m); end

else begin

CLRBR (m);

LEFT (m);

435Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

BACKSEX (m);

LEFT (m);

end;

end;

procedure IF_T_E; { (/1xy) --> x }

begin { (/0xy) --> y }

DELETE (m);

EVAL;

if OutCM [m] = '0' then begin

DELETE (m);

CLRSEX (m);

EVAL;

LEFT (m);

CLRBR (m); end

else begin

DELETE (m);

EVAL;

ENDSEX (m);

CLRSEX (m);

BACKSEX (m);

CLRBR (m);

end;

end;

procedure EQUAL; { (=xx) --> 1 }

var eq: boolean;

begin

DELETE (m);

INSERT (m, '1');

EVAL;

ENDSEX (m);

EVAL;

SETPOINTER (p5, m);

ENDSEX (m);

INSERT (m, '#');

BACKSEX (m);

RIGHT (m);

RIGHT (m);

R := OutCM [m];

INSERT (p5, '#');

eq := false;

while (R = OutCM [p5]) and (R <> '#') do begin

DELETE (m);

R := OutCM [m];

DELETE (p5); end;

if (R = '#') and (OutCM [p5] = '#') then eq := true;

NOOP (p5);

while OutCM [p5] <> '#' do DELETE (p5);

DELETE (p5);

436 Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

NOOP (m);

while OutCM [m] <> '#' do DELETE (m);

DELETE (m);

if not eq then begin

LEFT (m);

DELETE (m);

INSERT (m, '0'); end;

LEFT (m);

LEFT (m);

CLRBR (m);

end;

procedure DISPLAY; { (,('(ab))) --> (ab) }

begin

DELETE (m);

LEFT (m);

CLRBR (m);

EVAL;

end;

procedure EVAL;

begin

if OutCM [m] <> '(' then EVAL_ATOM

else begin

RIGHT (m);

case OutCM [m] of

')': LISTA_VIDA;

'''': QUOTE;

'.': ATOM;

'+': CAR;

'-': CDR;

'*': CONS;

'=': EQUAL;

'/': IF_T_E;

'!': EV;

'&': DEFINE;

',': DISPLAY;

'(': begin

RIGHT (m);

if OutCM [m] = '&' then LAMBDA

else begin

LEFT (m);

EVAL_FUNC_ARG;

end;

end;

else EVAL_FUNC_ARG;

end;

end;

end;

437Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

begin

env_top := '@';

bara := '3';

bara_def := '|';

e := p1;

FIND (m, '$');

EVAL;

end;

438 Mitu B., Mitu C.: Toy LISP Interpreter on a Connex Memory Maschine

