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Abstract: We discuss some e�ective characterizations of the prime elements in a

polynomial ring and polynomial factorization techniques. We emphasize that some fac-

torization methods are probabilistic; their e�ciency justi�es the experimental trend in

mathematics. The possibility of an e�ective version of Hilbert's irreducibility theorem

and the probabilistic techniques of Berlekamp will be also discussed. Finally, bounds

on the heights of integer polynomials are used as tools for improving polynomial fac-

torizations.

1 Introduction

Many problems of nowadays algebra originate in extensions of fundamental re-
sults from arithmetic to more general structures. The study of primality is one
of them.

In commutative algebra the role of primes is taken by irreducible elements from
a domain, and one of its main problems is exactly the e�ective description of
the irreducible elements in an unique factorization domain (UFD). In the case
of polynomial rings the irreducible elements are called irreducible polynomials.
There are two main problems in the study of irreducible polynomials:

1. To decide whether or not a given polynomial is irreducible.
2. To factorize a given polynomial in a product of irreducible polynomials.

We shall discuss various aspects of these two problems, emphasizing the con-
structive and probabilistic aspects.

2 Irreducible Polynomials

What an irreducible polynomial is? In analogy with the case of prime numbers,

a polynomial is called irreducible if it can not be represented as the product of two

nonconstant polynomials.

For example

X + 1; X
2
+ 1

are irreducible polynomials in IR[X], but

X
2
+ 1
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is not irreducible in IC[X] because

X
2
+ 1 = (X + i)(X � i):

From the above examples it follows that the coe�cient ring plays an essential role in

the factorization of a polynomial. The \larger" the coe�cient ring is, the greater is the

probability to �nd proper factors of a given polynomial.

Similarly is considered the irreducibility of multivariate polynomials. Thus, the poly-

nomial

X
2 � 3Y

2

is irreducible in ZZ[X; Y ]), but it is reducible in the ring IR[X;Y ], because of the

following factorization:

X
2 � 3Y

2
= (X +

p
3Y )(X �

p
3Y ):

Problem 1. Is the irreducibility of a given polynomial F with coe�cients in a domain

algorithmically decidable ?

The problem 1 is solved only for some particular coe�cient rings, including the integers

ZZ. The solution is based on polynomial factorization algorithms discussed in section

4.

The problem of the primality test of an integer number is not an easy one for large

integers, even if it is theoretically solved. For most coe�cient rings there is no known

solution of problem 1. A case for which there are known factorization algorithms is

that of integer polynomials (cf. section 4).

3 Hilbert's Irreducibility Theorem

One of the seminal results of David Hilbert is his irreducibility theorem published in

1892. It can be found in Hilbert [13], p. 106:

Theorem 3.1 (Hilbert's irreducibility theorem, HIT) If f(x; t) is an irreducible
polynomial in ZZ[x; t], then f(x; a) is an irreducible polynomial in ZZ[x] for in�nitely
many integer values of a.

The above theorem is a standard example of a crucial mathematical result. Its state-

ment is elementary, concise and sensitive. However the various proofs are not elemen-

tary at all
2
, involving thorough methods. There are many extensions of the theorem,

some of them spectacular. This theorem was and it still is the origin of many studies in

various �elds, for instance in algebra, number theory, algebraic geometry, model theory,

nonstandard mathematics.

We shall discuss here some versions of Hilbert's irreducibility theorem. Any of them

emphasizes another aspect of the theorem. In the sequel we abbreviate Hilbert's irre-
ducibility theorem by HIT.

2
We note that in 1962 S. Lang [14] showed that the original proof by Hilbert contained

an erroneous argument. However subsequent proofs of various authors were correct.
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HIT - The general case

In his seminal paper [13] Hilbert also obtained a generalization of the irreducibility

theorem for polynomials in many variables. Subsequently HIT was extended also to

the case of polynomials with coe�cients in an algebraic number �eld.

De�nition: K is an algebraic number �eld if it is a �nite extension of the �eld of

rational numbers IQ.

Theorem 3.2 (HIT - The general case) Let Fi(x1; : : : ; xs; t1; : : : ; tr) (1 � i � h)
be irreducible polynomials in r + s indeterminates with coe�cients in an algebraic
number �eld K and let P 2 K[t1; : : : ; tr]; P 6= 0.

Then there are in�nitely many vectors (a1; : : : ; ar) 2 ZZr such that the polynomial

Fi(x1; : : : ; xs; a1; : : : ; ar) 2 K[x1; : : : ; xs]

is irreducible in K[x1; : : : ; xs], for all i = 1; 2; : : :, P (a1; : : : ; ar) 6= 0.

The proof of theorem 3.2 is di�cult, involving various techniques. It can be divided in

several steps, each of them corresponding to a particular case:

STEP 1: r = s = 1; K = IQ.

STEP 2: r = s = 1, K is a normal extension of IQ.

STEP 3: r = s = 1, K is an algebraic number �eld.

STEP 4: s > 1; r = 1, K is an algebraic number �eld.

STEP 5: The general case.

We sketch the main ideas of step 1, that is the case originally considered by Hilbert

(theorem 3.1).

Let a 2 ZZ. Then each solution of the polynomial equation

F (x; a) = 0

is a series x(T ) =
X
i2IN

�iT
mi with coe�cients complex numbers and all exponents ra-

tional numbers having a �nite common denominator. These solutions are called Puiseux
series. Note that all coe�cients are complex numbers, i.e. they are in a �eld of charac-

teristic zero. For polynomial equations F (x; a) = 0 with coe�cients in a �eld of positive

characteristic, the corresponding solutions can be described by some special series with

rational exponents, called restricted power series (see D. S�tef�anescu [26]).

It follows that x(a) is not an integer for in�nitely many integer values of a, therefore
the equation F (t; a) = 0 has no rational solutions. So, for in�nitely many integers a,
the x-discriminant of the polynomial F (x; t) satis�es a condition which implies the

irreducibility over IQ of the polynomial F (x; a).

Theorem 3.2 and related results can be proven in several ways. These proofs contain

di�erent insights on Hilbert's irreducibility theorem. One of them refers to the following

e�ectiveness problem:

Is HIT constructively consistent, i.e. can we use HIT to construct e�ectively families
of irreducible polynomials ?

The answer, as we shall see in the sequel, reveals the merits and the limits of a result

based on the axiom of choice. It is a typical nonconstructive argument.

V. G. Sprindzhuk has proved in [25] that it is possible to evaluate the cardinality of the

set of integers a such that the polynomial F (x; a) is reducible. Moreover, there exist

a computable function m = m(F ) and a sequence of rational numbers (an) such that

each polynomial F (x; an) is irreducible over IQ, as soon as n > m(F ).
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Apparently, Sprindzhuk's result should be su�cient to construct e�ectively an enumer-

able family of irreducible polynomials in IQ[x] starting from an irreducible polynomial in

two variables. But his method does not produce a computable function m = m(F ) and
it is not possible to list the integers a such that the polynomial F (x; a) is reducible in
ZZ[x]. M. Yasumoto [27] explained the lack of e�ectivity of Sprindzhuk's result because

of the use of the nonstandard version of the theorem of Siegel [23] on `diophantine

approximations' in the �eld of power series.

Theorem 3.2 has many applications. We mention that Andrew Wiles, in his 1993 ap-

proach to Fermat's last theorem [22] on the Diophantine equation

x
n
+ y

n
= z

n

has invoked theorem 3.2. In Wiles' arguments Hilbert's irreducibility theorem is essen-

tial in proving the existence of a special rational noncuspidal point.

HIT - Gilmore-Robinson version

There exists a version of Hilbert's irreducibility theorem which invokes techniques from

model theory. It was obtained by P. C. Gilmore and A. Robinson in the �fties [12].

Here is a brief account of their work.

They use the predicate calculus with a number of individual parameters and atomic

predicates. For each �eld K and each element t which is transcendental over K, the

language F is that of �rst order predicates applied in the following way: To each element

from K and to the transcendental t one assigns an individual parameter, and these are

all individual parameters of F ; to each subset of K, to each subset of K �K, to each

subset of K � K � K . . . one assigns an atomic predicate, and these are all atomic

predicates of F . Finally, by de�nition, the language L is de�ned to be identical to F ,
except that it lacks an individual parameter for t.

In The Gilmore-Robinson approach of HIT the following condition is involved:

Condition C. Let K be an in�nite �eld, t; x indeterminates over K (algebraically
independent overK). For anypolynomial p(t; x) 2 K(t)[x] whichhas no zeros inK(t),
there is a t� 2 K such that p(t�; x) 2 K[x] has no zeros inK.

Their key result is:

Theorem 3.3 (Gilmore-Robinson) For any �eld K ful�lling condition C, there is
an extension S0 of S = K(t) which is a model of K and for which every member of
S0 n S is transcendental with respect to S.

The proof of theorem 3.3 appeals to the next convention:

Convention. The assignment of parameters and predicates for the languages F and
L will be considered as �xed, so that a statement ofF andL holding forK orK(t), is
assumed to be satis�ed under the given assignment. ThenL will be, by de�nition, the
set of all the statements of L holding for K, that is K is the largest set of statements
of L for whichK is a model.

From all these technical considerations Gilmore and Robinson have obtained the

following version of HIT.

Corollary 3.4 (Gilmore-Robinson HIT) If K ful�lls condition C, then for each
irreducible polynomial p = p(t; x) 2 K(t)[x] there exist in�nitely many t� 2 K such
that p(t�; x) 2 K[x] is irreducible in K[x].
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Remark: Corollary 3.4 proves that Hilbert's irreducibility theorem holds for every

�eld ful�lling condition C.

Remark: S. Lang [14] has introduced even a class of special �elds for which HIT holds.

He called such �elds Hilbert �elds. More precisely, a �eld K is called a Hilbert �eld if

the following statement is ful�lled:

If F 2 K[x1; :::; xn] is irreducible, then F (x1; a2; :::; an) 2 K[x1] is irreducible
for almost all a2; : : : ; an 2 K;

(where `almost' all has not the meaning from measure theory, but assumes the exis-

tence of a polynomial with certain properties). Let's note that the family of Hilbert

�elds includes, for example, the algebraic number �elds. But the �nite �elds and the

algebraically closed �elds are not Hilbert.

HIT - A probabilistic version

We now discuss the probabilistic version of J. v. Gathen [11]. Gathen obtained it as

a result of his search for an e�ective version of Hilbert's irreducibility theorem. His

results allow the (probabilistic) reduction of multivariate factorization to the bivariate

case.

The probabilistic version of HIT uses the concept of factorization pattern. If F 2
K[x1; : : : ; xn] then the vector (d1;m1; : : : ; dr;mr) is called a factorization pattern of

the polynomial F if there exist r irreducible distinct polynomials F1; : : : ; Fr and r
natural numbers m1; : : : ;mr such that

F = Fm1
1

: : : Fmr
r ; degFi = di, di � dj i < j.

A simpli�ed probabilistic version of Hilbert's irreducibility theorem can be obtained:

Theorem 3.5 (HIT - probabilistic version) Let F be an e�ectively computable �eld
and f 2 F [x1; : : : ; xn]. Then there is a �eld extension of F and a subsidiary polynomial

in 3(n � 2) variables with coe�cients in K, of degree 9
d2 , which allows the construc-

tion of a polynomial ft 2 F [x1; x2] such that the polynomials f and ft have the same
factorization pattern.

The proof of theorem 3.5 involves techniques from algebraic geometry, including a the-

orem of Bertini legitimating the existence of the associated polynomial ft. This poly-
nomial is described through a suitable substitution. If the polynomial f is irreducible

one obtains a bivariate irreducible polynomial, i.e. a \classic" version of HIT.

Theorem 3.5 leads to some probabilistic factorization algorithms. They are dependent

on the coe�cient �eld (algebraic number �elds, �nite �elds etc.). Their common char-

acteristic is that they produce the correct answer with some probability, usually a

function of the degree of the polynomial. For example, from theorem 3.5 it follows the

existence of a bivariate polynomial g of degree � n such that the probability that the

polynomials f and g have di�erent factorization patterns is at most
9
n2

a
, with a being

the cardinality of a �nite subset of K. For a su�ciently large one has a probabilistic

polynomial-time reduction from multivariate to a bivariate factorization pattern.

In the mathematical literature there exist many algorithms which depend on additional

hypotheses formulated on the basis of empirical observations. Such a hypothesis is the

existence of an e�ective version of Hilbert's irreducibility theorem holding over IQ for

simple substitutions. Such results, obtained assuming the validity of plausible but not

yet proved mathematical facts, are speci�c to experimental mathematics.3 One of the

3
See the delightful discussion on experimental mathematics in Chaitin's lecture [8],

section 5.
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most invoked assumptions used by experimental techniques is Riemann hypothesis. An

interesting result in this direction, obtained by Weinberger [28], is a polynomial-time

algorithm for computing the number of factors of an integer polynomial, assuming the

extended Riemann hypothesis.

Although probabilistic algorithms cannot be applied \with certitude" to any poly-

nomial, they are useful for e�ective polynomial factorization. The evaluation of the

probability is important, because it measures the e�ciency of the method. Such an al-

gorithm also includes the point of the failure cases. For the \exceptional" polynomials

for which the method does not work, one may try other factorization methods. Among

these we mention the Norman-Moore algorithm, included in the algebraic program-

ming system REDUCE, and the Musser algorithm. These algorithms involved some

results of Zassenhaus on Hensel factorization. Their cost is polynomial, so they are an

alternative to modular algorithms, with exponential cost.

We also mention Chaitin's conditions for the conversion of probabilistic algorithms into

deterministic ones (for a proof see C. Calude [6], ch. 7.5), with a direct application to

the problem of factorization of integers.

4 Factorization Algorithms

The factorization of integers into a product of primes is one of the basic problems

in number theory. Even if there are known many factorization methods, they may be

applied only to few classes of integers, usually \small" numbers
4
. Let us observe that

the methods used in public key cryptography for encoding messages are based exactly

on the practical impossibility of factorizing \very large" integers. A message encoded

in such a way can not be \broken".

The same di�culties are encountered in polynomial factorization. We shall limit our-

selves to the case of polynomials with coe�cients in a �eld K (but the same consid-

erations remain valid for polynomials with coe�cients in an UFD). We �rst note the

following result:

Theorem 4.1 If F 2 K[x1; : : : ; xn] is a nonconstant polynomial then there exist
unique irreducible polynomials F1; : : : ; Fr and natural numbers m1; : : : ;mr such that

F = F
m1
1 : : : F

mr
r :(1)

The relation (1) is called the factorization of the polynomial F . A natural question is:

Problem 2. Given a nonconstant polynomial F with coe�cients in a �eld (or in an

UFD), does there exists a factorization algorithm for F ?

In most cases there is not known an answer to problem 2. However, for some particular

coe�cient rings (including the integers), there exist general factorization algorithms.

The main factorization algorithms for polynomials with integer coe�cients are the

following:

1. The algorithm of Kronecker.

2. The algorithm of Berlekamp.

3. The L
3
algorithm.

4
Here the notion of \small number" is vague; often it depends on the size of the

system used for making the computation. A number of 15 ciphers, for example, can

be quickly factorized by a computer, while it takes some time to a human being

using only paper and pencil.
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We shall not describe here all these methods. We only mention that the algorithm

of Kronecker is based on the factorization of integers and polynomial interpolation,

and the algorithm of Berlekamp uses the factorization of polynomials over �nite �elds

and Hensel's lemma. The L
3
algorithm (developed in 1982 and called L

3
after its

authors A. K. Lenstra, H. W. Lenstra and L. Lov�asz) involves the Gram-Schmidt

orthogonalization.

As in the case of integer numbers, we are interested in evaluating the time necessary

to factor a polynomial. It was observed that the method of Kronecker is slow, while

the L
3
algorithm is fast. The evaluation of the factorization time can be done by a

\cost" function. The cost can be de�ned in many ways: in function of the degree of

the polynomial, with respect to the `size' of the coe�cients a.s.o. With respect to the

polynomial degree, the cost of the algorithms 1. and 2. are exponential, but the cost

of the algorithm 3. is polynomial.
5

The problem of factorization of univariate polynomials over �nite �elds is essential

for the factorization of univariate and multivariate integer polynomials. This is an

attractive and di�cult mathematical problem.

Let IF be a �xed �nite �eld. Therefore it is isomorphic to a �eld IFq with q = ps

elements, where p is prime and s � 1. We may write a list of all the polynomials of

degree n with coe�cients in IF . Then the problem of factorizing a polynomial f of

degree n could be theoretically solved in the following way:

STEP 1: Divide the polynomial f by all polynomials of degree n� 1.

One obtains all possible divisors of degree n� 1.

STEP 2: Divide the polynomial f by all polynomials of degree n� 2.

One obtains all possible divisors of degree n� 2.

. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

STEP n-1: Divide the polynomial f by all polynomials of degree 1.

One obtains all possible divisors of degree 1.

In this way one obtains the factorization of f . Unfortunately, this method is not prac-

tical. For large degrees, even for the �eld ZZ2 which has only two elements, this method

involves very long computations, impossible to accomplish. But there are other de-

vices which allow an e�ective factorization over �nite �elds. The most famous is the

probabilistic method of E. R. Berlekamp [3].

The algorithm of Berlekamp

The device of Berlekamp is based on the decomposition

X
p � p =

p�1Y
j=0

(X � j);

valid in ZZp[X]. It leads to

Proposition 4.2 (Berlekamp) Let f 2 ZZp[x], deg(f) = d > 0. If there exist g 2
ZZp[x] such that 1 � deg(g) < d and f divides gp � g then

f = gcd(f; g) gcd(f; g � 1) : : : gcd(f; g � p+ 1)(2)

is a nontrivial factorization of f .

5
Let us note that with minor modi�cations the three methods above can also be used

for the factorization of integer multivariate polynomials.
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Theorem 4.3 (Berlekamp's algorithm) Let f 2 ZZp, deg(f) = d � 1. Then there
exists an algorithm that describe a nontrivial factorization of f .

The algorithm corresponding to the proof of Theorem 4.3 can be summarized as follows.

Algorithm: Let I = Id the d� d identity matrix and let

Q =

0
@ r00 r01 : : : r0;d�1

r10 r11 : : : r1;d�1

: : : : : : : : : : : : : : : : : : : :
rd�1;0 rd�1;1 : : : rd�1;d�1

1
A

be the matrix of the coe�cients of the remainders of division of 1; x; x2; : : : ; xd�1
by f .

If f factorizes then

(b0; b1; : : : ; bd�1)(Q� I) = (0; 0; : : : ; 0)(3)

The coe�cients of g are the solutions of (3).

When p is large, the use of formula (2) involves an enormous amount of work. An

alternative was described by Cantor-Zassenhaus [4]. They observed that for p an odd

prime one has

g
p � g = g(g

p� 1

2 � 1)(g

p� 1

2 )

and this suggested the consideration of

gcd(f; g

p� 1

2 � 1):(4)

They proved that the probability that (4) gives a nontrivial factor of f is � 1

2
. This

implies that, in general, using possible factors suggested by (4), one should reach more

quickly a nontrivial factorization of the polynomial f .

Remark: Note that, although it is not possible to list all the irreducible polynomi-

als of degree n over IFq , there exists a formula which gives their number Nn;q . The

formula giving Nn;q uses the function � of M�obius and allows a quick computation.

A probabilistic settlement was obtained by Mignotte-Nicolas. Their result is useful for

evaluating the cost of factorization algorithms.

Theorem 4.4 (Mignotte-Nicolas, [18]) A randomly chosen polynomial of degree n

over a �nite �eld is reducible with a probability close to 1� 1

n
.

Proof. Suppose IFq is a �nite �eld with q elements. For any m 2 IN one has

q
m
=

X
njm

nNn;q :

By M�bius inversion formula it is deduced that

Nn;q =
1

n

X
djn

�(
n

d
)q

d
=

1

n

X
djn

�(d)q
n
d :

(Cf. L.E. Dickson [9], p. 18)

Let Pirr(F ) be the probability that a monic polynomial F 2 IFq[X] of degree n to be

irreducible. Using the formula of Dickson we compute directly the probability Pirr. We
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denote by Mn;q the number of monic polynomials of degree n from IFq [X]. Note that

Mn;q = qn. It follows

Pirr(F ) =
Nn;q

Mn;q

=

1

n

X
djn

�(d)q
n
d

qn

qn � q
n
p1 + : : :+ (�1)sq n

p1:::pn

nqn
=

1

n
� 1

nq
n� n

p1

+ : : :+ (�1)s 1

nq
n� n

p1:::ps

;

where p1, . . . ps are the distinct prime divisors of n.

Now the probability Pred(F ) that a monic polynomial of degree n from IFq[X] is re-

ducible can be computed by the formula

Pred = 1�Pirr = 1� 1

n
+

1

nq
n� n

p1

� : : : + (�1)s+1 1

nq
n� n

p1:::ps

:

which shows that Pred is close to 1� 1

n
.

Remark: M. Mignotte has obtained sharper results than in Theorem [18]. In his mono-

graph [17] one estimates the constants involved in computing the number !m(F ) of
monic irreducible polynomial divisors of degree � m of a given monic polynomial P of

degree n from IFq[X]. He proved, for example, thatX
F

!m(F ) = q
n
(Log n� c); with � 1 < c < 2:5:

Remark: There exist factorization techniques also for bivariate polynomials over k,
such as generalized di�erence polynomials. These devices are partially based on prop-

erties of Newton polygons (see [19]).

A di�erence polynomial is a polynomial of the form

f(x)� g(y);

where f(x), g(y) are univariate polynomials.

A generalized di�erence polynomial is a polynomial in two variables satisfying a

special Newton polygon condition. Di�erence polynomials are examples of generalized

di�erence polynomials. The techniques developed in [19] can be extended to the fac-

torization of arbitrary bivariate polynomials.

Bounds for Divisors of Integer Polynomials

A key step in designing factorization algorithms for univariate integer polynomials is

the estimation of the moduli of the coe�cients of all possible divisors. Such methods

use convenient polynomial sizes as the measure of a polynomial (see M. Mignotte [16])

and the l2-weighted norms of E. Bombieri (see [2]).
6

We describe a device based on estimates of product of roots of a complex polynomial.

Suppose P (X) = Xn
+ a1X

n�1
+ : : :+ an 2 IC[X] n IC and let

�1 � �2 � : : : � �n � 0

be the ordered sequence of the moduli of coe�cients ai of the polynomial P . W. Specht

[24] has established the following result.

6
Another size associated to a polynomial P is the height H(P ): the largest absolute
value of the coe�cients.
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Theorem 4.5 (Specht) If �1; : : : ; �n 2 IC are the roots of the polynomial P and

j�1j � j�2j � : : : � j�nj;
then

j�1�2 : : : �kj � 1 + �1 + �2 + : : :+ �k and j�kj � k
p
1 + �1 + �2 + : : :+ �k

for any k = 1; 2; : : : ; n.

The theorem of Specht will be used for describing evaluations of the height of polyno-

mial divisors of integer polynomials. Other bounds for the height were obtained by L.

Panaitopol and D. S�tef�anescu [21].

Theorem 4.6 Let P (X) = Xn
+
Pn�1

i=0
aiX

i 2 IC[X] n IC. If Q 2 IC[X] n IC is a divisor

of P , deg(Q) = d, then

H(Q) �
�

d

bh+1

2
c

�
(1 + �1 + : : :+ �

b
d+1
2

c
):

Proof. If �1; : : : ; �h 2 IC are the roots of Q, then we may suppose that

f�1; : : : ; �hg = f�1; : : : ; �hg:
We have

jbj j = j
X

�i1 : : : �ij j = j�s1 : : : �sj j �
�
h

j

�
j�1 : : : �j j �

�
h

j

�
(1 + �1 + �2 + : : :+ �j):

We consider now

B(h; j) =

�
h

j

�
�
�

h

j � 1

�
;

and observe that

B(h; j) =

�
h

j

�
�
�

h

j � 1

�
=

h!

j!(h� j + 1)!
(h� 2j + 1):

Therefore

B(h; j) =

( � 0 if j � h+1

2
;

< 0 if j > h+1

2
:

We consider

C(h; j) =

�
h

j

�
(1 + �1 + �2 + : : : + �j):

If j � h+ 1

2
then

C(h; j)� C(h; j � 1) =

(1 + �1 + : : :+ �j�1)(

�
h

j

�
�
�

h

j � 1

�
) + �j

�
h

j

�
=

(1 + �1 + : : :+ �j�1)
h!

j!(h� j + 1)!
(h� 2j + 1) + �j

�
h

j

�
� 0:

(5)
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If j >
h+ 1

2
, we evaluate C(h; j � 1)� C(h; j).

We �rst note that

�1 + : : :+ �j�1 � (j � 1)�j :

Therefore

C(h; j � 1)� C(h; j) =

�
h

j

�
�
2j � h� 1

h� j + 1
(1 + �1 + : : :+ �j�1)� �j

�

>

�
h

j

��
2j � h� 1

h� j + 1

�
1 + (j � 1)�j

�
� �j

�

>

�
h

j

�
�j

(2j � h� 1)(j � 1)� (h� j + 1)

h� j + 1

=

�
h

j

�
�j
j(2j � h� 2)

h� j � 1
> 0; for j >

h+ 2

2
:

(6)

Let K(h) = max
0�j�h

C(h; j). By (5) and (6) we conclude that

K(h) = max
h
2
�j�

h+2
2

C(h; j):

Let t be such that K(h) = C(h; t). We note that t is one of the rationals
h

2
,
h+ 1

2
,

h+ 2

2
.

For h even t can be equal to
h

2
or

h+ 2

2
. Supposing h = 2s we have�

h

bh+1

2
c

�
�
�

h
h+2

2

�
=

�
2s

s

�
�
�

2s

s+ 1

�
=

(2s)!

(s!)2
� s

s+ 1

(2s)!

(s!)2
= (1� s

s+ 1
)
(2s)!

(s!)2

=
(2s)!

(s+ 1)(s!)2
=

1

s

(2s)!

(s+ 1)!(s� 1)!
=

1

s

�
2s

s+ 1

�
:

On the other hand �1 + : : :+ �s > s�s+1 and it follows that

C(h; bh+ 1

2
c)� C(h;

h+ 2

2
) =

�
2s

s

�
(1 + �1 + : : :+ �s)�

�
2s

s+ 1

�
(1 + �1 + : : : + �s + �s+1) =

1

s

�
2s

s+ 1

�
(1 + �1 + : : :+ �s)�

�
2s

s+ 1

�
�s+1 >

�
2s

s+ 1

�
(
1

s
s�s+1 � �s+1) = 0:

(7)
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If h is odd, then t =
h+ 1

2
:(8)

From (7) and (8) we deduce

K(h) = max
0�j�h

C(h; j) = C(h; bh+ 1

2
c) =

�
h

bh+1

2
c

�
(1 + �1 + : : :+ �

b
h+1
2

c
):

This gives the estimation of the height of Q.

Corollary 4.7 Let P (X) = Xn
+
Pn�1

i=0
aiX

i 2 IC[X] n IC. If Q 2 IC[X] n IC is a divisor
of P , then

H(Q) �
�
n� 1

bn
2
c

�
(1 + �1 + �2 + : : :+ �bn

2
c):

Proof. We may suppose that

Q(X) = X
h
+

h�1X
j=0

bjX
j 2 IC[X]; 1 � h � n� 1:

Let K(h) = max
0�j�h

C(h; j). From Theorem 4.6 we know that

K(h) = max
0�j�h

C(h; j) = C(h; bh+ 1

2
c) ==

�
h

bh+1

2
c

�
(1 + �1 + : : :+ �

b
h+1
2

c
):

To prove

K(h) � K(h+ 1); h 2 f1; : : : ; n� 2g:
we evaluate K(h+ 1)�K(h).

For h odd, supposing h = 2u+ 1, one has

K(h+ 1)�K(h) = K(2u+ 2)�K(2u+ 1) =�
2u+ 2

u+ 1

�
(1 + �1 + : : :+ �u+1)�

�
2u+ 1

u+ 1

�
(1 + �1 + : : :+ �u+1)

=
2u+ 1

u+ 1

�
2u+ 1

u+ 1

�
(1 + �1 + : : : + �u+1) > 0:

For h even, supposing h = 2u, one has

K(h+ 1)�K(h) = K(2u+ 1)�K(2u) =�
2u+ 1

u+ 1

�
(1 + �1 + : : : + �u+1)�

�
2u

u

�
(1 + �1 + : : : + �u)

=
u

u+ 1

�
2u+ 1

u+ 1

�
(1 + �1 + : : :+ �u) +

�
2u+ 1

u+ 1

�
�u+1 > 0:

It follows that max
1�h�n�1

K(h) = K(n� 1). Therefore

H(Q) �
�
n� 1

bn
2
c

�
(1 + �1 + : : :+ �bn

2
c);

which is the desired result.
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