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TOWARDS FOUNDATIONS
OF CRYPTOGRAPHY:

INVESTIGATION OF PERFECT SECRECY!

H. Jurgensen? L. Robbins?

Abstract

In the spirit of Shannon’s theory of secrecy systems we analyse several possible
natural definitons of the notion of perfect secrecy; these definitions are based on
arguments taken from probability theory, information theory, the theory of com-
putational complexity, and the theory of program-size complexity or algorithmic
information. It turns out that none of these definitions models the intuitive no-
tion of perfect secrecy completely: Some fail because a cryptographic system
with weak keys can be proven to achieve perfect secrecy in their framework; oth-
ers fail, because a system which, intuitively, achieves perfect secrecy cannot be
proven to do so in their framework.

To present this analysis we develop a general formal framework in which to
express and measure secrecy aspects of information transmission systems.

Our analysis leads to a clarification of the intuition which any definition of
the notion of perfect secrecy should capture and the conjecture, that such a
definition may be impossible, that is, that only secrecy by degrees can be defined
rigorously.

This analysis also leads to a clarification of what the cryptographic literature
refers to as the one-time pad. On the basis of the arguments used for its strength
in the literature, one has to distinguish between two quite different systems: the
first kind uses randomly chosen strings of some given length; the second kind
uses random strings, that is, patternless strings of some given length. The former
achieves perfect secrecy in the sense of Shannon, but permits weak keys — like
the all-zero key; the latter, while intuitively stronger, does not achieve perfect
secrecy in any of the proposed senses.

Finally, the analysis exposes the need for a formal, non-operational, but math-
ematical definition of the notion of weak key.
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1. Introduction

Security systems for information processing are used to protect information
against unauthorized access — passive access like mere reading of the infor-
mation, or active access like modification of the information. Protocols and
cryptographic systems are among the main components of such security sys-
tems. Protocols define how system components are to be used; cryptographic
systems achieve information hiding. In this paper, we analyse the limitations, in
principle, of cryptographic systems. We do not address other aspects of security
systems except to explain how certain issues in cryptography can be adequately
treated as protocol issues.

The first general formal analysis of cryptographic systems was developed by
Shannon [38]. Shannon’s model is based on probability theoretic and information
theoretic considerations. Some modifications of that model were proposed in [23]
and [28]. The present paper is intended to be a continuation of this very basic
work towards a rigorous mathematical foundation of cryptography.

In the following discussion we assume the well-known model of information
transmission consisting of a source S sending information to a recipient K via a
channel C' as illustrated in Fig. 1.1. Before actual transmission, the information
is encoded using an encoder v and, before reception, 1t is decoded using a decoder
6. During transmission, the encoded information may undergo changes due to
faults in the channel or environmental conditions; such faults are modelled by a
source N of noise. Moreover, the information may be overheard or even altered
during transmission by a hostile participant, the adversary A. In this model, S
and R may, but need not be distinct physical entities, and C' may represent any
kind of physical channel. We consider only discrete channels which operate in
discrete time steps and which use discrete signals.

A
S vy C § R
N Fig. 1.1. The information pro-
cessing and transmission model.

The purposes of the encoding v and the decoding é include the following:
e translation between the alphabets used by S, C, and R;

reduction of the effect of noise on C

adaptation of the information rates at which S, C', and R operate;

information compression;

information security.
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In this paper, we consider only the aspect of information security — specifically,
that of secrecy.? For the other points mentioned we refer to [26] where the basic
requirements of v and é are discussed and where further references can be found.

Intuitively, a system should be deemed to achieve perfect secrecy if it is tm-
possible for the adversary to gain unauthorized access to the information being
transmitted. This is the motivation for Shannon’s definition of perfect secrecy
[38]: A system achieves perfect secrecy if the a posteriori message probabili-
ties are the same as the a priori message probabilities, that is, if by receiving
the encoded message, the cryptogram, the adversary learns nothing about the
message. We re-examine this definition and some of its variants found in the
cryptographic literature keeping its intended meaning in mind.

It seems natural to require that any definition S of perfect secrecy should
have to satisfy the following two conditions:

(1) No system with any cryptographic weaknesses should be said to achieve
perfect secrecy according to S.
(2) If a system is cryptographically unbreakable then it should be said to
achieve perfect secrecy according to S.
Moreover, an assertion of perfect secrecy should be proven according to the
definition S.

In this paper, we argue that Shannon’s probability-based definition of perfect
secrecy does not meet these conditions: It seems not to capture the cryptographic
idea of perfect secrecy exactly, because it does not satisfy the first of the two
conditions. We show that also other obvious candidates for such a definition,
based on information theoretic arguments or on notions from computational or
program-size complexity theory, miss some part of these requirements. We also
show, in particular, that one type of argument often employed in textbooks on
cryptology to prove that the so-called one-time pad achieves perfect secrecy is
mathematically incorrect.

Depending on the context, the one-time pad is sometimes described as a
randomly chosen string of key symbols or as a random string of key symbols.
This distinction seems to be irrelevant, but is, in fact, crucial — as we point
out 1n this paper. In the former case, the key string is chosen at random from
the set of all strings of a given length; then the proof of perfect secrecy is
obtained as a simple consequence of Shannon’s definition as shown in Section 4
below; this case, however, includes situations which are, intuitively, not secure
at all; in particular, this case does not exclude the usage of so-called weak keys.
In the latter case, the key string satisfies certain randomness properties — like
containing no patterns; then the proof of perfect secrecy or unbreakability is
commonly based on the intuitive argument that a random string, applied as a
key to a message, which is a non-random string, will result in a random string as
the cryptogram; thus the adversary would have no clue regarding the message
when a cryptogram is received; this argument is mathematically incorrect.*

3 Other aspects of security include robustness against forging, modifying, substituting
or withholding messages.

4 Gee, for example, [37], p. 14, [2], pp. 243-246. Also [1], pp. 110-111 seems to
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To avoid misunderstandings: we do not at all claim that the one-time pad or
Vernam cipher is weak; 1t isn’t. We show here that there is, so far, no acceptable
general mathematical framework in which

e this cryptographic system can be proven to achieve perfect secrecy and

e all systems with weaknesses can be proven not to achieve perfect secrecy.
The problem is with the definition of perfect secrecy, not with the one-time pad.

As mentioned, the problem with Shannon’s definition of perfect secrecy is
that cryptographic systems with weaknesses can be proven to achieve perfect
secrecy in that sense. These theoretical weaknesses result from the presence of
weak keys.

Intuitively, a key 1s weak, if cryptograms obtained with it can be read by
the adversary comparatively easily. For example, a key that happens to leave
messages largely unchanged should be considered weak. Most cryptographic
systems have weak keys and, if they are known, one avoids using them.?

Therefore, one could argue that the problem can be easily avoided by not us-
ing the weak keys, that is, in essence by excluding these keys from the key space
defining the cryptographic system. This would be a mathematically acceptable
solution if there were a rigorous definition of the notion of weak key. Such a def-
inition does not exist. In fact, the definitions of these two notions, weak key and
perfect secrecy, seem to hinge on each other in a vicious circle. Mathematically,
it seems impossible to define one without the other. Hence, for ¢ mathematical
model of secrecy systems, we cannot simply ignore the existence of weak keys
as a matter of how the system is used, but have to cope with them within our
definitional framework. In fact, we believe that our work may ultimately lead
to a proper definition of weakness in keys.

Moreover, it turns out that, with the weak keys excluded, the one-time pad
can no longer be proven to achieve perfect secrecy; this is a rather counter-
intuitive consequence of Shannon’s definition.

As a consequence of these considerations, we examine whether it is possible
at all to arrive at a cryptographically acceptable rigorous definition of perfect
secrecy. We show evidence that allows us to argue that such a definition may
not be possible and that secrecy, in a rigorous mathematical sense, can only be
achieved by degrees in general.

We consider four different approaches to a mathematical definition of perfect
secrecy — x-perfect secrecy where x 1s one of the letters p, 1, ¢, and r — based on
probability theory, information theory, computational complexity theory, and
program-size complexity theory, respectively. In each case we expose the limita-
tions of that notion in comparison to the two general conditions any definition of
perfect secrecy ought to satisfy. To emphasize the similarity of the approaches
and to clarify their differences we develop a general mathematical framework in

have this argument in mind. Sometimes, the argument seems to be mixed as in [37],
pp. 14-15, or [34], p. 342.

% See, for example, [6] for the RSA system; [17], p. 372, [30], [24], p. 220, [4] for the
U.S. American data encryption standard, the DES.
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which the strengths of cryptographic systems can be expressed and evaluated
from these four points of view and many others in a uniform manner.

Our paper is structured as follows. In Section 2 we review some basic notions
and notation. In Section 3 we develop a general framework in which to express
various aspects of cryptographic systems in a uniform fashion; the key notions
introduced there are those of passive and active access potential, adversary, and
cryptanalyst. Within this framework, we express Shannon’s probability-theory
based approach to secrecy systems [38] in Section 4; we then show that, among
the cryptographic systems which can be proven to achieve perfect secrecy, there
are some which permit the usage of cryptographically very weak keys. In Sec-
tion b, we examine Shannon’s information theoretic approach to secrecy and
point out some of its limitations. This is followed by a very brief discussion of
secrecy from the point of view of computational complexity in Section 6. In Sec-
tion 7, we examine the second notion of one-time pad, mentioned above, from
the point of view of program-size complexity. We exhibit an error in the usual
argument employed to prove that it is unbreakable. Summarizing, in Section 8§,
we argue the impossibility of a satisfactory definition of perfect secrecy; more-
over, we show that even a natural definition of degree of secrecy may be very
difficult to obtain.

All this does not mean that the one-time pad ts not secure to use. It just
means that there is no proof of its strength because there is no convincing defi-
nition of perfect secrecy.

In this paper we only consider private-key cryptographic systems. In Sec-
tion 3 we briefly indicate how public-key systems fit into the same framework. In
the context of this paper and at this level of generality, the distinction between
public and private key, albeit very important in practice, is of no consequence.

Some thoughts expressed in this paper may be highly controversial because
they challenge long-standing beliefs in cryptology. They grew out of an attempt
to put the often cryptic explanations of perfect secrecy in textbooks on cryptol-
ogy onto a firm mathematical basis. We found — to our surprise — that such a
firm basis may not be achievable.

2. Notation and Basic Notions

In this section we introduce the notation to be used and we review some basic
notions.

The symbol N denotes the set of positive integers, and Ng = NU {0}. Z and
R denote the sets of integers and reals, respectively. Let B denote the set {0, 1}
of Boolean values. Occasionally, we identify B with the field GF(2) with two
elements; the operation @ of exclusive or in B corresponds to addition in GF(2).

An alphabet is a non-empty, finite set. In the sequel, we assume without
special mention that all alphabets used in this paper contain at least the two
distinct elements 0 and 1. Let X be an alphabet. Then X* denotes the set of all
strings (or words) over X, including the empty string . Let Xt = X*\ {¢}. By
X we denote the set of infinite strings (or w-words) over X. Let X*° = X*UX¥.
For w € X let |w| € NgU{oo} be the length of w. For n € Ny, let X” be the set
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of all strings of length n over X. For a string u € X and n < |w], let pref, (u)
be the prefix of length n of u, that is, |pref,(u)] = n and u € pref,, (u) X .

Let < be an arbitrary, but fixed total order on X. Let u = ujus - - - u, and
V= v1v2 Uy With u;,v; € X fore=1,2,...,nand j =1,2,...,m. Assume
that u # v. We extend < to X* as follows:

(1) Ifn < m then u < v; if m < n then v < u.
(2) If n = m, let k be maximal such that wjus---up = vivs---v;. Then
0 <k < nand upyr # vpgr. If wupp1 < vpyr then v < v, Otherwise,
v < u.
This order on X* 1s called the gquasi-lexicographic order on X*. For n € N,
let str(n) be the nth string with respect to the quasi-lexicographic order. In
particular, str(1) = «.

If S is a set then |S| is its cardinality, 2° is the set of all subsets of S, and
idg is the identity mapping of S. For sets S and 7', ST denotes the set of all
mappings of 7" into S.

For sets S, T, and R and a partial mapping ¢ of S x T into R, As.[¢(s,1)]
denotes the partial mapping of S into R when ¢ € T is fixed. This A-notation is
adapted to the situation as required. To indicate that ¢ is a partial mapping,
we write ¢ : S x T 2 R. The notation ¢S xT — R implies that ¢ is a total
mapping.

If o 1s a relation, « C S x 7', then, for s € S,

a(s)={t|teT (st) €a}

and, for t € T,
a”lt)=1{s|s€ S, (s1) €al;
moreover,
doma ={s|s€S I eT(st)€a}
and

imo={t|teT,Is € S (s,1) € a}.
The sets doma and ima are the domain and the image of «, respectively.

Let S be a set. Then SeqS denotes the set of finite sequences (tuples) of
elements in S, including the empty sequence (). For s € SeqS, let last(s) be the
last element of s, when s # (), and the empty sequence (), when s = (). For
s € SeqS and e € S, let app(s, e) be the sequence obtained from s by appending
e to s as the last element. Thus last(app(s,e)) = e.

Let S be a set. An outer measure [22] on S is a mapping o : 2° — RU {oo}
satisfying the following conditions:

(a) o(0) = 0.
(b) If 5" C 8" C S then o(5") < o(S").
(¢) If (Si)ier is a family of subsets of S with I C NN, then

o iel 5i) < Zie[ o ().

Note that (¢) implies that ¢(S") > 0 for all S C S. Examples of outer measures
include cardinality and probability. As usual, we assume that co4+x = x + 00 =
oo for all z € R.
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Let S be a finite, non-empty set and let p be a probability on S. The entropy
of the probability space & = (S,p) is given by H(S) = >, —p(s)logp(s).
One sets 0log0 = 0 using the fact that limy_ 4o xlogx = 0. All logarithms are
taken at base 2 in this paper. The entropy can be interpreted as the average
amount of uncertainty about the outcome of an experiment in S or as the average
information contained in an event in §. If § is a product space, § = &1 X 83 with
81 = (S1,p1) and 83 = (53, p2) then one defines the conditional entropy of &
given sa € Sy as H(Sy | s2) = ZsleSl —p(s1 | s2) logp(sy | s2). Thus H(Sy | s2)
is the average uncertainty about the outcome of an experiment in &; when the
outcome in 8y is known to be s3. Finally, H(S; | S2) = 282652 p(s2)H(S1 | s2)
is the conditional entropy of S7 given S5.

Depending on the context, we consider sets as abstract entities or as repre-
sented sets. A represented set is a subset of X for a suitable alphabet X. When
notions like computability or recursivity are involved, we assume that all sets in
question are represented. When using partial recursive functions, in this paper,
we only consider such partial recursive functions that map finite strings onto
finite strings. An extension of the results of this paper to infinite strings® is pos-
sible and requires some careful topological and measure theoretic considerations

(see [41] and [13]).

3. Cryptographic Systems

In this section we introduce the notion of a cryptographic system. The formalism
is influenced by the work in [28] and [27]. Our definitions are much more general
than required for any implementation of a cryptographic system. They are
meant to provide the general uniform conceptual framework for the restricted
and more realistic definitions in subsequent sections, according to the respective
focus of the analysis.

Definition 3.1 An information transmission system is a quintuple
(M, K, E,~,0)

such that M, K, and E are sets, v is a partial mapping of M x K into E| § is
a partial mapping of £ x K into M with the following properties:
(1) For every m € M there is k € K such that (m, k) € dom-.
(2) For every m € M and every k € K, if (m, k) € dom~y, then (y(m, k), k) €
domé and §(y(m, k), k) = m.
(3) For every e € I there exist m € M and k € K such that (m, k) € domy
and y(m, k) = e.
The set M is said to be the set of messages, K is the set of keys, and E is the
set of encoded messages. The mapping v is the encoding and the mapping é is
the decoding.
An information system (M, K, E, vy, §) is said to be finite when M and K are
finite.

6 This generalization is of extreme interest as it models the situation when the be-
ginning or the end of a message are unknown.
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In Definition 3.1, we do not specify how M, K, and E are represented, nor
do we make any assumptions about computational or secrecy properties of v and
8. Condition (1) guarantees that every message can be encoded. Condition (2)
ensures that a message encoded using a key k can be recovered from the encod-
ing using that key again. By condition (3), E is precisely the set of encoded
messages.

The term key seems to suggest cryptography; in our general framework,
however, a key is just a parameter determining which encoding and decoding
to select. For example, in electronic file transmission, the key may just indicate
whether a conversion of binary to ASCII is to be applied prior to transmission;
of course the recipient then has to know whether to apply the inverse conversion
or not. Thus, per se the term key has no implications for secrecy.

We use the terms encoding and decoding in their general meanings of map-
ping; in cryptography, these mappings are usually called encryption and decryp-
tion, respectively, and the term code is reserved for a very special cryptographic
technique (see [29], for example). On the other hand, in coding theory, these
terms usually imply certain special algebraic properties (see [26], for example).

In Definition 3.1, the encoding v and the decoding é§ use the same keys. To
decode a y(m, k), 6 uses” the key k. This is not really a restriction. Suppose
there is a set K, of keys for the encoding v and set K; for the decoding ¢;
then, to achieve the goal of information transmission, there must be a mapping
k of K, into Kj such that §(y(m, k), x(k)) = m for all m € M and k € K
such that (m, k) € domy. Now let K = {(ky,x(ky)) | k, € K, } and consider
k= (ky,k(ky)) € K. Definey : M xK — Eand ¢’ : ExK — M by v'(m, k) =
y(m, ky) and & (e, k) = b8(e, k(ky)), respectively. Then (M, K, E,~',§') is an
information transmission system in the sense of Definition 3.1.

Thus, whether the encoding and decoding use the same or different keys is
not a matter of the system itself, but of how it is used, that is, it is a protocol
matter. In particular, this shows that public-key cryptographic systems fall into
the realm of Definition 3.1. This means that, at the level of generality assumed
in this paper, we do not need to distinguish between public-key and private-key
cryptographic systems.

Example 3.1 Let X = {0,1}, M C X, K C X*°, and form € M and k € K
let (m, k) € domy if and only if |m| = |k|. Let @ denote the binary operation

on X given by
0, ifa=0b,
“@b—{L if a #b.
Clearly, when X is identified with B then @ is the exclusive-or operation; when
X is identified with GF(2) then & is the addition in this field. We extend & to
UiENDU{w} X% x X componentwise. For (m, k) € domy, let

y(m, k) =mdk

7 Of course, there may be a key &’ which is equivalent to k, that is Am.[y(m, k)] =
Am.[y(m, k)] and Xe.[6(e, k)] = Xe.[6(e, k')]. But this is not essential for the analysis
in this paper.
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and

E=yMK)={e|ImeMIke K (ml=lklhe=mak)}.
Then |y(m, k)| = |m| = |k|. Thus, we need (e, k) € domé if and only if |e| = |&].
In this case, let

S(e,k)=¢eDk.
Then, for (m, k) € domry, one has

(y(m, k), k) =m

as required. With appropriate choices of M and K, this system (M, K, E, v, 6)
is the one-time pad.

An adversary to an information transmission system has the potential of
unauthorized information access, which would affect encoded messages. We
distinguish between passive access, the decoding of encoded messages, and active
access, the withholding, modification, or substitution of encoded messages. For
the purposes of this paper, an adversary is characterized by the potential for
these types of access. We describe both, active and passive access potentials, by
relations.

Definition 3.2 Let 3 = (M, K, E, v, 6) be an information transmission system.
A passive access potential of J is a relation o, C E x M such that (e, m) € ap
implies that there is a key k € K with (m, k) € domy and y(m, k) = e. Let
Ap(T) be the set of passive access potentials of J.

In the sequel, we write (m | €) instead of (e, m) for (e, m) € ap; this is to be
read as m given e.

Lemma 3.1 The set A(J) of passive access potentials of an information trans-
mission system J is a complete lattice with respect to union and intersection;
moreover, it is closed under taking subsets.

Let 3 = (M, K, E,v,6) be an information transmission system. Because of
Lemma 3.1, the relation
full _
ap = U ap

ap€AL(T)
is a passive access potential. It is the maximal element of A,(J). We call it the
full passive access potential of J.

Suppose ap € Ap(J). Then (m | e) € oy is intended to express the fact that
an adversary, upon seeing e transmitted, could determine m as the message hav-
ing been sent. In particular, the relation o' describes the a priori knowledge
available about messages and corresponding encoded messages from the very
definition of the information transmission system under considertion, because

af}')ull ={(m|e) |3k € Ky(m, k)=e}.

If no other information is available then, intuitively, the size of the sets ozgl“(e)
with e € E could be a criterion for passive access security. When afau“(e) is
large for every e € E, then an adversary has too much choice among the many
messages m with (m | ) € ol
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Additional considerations may lead one to consider a proper subset « of
oM ag the passive access potential of a typical adversary. This might reflect
limitations of the cryptanalytic resources available to the adversary; it could also
reflect a special interest or expectation of the adversary — expecting messages
about financial transactions and ignoring everything else, for example. Again
intuitively, passive access security decreases when sets ap(e) are small, but non-
empty for many e € E; on the other hand, it increases if ap(e) = @ for many
e € E. The former says that the message corresponding to a given encoded
message is nearly unique and, therefore, the adversary can assume that it is the
true message with some confidence; the latter says, that the adversary does not
know any message at all to associate with an encoded message e.

Definition 3.3 Let 3 = (M, K, E, v, 6) be an information transmission system.
A passive access measure 1s an outer measure g on F. A wunicily measure 1s a
mapping v of E into the set of outer measures on M.

We use a passive access measure g and a unicity measure v as follows to
measure the security of an information transmission system J = (M, K, E, v, §)
with respect to unauthorized passive information access. Let ap € A,(J) be
a passive access potential; it describes the information a given adversary could
access in principle on the basis of intercepting encoded messages.

By g we measure the size of the set doma of all encoded meassages e for
which ap(e) is non-empty. If p (domeay) is 0 then the adversary described by ap
cannot obtain any original messages from encoded messages — in the sense of p.
On the other hand, if y (domey) is large, then, in the sense of y, then there are
many encoded messages for which the adversary can obtain some originals. The
former case means security; the latter case indicates potential insecurity.

By v we measure the size of the sets ap(e) for e € E, that is v(e)(ap(e)).
We distinguish three cases. If v(e)(ap(e)) = 0 then — in the sense of v(e) —
the adversary cannot recover any original message from the encoded message
e. If v(e)(ap(e)) is very large then the adversary, given e, will not be able to
determine which among the many messages in «p(e) is the true original one.
Finally, if v(e)(ap(e)) is non-zero, but small - for example, smaller than some
pre-determined threshold —, then the adversary may be able to determine the
original message from e with some confidence. The first case indicates absolute
secrecy of e; the second case indicates a certain level of secrecy for e; the last
case indicates the potential for lack of secrecy.

From the point of view of the system users, u(domey) should be 0 or at
least very small; this would imply that ap(e) = 0 for all or nearly all e € £ — as
measured by p. For those e € E with ap,(e) # 0, the value of v(e)(ap(e)) should
be 0 or very large. The adversary would wish to face the opposite situation:
p(domey,) as large as possible and v(e)(ap(e)) non-zero, but small, for as many
e € I as possible.

In particular, we can use the cardinality as outer measure. Other outer
measures are considered in Sections 4 and 5 below. Let y | = Ax.[|z]] be this
passive access measure. Moreover, let v| | = Ae.[Az.[|x]]]; thus v assigns, to
every e € I/, cardinality as the outer measure on M. Then y| |(domay) is the
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number of encoded messages e € E such that (m | e) € oy, for some m € M,
that is, the number of encoded messages which the adversary is able to read in
principle. Moreover, for e € I, v| |(e)(ap(e)) is the number of possible messages
m € M that the adversary could determine from e. From the point of view of
security, the best situation is when g |(domay) is as small as possible; then
the adversary can read only very few encoded messages. Moreover, whenever
ap(e) # 0 then there should be a very large number of messages such that
m € ap(e), that is, v |(e) should be very large.

An extreme case occurs when ap(e) = M for all e € E. This happens, for
instance, with the system of Example 3.1 using M = K = F = X" for some
n € N. Then, for every e € F and every m € M there is a (unique) k¥ € K such
that m @& &k = e, hence ozgl“(e) = M. Without any other information than e, the
cryptanalyst has no clue as to which m to choose. This 1s one of the reasons for
the strength of a cryptographic system like this one, the one-time pad.

Unauthorized active information access occurs when an adversary sends an
encoded message to the recipient which differs from the original; in fact, a mes-
sage may even be sent when no original exists. We model active access also by
a relation.

Let 3 = (M,K, FE,~,é) be an information transmission system. Let ¢ be
a symbol (element) not contained in F, and let Fy = E U {o}. We use ¢ to
represent the absence of an (encoded) message. For simplicity, we now also
refer to the elements of F as encoded messages. At time ¢ € Ny a sequence
sy € SeqF, will represent the information traffic seen by the adversary up to and
including time ¢. Initially, the adversary has not seen anything; we represent
this by sp = (). If the adversary has seen s; and, at time ¢ + 1, the encoded
message e;41 € Fo is observed, then s;41 = app(s:, €:41). Based on what the
adversary has seen at any given time, he or she may taken certain actions. This
motivates the following definition of active information access potential.

Definition 3.4 Let 3 = (M, K, E, v, 6) be an information transmission system.
An active access potential of J is a relation a, C SeqFs x E, such that, for all
e € F, and for all s € SeqF,, if last(s) = e then (s,e) € a,. Let A4(J) be the
set of active access potentials of 7.

Again, for (s,€e) € a,, we write (e | s) instead of (s, e); this is to be read as
€ given s.

If «g is the active access potential of an adversary, then (e | s) € ay is
intended to mean that the adversary, having seen the sequence s of encoded
messages, could send the encoded message e to the recipient. The requirement
that (e | s) € @, whenever last(s) = e means that the adversary can always let
the encoded message pass unchanged.

In particular, Definition 3.4 includes the case of (e | s) € a, with last(s) = o
as a possibility. In such a case, the adversary could send e to the recipient,
pretending this originates with the sender, without there having been a message
from the sender. Definition 3.4 also includes the case of (¢ | s) with last(s) #
¢. This means that the adversary could simply withhold the encoded message
last(s).
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In principle, unauthorized active information access does not imply that the
adversary knows the original messages. It may be sufficient for the adversary
just to observe the message traffic — or its absence — to decide what to send to
the recipient.

Unauthorized active information access could be considered as noise on the
transmission channel. Instead of the correct y(m, k) or o, the recipient gets some
e € F, such that (e | s) € ay and last(s) = y(m, k) or last(s) = o.

Lemma 3.2 The set A,(J3) of active access potentials of an information trans-
misston system s a complete lattice with respect to union and intersection. Its
minimal element is the relation

o — {(e|5)]e€ Es s €SeqFEs, last(s) = e}.
The active access potential «™™ indicates that the adversary cannot remove,
change, or insert encoded messages, that is, the encoded messages are simply
passed on to the recipient. The other extreme is

X = U as = {(e|s) | s €SeqF,, e € Fy}.
a,€A,(7)

An adversary with a3'® could send any encoded message at any time without

considering the observed traffic.

Definition 3.5 Let 3 = (M, K, E, v, 6) be an information transmission system.
An adversary for J is a pair (ap, aa) € Ap(J) x Aa(T). An adversary is said to

be passive if oy = o™

ot Otherwise, the adversary is said to be active.

We have, so far, avoided to introduce or use terms like cryptogram, cryptana-
lyst, or cryptanalysis as these terms tend to imply specific implementations of
information transmission systems in which the adversary’s access potentials are
limited by specific cryptographic techniques and in which the adversary realizes
the access potentials by cryptanalytic techniques. Cryptographic techniques are
used primarily to reduce the passive access potential of an adversary in terms of
the chosen passive access measure p and the chosen unicity measure v.

In contrast to passive access, in the context of cryptographic techniques,
active access is mainly controlled through protocols, that is, which messages
to send in which order and how to apply the cryptographic techniques. In
this paper, we focus exclusively on passive access.® Therefore, in the rest of this

min)

paper, an adversary is a passive adversary, and we write o, instead of (o, ap

Definition 3.6 Let J be an information transmission system. A cryptanalyst
for J is a triple (ap, i, v) where ap € AL (J) is a passive access potential, u is
a passive access measure, and v is a unicity measure such that v(e)(m) > 0
implies (m | €) € ap.

® Fundamental issues concerning protocols are analysed in [36].
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With this definition of a cryptanalyst as a triple (ap, i, v), we capture the
following intuition. In ap, we express, what is cryptanalysable in principle given
the respective assumptions about the resources available to the adversary; p and
v measure the secrecy achived by the system.

In the sequel, by cryptanalyst we usually refer to Definition 3.6, but some-
times we use the term in the more colloquial sense of a person — an adversary
— attempting unauthorized reading of encoded messages; this latter process is
referred to as cryptanalysing or cryptanalysis. The encoded messages are called
cryptograms. The term unbreakable 1s used to convey the intuitive notion of
cryptanalysis being impossible absolutely and without exception. Similarly, we
often use the term adversary in its intuitive rather than its formal sense when
no confusion is possible.

In cryptography, one usually makes a few basic assumptions:

e The adversary knows the complete information transmission system J.
Thus, if an adversary o, € Ap(J) knows or can obtain the key k& in use,
then (m | e) € ap for any m € M and e € F such that (m, k) € domy
and v(m, k) = e. In principle, the adversary could obtain arbitrary large
subsets of ozgln.

e The adversary’s resources for cryptanalysis are at least as powerful as
the resources available to the sender and the recipient for information
transmission.

e Unauthorized access to transmitted information may have a value which is
time-dependent, that is, such access may be very valuable for the adversary
and very costly for the sender or the recipient; and this value or cost may
change — typically decrease — over time.

e Encoding and decoding — encryption and decryption — are computable.
Cryptanalysis is also an algorithmic process. All three processes have costs:
To facilitate communication, the cost of encoding and decoding should be
small; to strengthen secrecy, the cost of cryptanalysis should be large. The
cost analysis has to take into account the available resources.

e Some information available to the sender or the recipient has to be kept
secret from the adversary. This information 1s part of the key.

These assumptions address two kinds of issues: First, they address how to assess
the strength of a given system; for instance, the first assumption takes the very
pessimistic view that the adversary can know everything in principle, this only
mitigated by the fact that the resources available may be bounded. On the other
hand, they also address how to use the system; for example, the last assumption
points to protocol issues, that is, how to deal with keys.

In keeping with Shannon’s model, we exclude protocol issues from consider-
ation, that is, we assume that protocols are used correctly throughout.

In subsequent sections of this paper, we equip information transmission sys-
tems with additional structure which entails more structure for passive and active
access potentials and for adversaries.
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4. Probabilistic Aspects

Cryptanalysts are not easily discouraged by large numbers. As is well known, in
a true cryptanalytic situation, the fact that |a£u“(e)| is large for all € € F means
very little. Using cardinality as the unicity measure is unrealistically optimistic.

Example 4.1 Consider the alphabet®

X={AB,...,Z,a,b,....z,,}U{,}
U{"!’?’”’ “’ ,’ ";’:’_’0’1’2’3’4’ 5’6’7’8’9}

of symbols usually occuring in English printed text. Here |, denotes the space
character. Thus |[X| = 74. Let M C X* be the set of strings over X which are
grammatically correct English texts. To make each m € M have a length which
is divisible by 3, we add one or two characters |, to the end of the text. Thus
M C (X?)*. Let K be the set of permutations of X3. For m = mymy---ms, €
M and k € K, let

'y(m, k) = k(m1m2m3) - 'k(m3n—2m3n—1m3n)~
Then E = v(M, K) C (X3)*. Let
b(e k) = k_1(616263) . 'k_1(63n—263n—163n)

for e = eyeq---e3, € E. Clearly, 3 = (M, K, E,v,6) is an information trans-
mission system. For every message m € M, there are 743! possible encoded
messages. If e = v(m, k) then, without any detailed analysis, one can only state
that |a£u“(e)| < |K]|, that is, any key could have been used to get e. This is dis-
couraging, but deceivingly so — as the history of cryptography shows (see [29]).

The cryptanalyst utilizes the fact that M consists of grammatically correct
English texts. Thus, only a key k such that §(e, k) is a correct English text could
have been used. Utilizing knowledge about correct English texts, one can eplore
the space of the 743! keys that could have been used much more efficiently than
by just trying every key, one after the other.

While 743! is a formidable number — it is more than'® 24909000 — and trying
out all keys would take for ever — at the rate of one nsec per key it would take
more than 32,000,000 years — breaking this system is really quite easy. The
cryptanalyst uses the known properties of M.

Based on centuries-old cryptographic experience and in the spirit of Exam-
ple 4.1, one adds probabilistic considerations to information transmission sys-
tems.

9 This is not intended to be real cryptographical example — in classical cryptography
many of the symbols listed would be omitted from the start. It is meant to clarify a
point.

10 This is really a very rough estimate; but for our argument the details do not matter.
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Definition 4.1 A p-information transmission system 1s a quintuple
(Ma ICa ga Y, 6)

such that M, K and & are discrete probability spaces (M, par), (K,pr) and
(E,pg), respectively, and (M, K, E,~, $) is an information transmission system.
Moreover, for e € F, one has

pee) = > puxk(m k).
meM ke K
y(m,k)=e

To keep matters simple we assume, in this chapter, that M and K are count-
able.!’ Then also E is countable.

Moreover, it is common to assume that M and K are independent. This
assumption is reasonable, as sender and recipient have to agree on a key before
it 1s known which message will be sent. Their choice of the key may depend
on the general structure of M, but not on the choice of m € M. Under this
assumption, for e € F/, one has

pe(e) = Y. pu(m)pk (k).
meM ke K
v(m,k)=e
In the sequel, we refer to this assumption as the independence assumption.

The following definition of p-cryptanalyst is motivated by Shannon’s consid-
erations of the probabilistic aspects of cryptographic secrecy in [38]; his infor-
mation theoretic analysis is discussed in the next section.

Shannon’s idea is, essentially, as follows: A cryptogram e received by the
adversary, may change the adversary’s assessment of message probabilities; prior
to the receipt of e, the probability of a message m is par(m) whereas, after
receipt, it is parp(m | €), the a posteriori probability of m given e. Differences
between these two probabilities may permit the adversary to draw conclusions
about the message that has been sent. Therefore, Shannon defines that a system
achieves perfect secrecy if

pu(m) = pae(m | e)

for all m and e. The idea is that receipt of the cryptogram has given the adver-
sary no information about the message that was not available before. To embed
this definition in our general framework, we modify i1t; however, the modifica-
tions are such that a system achieves perfect secrecy in Shannon’s sense if and
only if it achieves perfect secrecy in our sense. To distinguish the various possi-
ble definitions of perfect secrecy we prefix the word perfect by letters indicating
the respective contexts.

1 The generalization to uncountable M and K (with some reasonable topological
structure) is not difficult, but unnecessarily complicated for the point to be made in
this paper.
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Definition 4.2 Let 3 = (M, K, £,7,8) be a p-information transmission system
with [M]| > 2. A p-cryptanalyst for T is a triple (ap, pp, vp) With pp, = pr and

o = LA N Y en L= Ipar(m) = pane(m [ e)l ], if pe(e) > 0,
P 0, if pp(e) =0,

where, for m € M and e € I, pprg(m | €) is the probability of m given e.

With pp, and v, as in Definition 4.2, one has pp(domay) = 0 if pr(e) =0
for all e € E with ap(e) # 0. Thus, cryptograms that could be cryptanalysed
in principle — because of ap(e) # @ — result from messages or keys which have
probability 0. For e € E with ap(e) # 0 and pr(e) > 0, consider

vp(e)(ap(e)) = Y 1= lpar(m) = parg(m | €)].

meap(e)

This value is derived from differences between the a priori and a posteriori prob-
abilities of messages given the cryptogram e. Tt is equal to |[M| when pas(m)
and pyrg(m | €) are equal for all m € M. It is smaller than || when pas(m)
and pyrig(m | e) differ for some m. It is equal to 0 if and only if ap(e) = 0
or pg(e) = 0. The case of |M| < 2 is excluded to avoid the possibility that
vp(e)(ap(e)) could be 0 with ap(e) # 0 and pr(e) > 0; this is merely a technical
restriction.

Definition 4.3 A p-information transmission system J = (M, K, &, v, §) is said
to achieve p-perfect secrecy if, for the p-cryptanalyst (ozgln,up,vp), one has
vp(e)(M) = |M]| for all e € E with pr(e) # 0.

Remark 4.1 A finite p-information transmission system (M, K, E, v, 8) achieves
p-perfect secrecy if and only if it achieves perfect secrecy in the sense of Shannon.

Using Bayesian arguments,

paxe(m,e)
P 1) =5,
assuming that pg(e) # 0
_ pu(m) pejm(e | m)
pe(e)

and

pepele [m)= > pr(k)
keK
y(m,k)=e
assuming that M and K are independent.

We now consider a specific p-information transmission system that also plays
a key role in Shannon’s analysis:
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Example 4.2 Modifying the system of Example 3.1, let us assume for the sake
of simplification that all messages to be encoded have the same length n, that is
M =F = K = X" where X = {0, 1}. Moreover, let px(k) = 27" for all k € K.
For every message m € M and every cryptogram e € F, there is exactly one key
k € K such that e = y(m, k). Therefore, pgjar(e | m) = 27" and

puxe(m,e) =py(m) - pgple | m) =pyu(m) 27"

Hence,
pe(e) = > puxp(me)=27"
meM
Therefore,
pMXE(mae)
p m|e) = ————= = py(m).

As a consequence of Example 4.2, one obtains the following result, originally
due to Shannon. This result is often referred to as a proof that the so-called
one-time pad'? achieves perfect secrecy.

Proposition4.1 Let T = (M, K, &, 7,6) be a p-information transmission system
such that M = K = FE and |K| < Rg. Moreover, assume that M and K are
independent, pg(k) = ﬁ for allk € K, v and § are total, and that for every
m € M and every e € E there is a unique k € K with e = y(m, k). Then J
achieves p-perfect secrecy.

The reasoning leading to Definition 4.3 relies on the interpretation of the
difference between the a priori and a posteriori probabilities as expressing infor-
mation the adversary has obtained by receiving the encoded message. Thus, if
pa(m) = pare(m | e), the adversary has received no information about m from
getting e.

Let us consider this argument in greater detail. Suppose the cryptanalyst
receives a cryptogram which, after some effort, is made readable and exhibits
a message of extreme importance — say, a nuclear attack is planned on the
country for the next morning at 8 o’ clock sharp; or terrorists plan to poison the
water supply of a city; or a financial manager informs his confidents about the
strategy to use for playing out one currency against another one —; suppose the
cryptananlyst also knows that a system like the above has been used to achieve
perfect secrecy. Would the cryptanalyst discard the result of his analysis? Would
he really say that any message could have resulted in that cryptogram and that
he did not learn anything — because the probabilities did not change — and that,
therefore, the result of his cryptanalysis was wrong or meaningless? Or would
he not rather conclude that the sender used a weak key?

12 As mentioned in Section 1, the literature uses two kinds of arguments for the
unbreakability of the one-time pad. The second approach is analysed in Section 7
below.



364 Juergensen H., Robbins L.: Towards Foundations of Cryptography: Investigation ...

One might argue that the cryptanalyst should assume that sender and recipi-
ent would use the system “properly,” that is, avoid using weak keys.'® But, what
is a weak key? Beyond the operational definition — a key is weak if messages
encrypted with it can be cryptanalysed (easily) — there is no definition of a weak
key; there is definitely no mathematically satisfactory definition of a weak key.
So, how is the sender to know whether a key to be used 1s weak? This is just
a variant of the general dilemma of cryptography: sender and recipient believe
their communication to be secret, while the cryptanalyst i1s eagerly reading it
and not telling them about their vulnerabilities. In other words,

o the definition of p-perfect secrecy, Definition 4.3, permits proving systems
p-perfectly secret which have weak keys without providing a means to de-
termine, a priori, which keys are weak.

Moreover, even if we do accept that sender and recipient use the system properly,
that is, that the dramatic reading found of the cryptogram is indeed as likely or
unlikely as any other reading, because its probability did not change, does not
the contents of the reading render it too risky to discard? This suggests that

o 71isk rather than probability might be an appropriate measure of secrecy.
Concretely, consider the cryptographic system of Example 4.2. Let ¢ € N be
large. Clearly, there are many keys k& € X such that, for many or even all
messages m € M;, the cryptogram k @& m nearly gives away the message. If the
sender happens to choose the key £ = 00---0 for example, then £ & m = m.
Should the eryptanalyst discard this?'* And yet, the system achieves perfect
secrecy according to Definition 4.3!

The cryptanalyst’s dilemma can be explained as follows: While it may be
extremely unlikely that a weak key has been used, he cannot ignore the result
of his cryptanalysis if the consequences of doing so are disastrous. Hence,

o the probability of successful cryptanalysis is insufficient as a cost measure

when assessing secrecy.
In this respect, the situation in cryptography is not different from that in risk
analysis in other areas: One has to assess the expected cost,'® not the probability.
Moreover, the definition of perfect secrecy does not take into account that a
cryptographic system may not be uniformly strong across all messages and keys.
Hence,
o [ocal weaknesses — weak keys — need to be taken into account.

13 Ironically, if the sender avoids weak keys then the resulting system cannot be proven
to achieve p-perfect secrecy, that is, perfect secrecy in the sense of Shannon any more.
This is shown in Section 7 below.

14 Of course there can be all kinds of additional psychological tactics that add another
layer of confusion; but the underlying results remain the same.

15 We use the word expected in the colloquial, not in the mathematical sense here.
The difficulty stems from the interpretation of small probabilities and of probability 0.
Because of its small probability the cost of disastrous event — like a nuclear accident
— may not contribute much to the expected cost (in the mathematical sense); it may,
however, be too high a price at all to let that event ever happen. This analogy should
indicate that improbability alone is not sufficient to assess secrecy.
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The notion of weak key has, however, no rigorous definition in the cryptographic
literature.

In the choice of v, in Definition 4.2, a specific method of comparing prob-
ability distributions was chosen. Many other methods would serve the same
purpose, that is could be used instead of the expression

pu(m) — parjp(m | €)
in the definition of v,. A natural alternative is the devergence

pu(m)

py(m)log p7M|E(m B .

Some details of the arguments change, but the essence remains the same, that
18, systems which are breakable can be proven to provide perfect secrecy in the
strict sense of the definition.

The information transmission system of Example 4.2 1s often used to show,
via Proposition 4.1, that the one-time pad, usually equated to the Vernam cipher,
achieves perfect secrecy (for example [38]; [35], pp. 535-537; [18], pp. 22-23;
[39], pp. 48-51). In the sequel we refer to this version of the one-time pad as
the p-one-time pad. As mentioned in Section 1, there is another kind intuition
about the one-time pad in the literature, to be called the r-one-time pad; that
version 1s analysed in greater detail in Section 7 below. While not achieving
perfect secrecy in the sense of Shannon it seems to be much closer to achieving
true perfect secrecy. Combining Example 4.2 and Proposition 4.1, we obtain the
following observation.

Corollary 4.1 The p-one-time pad achieves p-perfect secrecy; hence, it achicves
perfect secrecy wn the sense of Shannon.

5. Information Theoretic Aspects

In this section we formulate Shannon’s unicity distance arguments ([38], [23],
[28]) in our general framework.

Definition 5.1 Let 3 = (M, K, &, 7, 4) be a p-information transmission system.
An i-cryptanalyst for J is a triple (ap, pi, vi) with g = pg and

o = LA N[+ Hyo(N )], if N # 0 and pp(e) > 0,
70, it N=0or pg(e) =0,

where, for N C M and e € E with pg(e) > 0,

Hyo(N €)== > p(m | e)logp(m | e).
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In interpreting the unicity measure vi(e)(ap(e)) of an i-cryptanalyst we have
to distinguish three cases as before: When vi(e)(ap(e)) = 0 then ap(e) = 0 or
pr(e) = 0. Otherwise, vi(e)(ap(e)) is at least 1. In this case, vi(e)(ap(e)) —
1 measures the amount of uncertainty about the messages in «(e) when the
cryptogram e has been received by the adversary. If the value of vi(e)(ap(e))—1
is small then it is likely that the cryptogram e received by the i-cryptanalyst
corresponds to only very few messages in ap(e) with high enough probability.
With this interpretation, the following definition i1s quite natural.

Definition 5.2 A p-information system 3 = (M, K,&,~, ) achieves i-perfect

secrecy if, for the i-cryptanalyst (afau“,ui, v;), one has

w(€)(M) = 1+ Hyp (M | )
for all e € £ with pg(e) > 0.

The proof of Proposition 4.1, indicated in Example 4.2, can also be used to
prove the following result.

Proposition 5.1 Let T = (M, K, &£, 7, 6) be a p-information transmission system
such that M = K = FE and |K| < Rg. Moreover, assume that M and K are
independent, pg(k) = ﬁ for allk € K, v and § are total, and that for every
m € M and every e € E there is a unique k € K with e = y(m, k). Then J
achieves i-perfect secrecy.

This implies that the 1-cryptanalyst is in exactly the same dilemma as the
p-cryptanalyst. What 1s he or she to do with a readable cryptogram knowing
the system achieves 1-perfect secrecy?

Instead of measuring secrecy in terms of y; and v;, Shannon [38] proposed
to measure the overall secrecy achieved by a p-information transmission system
in terms of the message equivocation (or key equivocation) given an arbitrary
cryptogram. This measure, expressed in our framework, leads to the following
definition.

Definition 5.3 Let 3 = (M, K, &, 7, 4) be a p-information transmission system.
A u-cryptanalyst for J is a triple (ap, ptu, vu) with p, = pg and

o = (A NI+ Haygp(N | E)], if N #0,
7o, if N =0,

where, for N C M and e € F,
Hyqe(N | E) = pp(e) Y —p(m | e)logp(m | ).

= meN
Then u-perfect secrecy would be achieved when
va(e)(M) =14+ Hypp(M | E) =14 Hy (M),

Note that vy(e)(M) — 1 = Hyp(M | E) is the message equivocation given
an arbitrary cryptogram and, of course, does not depend on e at all. When
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this value is close to zero then, with high probability, the cryptanalyst will only
have few possible messages associated with each cryptogram. As emphasized in
[25] and [28], message equivocation, being an expectation, can only be used to
measure lack of secrecy.
The unicity measures v; and v, reveal an important point — observed already
by Shannon and probably even earlier. Cryptographic secrecy has three aspects:
(1) A cryptogram may not be cryptanalysable in principle. This is captured
in our ap and p.
(2) A cryptogram may be cryptanalysable, but lead to a large number of
essentially different messages. We capture this case by v being large.
(3) A cryptogram may be cryptanalysable and lead to a small number of
inessentially different messages; this is captured by v; being small.
Cases (1) and (2) have been adressed so far and will be re-visited in Section 7.
Case (3), is considered in the next section.

6. Cryptography and Computational Complexity

In this section we consider the situation when, according to the unicity measure,
a given information transmission system is weak. This means that, whenever
ap(e) # 0 then ap(e) may be small and, therefore, the cryptanalyst would
usually be quite certain about the original message. In this situation, one would
have to rely on the access measure u to provide the required secrecy. This means
that the set
e laple) # 0)

should be made small.

In this section, we assume that M, K, and E are represented over some
fixed alphabet. Moreover, we assume that M and K are recursively enumerable
and that v and é§ are partial recursive functions. Then also F and afau“ are
recursively enumerable. Knowing the information transmission system in use,
an adversary can, therefore, always obtain afau“ — at least in principle. With
the probabilities given in a suitable constructive fashion, the cryptanalyst can
also compute the access and unicity measures of a p-information system. How-
ever, this precomputation of all cryptogram-message pairs is extremely expensive
computationally. Hence a concrete passive access potential o, will reflect the
adversary’s cost limitations — limitations of computational resources, required
timeliness of cryptanalysis and so on; hence, such an o will usually be much
smaller than ozgln.

In [27], the security of cryptographic systems is explored from the point of
view of computational complexity, using the settings of the theory of recursive
functions and of Blum’s theory of complexity measures.’® The security of a
cryptographic system is measured there by three partial recursive functions — x,
n, and ’; y is an upper bound on the complexity of encryption and decryption; n

16 For a general introduction to recursive functions including Blum’s complexity the-
ory see [10]. Blum’s complexity theory was first published in [7]. An analysis of
cryptography using general complexity theoretic considerations is also given in [9].
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is an upper bound on the complexity of cryptanalysis; y' is an uppper bound on
the complexity of decryption by the cryptanalyst after cryptanalysis.’” Under
some natural assumptions one can show that 1 and x’ need not be more than
exponentially larger than y — this has been observed for the usual cases also
in [9] and elsewhere and corresponds to the availability of the brute-force attack,
that is, the attack of trying all possibilities. Moreover, the predicate of a given
cryptographic system being (x,n, x')-secure is in the class T4 of the arithmetic
hierarchy and may even be Il4-complete.'®

Since providing the technical details would require too much space, we only
outline the application of computational complexity theory in our general frame-
work and appeal to the intuition of the reader. For a given pair of partial re-
cursive functions (1, x') we define a®X' to be the set of pairs (m|]e) € afau“
such that the cryptanalyst’s cost!® for cryptanalysing e does not exceed n(e),
the result of the cryptanalysis yields a correct decryption algorithm ¢’ such that
¢'(e) = m and the cost of applying ¢’ to e does not exceed x’(e). Thus, ag,x' is
the set of all pairs (m | e) € afau“ such that cryptanalysis is easy and leads to m
— when measured by n and x’.

Definition 6.1 Let J = (M, K, E,v,§) be an information transmission system
such that M, K, and E are recursively enumerable represented sets and such
that v and é are partial recursive functions. Then J is said to be a computable
mformation transmission system.

Definition 6.2 Let 3 = (M, K, F,v,6) be a computable information trans-
mission system and let n and Y’ be partial recursive functions?®. An (5, x')-c-
cryptanalyst for J is a cryptanalyst (Ozg’x L, U).

In Definition 6.2, the parameters p and v can still be chosen freely: In
particular, one could choose these based on cardinality or probability.

17 This model takes into account that the legitimate users of the information trans-
mission system and the adversary may have vastly different computational resources.

18 It is definitely not in a class lower than Zs, [27].

19 Except in examples we have, so far, made no assumptions about the actual repre-
sentation of messages, keys, and cryptograms. For recursion theoretic and complexity
theoretic arguments, we have to fix a representation, for example that by strings (finite
or infinite) over some alphabets. This is assumed in the sequel. Moreover, we assume
that a cryptanalysis leads to an algorithm by which all cryptograms encoded using the
same key can be decrypted. This is the definition used in [27], and it is in agreement
with the intuition expressed in the cryptographic literature. Strictly speaking, using
the arguments of Section 4, this intuition is risky. In the case of a very important
message, as an adversary, one does not care at all whether one could also decrypt all
other cryptograms resulting from using the same or an equivalent key. Further to this
problem see [27].

20 Once again, we appeal to the readers’ intuition to fill in the details about domains
and co-domains of these functions. These can be found in [27].
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Definition 6.3 Let J = (M, K, E, v, §) be a computable information transmis-
sion system, let x, 1, and x’ be partial recursive functions, and let u be a passive
access measure for 3. Then T is said to achieve (x, 7, x')-c-perfect secrecy with
respect to p 1f the following conditions are satisfied:
(1) There are algorithms for 7 and é§ the complexity of which is bounded by .
(2) u(fe |ap¥'(e) = 0}) = 0.

In Definition 6.3, condition (2) may have vastly different meanings. If 41 is the
cardinality then that condition implies that no cryptogram can be cryptanalysed
within the given resource constraints; when p is probability then this is true
only with probability 1. Thus, u serves as an additional parameter by which to
express the degree of secrecy.

Basing the definition of perfect secrecy on complexity theory requires a rela-
tivization — with respect to the cost for authorized encryption and decryption,
for cryptanalysis, and for unauthorized decryption. This relativization itself is
quite acceptable in principle. However, even granted this setting, there may be
no acceptable definition of perfect secrecy, for various reasons:

e Even relativized perfect secrecy is highly undecidable in general.

e Proofs of relativized perfect secrecy are extremely difficult [9].

e Complexity bounds apply to almost all cases only.

These points seem to indicate that computational complexity may not be the
right setting either in which to attempt a definition of perfect secrecy.

The last of these points, that complexity bounds are almost-always bounds
only, introduces a technical mathematical problem and, as is well known, a
cryptographic problem.

7. Cryptography and Program-Size Complexity

We have seen, so far, that according to the probabilistic definition of perfect
secrecy, p-perfect secrecy, systems which have weak keys can be proven perfectly
secret. The approaches using information theory or computational complexity,
i-perfect or c-perfect secrecy, have similar deficiencies. To explore this issue
further, we return to the single example of a cryptographic system universally
believed to achieve intuitive perfect secrecy, the one-time pad.

In the cryptographic literature, the arguments for the strength of the one-
time pad come in two variants which are sometimes even mixed. First, there is
the p-one-time pad as introduced in Section 4. In this case, one has a system
achieving p-perfect secrecy, that is, perfect secrecy in the sense of Shannon,
but permitting weak keys. Second, a system is considered in which the keys are
random strings and it 1s argued that the cryptograms will be random strings too,
assuming that the messages are non-random ([37], p. 14, for example; implicitly
also [34], p. 342); in this case, there will be no possibility of cryptanalytic attack.
Note that in the second case the weak keys seem to have been eliminated.

We have already discussed the first approach. In this section we consider the
second one. We do believe that, in essence, the arguments used to support the
strength of the one-time pad in the second sense are intuitively valid. We show,
however, that they are not correct mathematically. Moreover, we show that a
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one-time pad of the second kind does not achieve p-perfect secrecy, that is, does
not achieve perfect secrecy in the sense of Shannon. As mentioned before, this
does not mean that the one-time pad is bad — in particular the one of the second
kind —, but that the definition of p-perfect secrecy does not capture the intuitive
notion of perfect secrecy or unbreakability. We discuss the consequences of these
findings in Section 8 below.

To make our presentation precise, we introduce some basic terminology from
the theories of program-size complexity and algorithmic information (see [11]
or [33]).

Let X be an alphabet with | X| > 1 and let ¢ be a partial recursive function of
X* into X* such that, for u,v € X* if ¢ 1s defined on both u and uv then v has
length 0. For u € X*, let H,(u) = min {|v| |v € X*, p(v) = u} with Hy(u) = oo
if there is no v with ¢(v) = u. Hy(u) is the p-program-size complexity of u. The
@-program-size complexity?! does not really depend on ¢ in the following sense:
There is a partial recursive function ¢ such that, for every ¢, there is a constant
ey, satisfying Hy(u) < Hy(u) + ¢y for all u € domep. In the sequel, let o
be an arbitrary but fixed function with this property and we write H instead of
Hy. For u € X*, H(u) is called the program-size complezity®® of u.

For n € N, let

Y(n) = Jrel%)i H(u).

Thus, ¥(n) is the maximal program size required to compute a string of length
n. One can show that X(n) is equal to n + H(str(n)) up to an additive con-
stant, where str(n) is the nth string with respect to the quasi-lexicographic order
on X*.

Definition 7.1 Let ¢t € Ny. A finite string « € X* is said to be t-random if
H(u) > X(|u]) —t. The string w is random if it is t-random for ¢ = 0.

Many definitions of randomness of strings in X exist in the literature (see
[11] or [33]). For finite strings, Definition 7.1, is the most convenient one in our
context and, one could argue, the most adequate one in general [12].

The set of random strings of length n is non-empty for all n. More precisely,
there 1s a constant ¢ € N such that

[ we X7, 1 (u) = S(n)}| > | X[

for all n € N. On the other hand, for n large enough, there are also non-random
strings of length n; the strings 07, 17, (01)" are such examples.

Typically, one assumes that messages are of comparatively low complexity —
at least non-random. To some extent, this corresponds to Shannon’s assump-

21 The definition we use is due to Chaitin [16]; see [11]. Alternative definitions due to
Kolmogorov [31] and others are less simple to use for our purposes.

22 Note that, traditionally, program-size complexity is denoted by the symbol H — as
is information; the particular meaning of H should be clear from the context.
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tions about the stochastic properties of the message source (see [38] and [28] for
details).?

On the other hand, it is a commonly accepted view that in a cryptographic
system, to achieve a certain degree of secrecy, the cryptograms have to appear
to be random strings — without any regularities or patterns that would permit
the adversary to launch an attack with statistical methods (for example [34],
p. 342; [8], p. 17; [2], p. 246; [3], p. 148; [19]; [14]). This intuition leads to the

following variant of the one-time pad.

Definition 7.2 Let K be the set of finite random strings over X = B let M be
the set of finite non-random strings over X, let v and é be the componentwise
exclusive or operation, and let £ = y(M, K). The information transmission
system (M, K, E,v,§) is called the r-one-time pad.

The definitions of p-one-time pad and r-one-time pad can be generalized to
the non-binary case and to infinite strings in the obvious fashion — in the spirit
of Vernam’s original definition.?4

We now show that the r-one-time pad does not achieve perfect secrecy in the
sense of Shannon. For this purpose, we need to consider probabilities on M and
K. We fix n and consider only messages, keys, and cryptograms of length n.
Thus, let M, = MNX" K, =KNX", and F, = ENX". We require, that
all messages of length n have a strictly positive probability and that all keys
of that length are equally likely. The former means that papr, (m) > 0 for all
m € M, . The latter is expressed by pg, (k) = |K,|~* for all k € K,,. For large
enough n the sets M, and K, are non-empty and, therefore, these assumptions
are possible.

Proposition 7.1 Forn € N, let 3, = (My,Kpn,En,7,6) be a p-information
system such that pyr, (m) > 0 for allm € M, and pg, (k) = |Kn|™! for all
k € K,,. Moreover, with

M=|JM, K=|JK. and E=|]En,
n€eN n€eN nelN

assume that (M, K, E,v,8) is the r-one-time pad. For almost all n, the system
T, does not achieve perfect secrecy in the sense of Shannon.

23 This assumption is also made in [37], p. 14, for example.

24 The history of the invention of the Vernam cipher is rather complicated. It seems
that one of the crucial ideas, to use a key of a length comparable to the length of
the message, was already around in 1914; its realization, to use a random key and to
use it only once, and its implementation on a machine were proposed by Mauborgne
and Vernam no later than 1917. A description of the system was first published in
1926 [40]. A similar system, for manual encryption, was invented in Germany by
Kuntze, Schauffler, and Langlotz no later than 1921. For details see [29], pp. 397-403
and 1043-1045; [1], pp. 109-111.
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Proof: Assume n is large. We first show that, for every e € B, = v(M,, K,),
there is an m € M, such that, for all ¥ € K,,, y(m, k) # e. Indeed, if e is
non-random then let m = e. This implies that £ = 07, hence k & K, if n is
large enough. On the other hand, if e is random, e = ejeqe3 - - - with ¢; € X for
all ¢ € N, let m = e10e30e50 - - -; then m € M, but k = 0e30e40e60 - - - and again
k ¢ K, if nis large.

Now consider ¢ € F,,. Then

0<pm.(e)= Y > pa.(m) K| < |[Kn|™h
meM, k€K,
mk=e
Let m € M,,. Then
(| m)= 0, ife®dm¢ K,,
PEA| M., T 1 |Kn|7t, otherwise.
Hence
0 < par, (m), ifedm¢ K,,
puip(mle) =4 (g |-1.
-n par, (m) > pu, (m), otherwise.
e, (€)
O

The crucial point in the proof of Proposition 7.1 is that there is a cryptogram
e and a message m such that e & m is not a key.. Thus, a result similar to
Proposition 7.1 can be proved under the much weaker assumption that there
exist e € E,, and m € M,, such that e ® m ¢ K,. In Proposition 7.1, for every
long enough message m and cryptogram e, one has p(m) # p(m | ¢). A bound
on the length n for which J,, does not achieve perfect secrecy in the sense of
Shannon can be inferred from the proof. The strings 0 and e;0e30e50 - - - and
similar ones must be non-random. This implies that n does not have to be
extremely large.

The statement of Proposition 7.1 is counter-intuitive. Removing weak keys
from the p-one-time pad, a common cryptographic practice to strengthen the
system cryptographically, weakens the system in terms of Shannon’s theory. If
the cryptographic practice is right — and we certainly believe that — then the
definition of perfect secrecy in the sense of Shannon, p-perfect secrecy, does not
model what it claims to model.

Definition 7.3 Let 3 = (M, K, F,7,6) be a computable information trans-
mission system. An r-cryptanalyst for J is a cryptanalyst (ap, g, v) such that
ap C af, € Ap(J) where

al, = {(m | €) ‘ (m]e) € ozfaun, e is non—random}.
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Thus, for the r-cryptanalyst, only cryptograms which are non-random strings
may permit access to the corresponding messages. Probability and cardinality
are obvious candidates for p and v; however, other outer measures can also be
used.

We now turn to the definition of r-perfect secrecy.

Definition 7.4 Let 3 = (M, K, E, v, §) be a computable information transmiss-
sion system and let p be an access measure. Then J is said to achieve r-perfect
secrecy with respect to  if p(domay) = 0.

According to a quite common belief, if 3 = (M, K, E,v,§) is an r-one-time
pad, then y(m, k) is a random string — or at least a pseudo-random string — for
m € M and k € K (for example [37], pp. 13-14; [21], p 172; [20], p. 182; [2],
pp. 243-246; [5], pp. 20-21; [3], p. 166; [32], p. 116). If every cryptogram is a
random string, it would follow that the r-one-time pad achieves r-perfect secrecy
with respect to ) |. We prove that this is not true, that is, the r-one-time pad
has cryptograms which are non-random and even not pseudo-random.

Our next result states a lower bound on the program-size complexity of
cryptograms obtained from one-time pad-like information transmission systems.

Proposition 7.2 Let f : X x X — X be a (recursive) function such that
Aw.[f(x, w)] is injective for all x € X and extend f, componentwise, to a map-
ping of X* x X* into X*. Let k,m € X* such that H(m) < H(k) + ¢ for some
constant ¢ and alli € N. Then

H(f(m, k) > H(k)— H(m) +¢
for some constant ¢’ and all 1.

Proof: Given f(m, k) and m, one can determine k uniquely. Therefore,
H(k) < H(f(m, k) + H(m) —¢
for some constant ¢/. [

For X = B, the operation @ satisfies the assumptions about f in Proposi-
tion 7.2. Thus, if k is interpreted as the key, m as the message, and m ¢ k as
the cryptogram, then the complexity of the cryptogram is bounded from below
— only — by the complexity of the key minus the complexity of the message. The
following example shows that this bound is tight, that is, in an extreme situation
the program-size complexity H(m & k) can be nearly as low as H(k) — H(m).

Example 7.1 Let X = {0,1,...,¢ — 1} with ¢ > 1 and let n € N. We assume
that n is large, greater than 1000, say. Let u € X” be random, and let v € X"
be such that

0, if 7 is odd,
for ¢ = 1,2,...,n where u = ujug -, and v = vivy---v, wWith u;,v; € X.
Then H(u) = X(n) and H(v) < X (%) + ¢, for some constant ¢,. Thus, v is

non-random. Now
0, if ¢ 1s even,
v; Du; =

u;, 1f 7 1s odd,

v — { —u; (mod n), ifis even,
;=
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and, therefore, H(u @ v) < X (%) + ¢ for some constant c.

The example shows not only that the bound of Proposition 7.2 is tight,
but also, that the componentwise combination of a random and a non-random
sequence need not be random, not even pseudo-random, at all; and this happens
even with such a simple function as the exclusive or for the binary alphabet.

Proposition 7.3 Let p be an access measure for the r-one-time pad. If p is
such that p(E') = 0 implies E' = 0 for E' C E, then the r-one-time pad does
not achieve r-perfect secrecy with respect to .

Proof: As shown in Example 7.1, domay, # (. By the assumption about g,
p(domar) > 0. [

Thus, the second common argument used to show that the one-time pad
achieves perfect secrecy is mathematically incorrect. Of course, our counter-
example is rather artificial; the message is random in every second position.

Proposition 7.3, relies on the assumption that u(#’) = 0 implies £/ = §). This
assumtion is satisfied by p |, that is cardinality. If we use the probability pg
instead, then /J(domozfa) = 0 only means that non-random cryptograms appear
with probability 0. We believe this could be possible to achieve in the limit as
n — oo. However, in this case, the arguments made earlier when discussing
p-perfect secrecy and the p-one-time pad apply again.

As a consequence of Proposition 7.2 one can indeed find an information
transmission system that nearly achieves r-perfect secrecy as follows.

Proposition 7.4 Let ¢ € N be an arbitrary, but fived constant, and let X = B.
Forn €N, let K, be the set of random strings over X, and let

My ={u|ue X" Hu) < c}.

Let
K= |]J Ky and M= ] My,
and let
3=(M,K,E v,©§)
be the information transmission system withy and § the componentwise exclusive

or and E'=y(M, K). Then every e € domay, is c-random.

Proof: Consider m € M,, and k € K,,. By Proposition 7.2,
Hm&k)>X(n)— H(m) >X(n)—c

using the assumption that 7 (m) < ¢ and the fact that H(m) < X(n) = H(k).
This holds true for any n € N. []

The restriction in Proposition 7.4 — that H(m) < ¢ for all m € M — is severe:
It says that all messages in the system can be computed using programs that are
no longer than ¢ bits. Moreover, ¢ should be small for the system to achieve the
promised degree of secrecy in a practically relevant way; in particular, ¢ needs to
be small if secrecy is to be afforded for values of n which are realistically small.
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Such a bound on ¢ could imply, however, that the message space M becomes
unusably small.

There is, however, another potential problem with the concept of r-perfect
secrecy or that of c-r-perfect secrecy suggested by Proposition 7.4: For every
constant ¢ € Ny and every v € X* there exist u,w € X* such that wvw is
c-random (see [11], Theorem 5.47). This is not surprising at all; it but indicates
that the definition of the r-one-time pad, Definition 7.2, still permits the presence
of keys that contain long cryptographically weak substrings. Moreover, these are
by no means rare, but appear with a relative frequency which is very close to
their a priori probability.?> Thus, as in the case of the p-one-time pad, the
r-one-time pad 1itself cannot, in principle, rule out that keys with theoretical
weaknesses are used.

&. Conclusions

A mathematical definition S of perfect secrecy must satisfy at least the following
two conditions:
(1) If a system J can be proven to achieve perfect secrecy according to S, then
it has no cryptographic weakness.
(2) If a system J is cryptographically unbreakable then it can be proven to
achieve perfect secrecy according to S.
By these standards, the notion of p-perfect secrecy fails condition (1); if one
accepts that the r-one-time pad achieves perfect secrecy — and no reason has
been given to doubt this — then the notion of r-perfect secrecy fails condition (2).

For a definition S of perfect secrecy, failing to satisfy condition (1) is more
serious than failing to satisfy condition (2); in the former case, a system with
cryptographic weakness may be classified as being highly secure, in fact un-
breakable; in the latter, a truly unbreakable system may just not be provably
unbreakable.

The evidence accumulated in this paper seems to indicate that, so far, there
is no mathematically rigorous definition of perfect secrecy which would satisfy
the conditions listed above. We have exposed the shortcomings of four natural
candidates for such a definition using vastly different approaches; based on ideas
drawn from probability theory, information theory, the theory of computational
complexity, and the theory of program-size complexity.

There seem to be only three fundamental issues that cause these difficulties:

(1) The presence of weak keys and the lack of a rigorous definition of the
notion of weak key.

(2) The absence of a representation of risk to compensate for an otherwise too
optimistic assessment based on low probabilities or on probabilities which
are 0.

(3) The fact that complexity theoretic statements usually hold only for almost
all ...

25 For a detailed analysis, see [11], Chapter 5.6.
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It has been argued that avoidance of weak keys should be treated as a key man-
agement issue which has nothing to do with the cryptographic system itself. We
disagree. Perfect secrecy is meant to be a predicate asserting the cryptographic
strength of a system, and that assessment should take into account which keys
are actually used and how they are actually used. Otherwise, the key manage-
ment may completely spoil the achievable degree of secrecy. Indeed, when the
weak keys are eliminated from the one-time pad, the resulting system no longer
achieves perfect secrecy (Proposition 7.1). One could argue that we have elimi-
nated too many or too few or the wrong kind of keys; however, the loss of perfect
secrecy 1s just a consequence of the fact that some keys have been eliminated
— and a single one would have been sufficient. On the other hand, the removal
of weak keys seems to strengthen the system’s achievable secrecy, an assessment
that — 1t seems — cannot be expressed using Shannon’s definition of secrecy.

In fact, Proposition 7.1 suggests that, rather than treat the weak keys as
a key management issue, one ought to deal with weak keys in the evalution of
the cryptographic system itself. There is no rigorous definition of the notion of
weak key. We have shown that using only random strings as keys — as is often
suggested in the literature for the one-time pad — does not achieve the secrecy
claimed and, moreover, does not rule out the presence of weak parts in keys.

It seems, a definition of the notion of weak key may have to be formulated
in conjunction with that of secrecy, both based on the intuitive operational
concepts these notions convey.

One can also argue that events which lead to insecurities — usage of weak
keys — occur with such a small probability that, by all practical standards, the
possibility of these events can be ignored. This is probably true when little is
at stake. If, however, unauthorized information access can lead to truly vast
damage — say, the crash of the world’s financial system or loss of life — then the
assessment cannot be purely based on probability. These considerations suggest
that a mathematical model of secrecy also needs to take risk factors into account.

It may well be that a definition of perfect secrecy satisfying the two conditions
listed at the beginning of this section is impossible. It may also be, that for any
such definition there is no cryptographic system achieving perfect secrecy. It
seems that the approach to take now 1s to replace the notions of perfect secrecy
and weak key by formal notions of level of secrecy and level of weakness of a
key.

Finally, in the literature one frequently finds the argument that, for a cryp-
togram to offer no point of attack, the cryptogram should be or look random.
In the sense that a random string would offer no point of attack this is true; the
converse, however, is not true in this simplicity. One could, for instance, use
an error-correcting block code for the transmission of the cryptogram. For the
adversary, the encoded cryptogram is the real cryptogram, that is, as far as the
mathematical model is concerned, the cryptogram contains redundancy and is
non-random. In general, a cryptogram may contain two kinds of information for
the adversary: Useless information, that has nothing to do whith the original
message — the information coming from the error-correcting code; useful infor-
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mation giving clues about the message. For the cryptanalyst — and for secrecy
theory — these may be difficult to distinguish.

It is our hope that this paper will initiate a re-examination of the discussion
about a general theory of secrecy systems, incorporating not only considerations
from probability theory and information theory, but also looking at issues for
which the theories of computational complexity and program-size complexity
may provide an appropriate setting. We have developed a small general for-
mal framework, in which aspects of secrecy can be expressed uniformly, thus
making it easier to relate various approaches to each other. In the spirit of
Shannon’s foundational work, we believe that some such general formal frame-
work — whether this or another better one — is required to make proofs about
secrecy achieved by information transmission systems possible.
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