
The power of restricted splicing with rules from a regular

language

Lila Kari
Department of Mathematics University of Western Ontario

London, Ontario, Canada N6A 5B7

Gheorghe P�AUN
Institute of Mathematics of the Romanian Academy

PO Box 1 { 764, 70700 Bucure�sti, Romania

Arto SALOMAA
Academy of Finland and Turku University, Department of Mathematics

20500 Turku, Finland

Abstract: We continue the investigations begun in [11] on the relationships between
several variants of the splicing operation and usual operations with formal languages.
The splicing operations are de�ned with respect to arbitrarily large sets of splicing
rules, codi�ed as simple languages. The closure properties of families in Chomsky hi-
erarchy are examined in this context. Several surprising results are obtained about
the generative or computing power of the splicing operation. Many important open
problems are mentioned.

Key Words: DNA recombination, splicing systems, molecular genetics, Chomsky hi-
erarchy, regulated rewriting, abstract families of languages

Category: F4.3, F1.1

1 Introduction

The splicing operation has been introduced in [4] as a model of the recombinant
behavior of DNA sequences. Speci�cally, given a quadruple (u1; u2;u3; u4), of
strings over some alphabet V , and two strings of the form x = x1u1u2x2; y =
y1u3u4y2, we produce the string z = x1u1u4y2. We say that z is the result
of splicing x and y according to the rule (u1; u2;u3; u4) (applied at the sites
u1u2; u3u4 speci�ed above). In fact, this is a slight generalization of the operation
in [4], where, for instance, also the string y1u3u2x2 is produced at the same
time with x1u1u4y2; this is however equivalent to adding the symmetric rule,
(u3; u4;u1; u2)

In the previous de�nition (and in many papers devoted to the splicing oper-
ation) the application of the rule (u1; u2;u3; u4) to the strings x; y takes place
without any restriction. A series of regulations of the splicing were considered

Journal of Universal Computer Science, vol. 2, no. 4 (1996), 224-240
submitted: 13/10/95, accepted: 9/4/96, appeared: 28/4/96 Springer Pub. Co.

in [11]. For example, one asks to produce strings z with certain properties (the
evolution by splicing is supposed to have a purpose): to be a prolongation of x
to the right, to be strictly larger/shorter than the involved strings x; y, to be
an element of a given target language. Moreover, we can restrict the strings x; y
to which a rule is applied: x; y have to be elements of the same class of a given
partition of the set of all strings, for instance, they have to be equal, or of the
same length, etc.

However, in [11] only the splicing with respect to a �nite set of rules is
considered. In the style of [7], we can also consider in�nite sets of splicing rules,
codi�ed as languages in the following way: take two symbols #; $ not in V and
write a rule (u1; u2;u3; u4) as the string u1#u2$u3#u4 over V [f#; $g. Sets of
splicing rules of a given type in the Chomsky hierarchy can then be considered.
Such splicing operations are investigated here, hence combining the restrictions
in [11] about using rules with the generalization in [7] about the number of rules.

From [1], [2], [5], [9], [10], [12], etc we know already that the splicing operation
is \very powerful", especially when it is iterated (roughly speaking, the splicing
can simulate both concatenation and the erasing of pre�xes/su�xes, and for
certain of the above mentioned variants it induces the closure under doubling or
under intersection). Some of the results we report below are still quite surprising
(mainly because we work in the uniterated case). For instance, we �nd that
each recursively enumerable language can be obtained by splicing a linear (or
context-free) language with respect to a linear (or context-free) set of splicing
rules, and this happens in most of the regulated types of splicing { including
the free one, without any restriction. Such results can be interpreted also as new
rather unexpected general models of computation. Similarly unexpected is the
fact that non-context-free languages are obtained in a number of cases when we
start from regular languages and the set of splicing rules is linear or context-free.

Most of our presentation below will concentrate on technical details. Further
motivation and background material can be found in [4], [5], [7], [8], [9], [10],
[12], [13].

2 De�nitions

We start by recalling from [11] the de�nitions of the variants of the splicing
operation we investigate here.

As usual, we denote: V � = the free monoid generated by the alphabet V , � =
the empty string, V + = V ��f�g, jxja = the number of occurrences in x 2 V � of
a 2 V , jxjU =

P
a2U jxja, REG;LIN;CF;CS;RE = the families in the Chom-

sky hierarchy (regular, linear, context-free, context-sensitive, recursively enumer-
able), FIN = the family of �nite languages, @lx(L) = fw 2 V � j xw 2 Lg (the
left derivative of L � V � with respect to x 2 V �), @rx(L) = fw 2 V � j wx 2 Lg
(the right derivative), L1=L2 = fw 2 V � j wx 2 L1 for some x 2 L2g (the
right quotient of L1 with respect to L2), L2nL1 = fw 2 V � j xw 2 L1

for some x 2 L2g (the left quotient), x t? y = fx1y1 : : : xnyn j n � 1; x =
x1x2 : : : xn; y = y1y2 : : : yn; xi; yi 2 V �; 1 � i � ng (the shu�e of x; y 2 V �),
Pref(L) (Suf(L); Sub(L)) = the set of pre�xes (su�xes, substrings, respec-
tively) of strings in L. A coding is a morphism which maps symbols to sym-
bols, a weak coding is a morphism which maps symbols to symbols or to the
empty string. A morphism h : (V1 [V2)

� �! V �
1 such that h(a) = � for

225Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

a 2 V2 and h(a) 6= � for a 2 V1, is said to be restricted on a language
L � (V1 [V2)

�V1(V1 [V2)
� if there is a constant k such that if x 2 Sub(L)\V �

2 ,
then jxj � k. Two languages are considered equal if they di�er by at most the
empty string. For further elements of formal language theory, the reader is re-
ferred to [13], [14]. For details about abstract families of languages and their
closure properties we refer also to [3].

Consider a given alphabet V and two special symbols #; $, not in V .
A splicing rule (over V) is a string u1#u2$u3#u4, where u1; u2; u3; u4 are

strings over V . For such a rule r and for x; y 2 V �, we write

(x; y) `fr z i� x = x1u1u2x2; y = y1u3u4y2;

z = x1u1u4y2; for some x1; x2; y1; y2 2 V �:

The letter f stands for free: no restriction is imposed on the use of r on the
strings x; y. We say that x is the �rst term and y is the second term of the
splicing. When the rule r is understood or it is not important, we shall omit it
and we write `f only.

A splicing scheme is a pair � = (V;R), where V is an alphabet and R is a set
of splicing rules (hence a language over V [f#; $g consisting of strings of the
form u1#u2$u3#u4). If the language R belongs to a speci�ed family FA, then
we say that � is a splicing scheme of type FA. Having de�ned the relation `fr as
above, for a language L � V � we de�ne

�f (L) = L [fz 2 V � j (x; y) `fr z; for some x; y 2 L; r 2 Rg:

Therefore, a splicing scheme de�nes an operation with languages. It can be
investigated in the general frame of abstract families of languages, relating the
splicing to other known operations on languages. This has been done in [7] for
the free splicing with respect to �nite and regular sets of rules and in [11] for
regulated variants of it, but only for splicing schemes with �nite sets of rules.
We consider here the general case.

Let us recall the de�nitions in [11].

De�nition 1. Given a splicing scheme � = (V;R), for x; y; z 2 V � and
r = u1#u2$u3#u4 2 R, we de�ne

(x; y) `prr z i� (x; y) `fr z and x 2 Pref(z); x 6= z;

(x; y) `inr z i� (x; y) `fr z and jzj > maxfjxj; jyjg;

(x; y) `der z i� (x; y) `fr z and jzj < minfjxj; jyjg;

(x; y) `mi
r z i� (x; y) `fr z and jzj � jz0j for all

z0 such that (x; y) `fr z0;

(x; y) `md
r z i� (x; y) `fr z and jzj � jz0j for all

z0 such that (x; y) `fr z0:

The indications pr; in; de;mi;md stand here for pre�x, length-increasing,
length-decreasing, most-increasing, and most-decreasing use of the rule, respec-
tively. (The md mode is not considered in [11], although it is a natural counter-
part of the in mode.)

226 Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

De�nition 2. A splicing scheme with a target is a triple � = (V;R; T), where
T � V � is a regular language. For r 2 R and x; y; z 2 V � we write

(x; y) `trr z i� (x; y) `fr z and z 2 T:

De�nition 3. A splicing scheme with clusters is a triple � = (V;R;C), where
C is a partition of V �. For r 2 R and x; y; z 2 V �, we write

(x; y) `clr z i� (x; y) `fr z and x; y belong

to the same class of C:

When C is a �nite set of regular languages we write `frr instead of `clr .
When C consists of singleton classes, fxg; x 2 V �, then we write `sfr (from self-
splicing), and when C consists of classes Ci = fx 2 V � j jxj = ig; i � 0, then we
write `slr (from same-length splicing). In fact, the general relation `clr will not
be considered in this paper.

De�nition 4. An ordered splicing scheme is a triple � = (V;R;�), where
� is a partial order over R. When r � r0 and r 6= r0, we write r > r0. For
x; y; z 2 V � and r 2 R, we write

(x; y) `orr z i� (x; y) `fr z and there is no r0 2 R

such that r0 > r and (x; y) `
f
r0 z0 for some z0 2 V �:

(We use a rule which is maximal, in the sense of the given relation over R.)

We denote by D the set ff; pr; in; de;mi;md; tr; fr; sf; sl; org, identifying the
variants of the splicing operation de�ned above. For a splicing scheme � with
the alphabet V and the set of rules R, and for L � V � and g 2 D, we de�ne

�g(L) = L [fz 2 V � j (x; y) `gr z; for x; y 2 L; r 2 Rg:

Then, for two families of languages, FA1; FA2, we de�ne

Sg(FA1; FA2) = f�g(L) j L 2 FA1; � of type FA2g;

for all g 2 D.
The aim of this paper is to compare the families Sg(FA1; FA2) with FA1,

for various values of g 2 D and FA2 (mainly for FA1; FA2 in the Chomsky
hierarchy). For FA2 = FIN this has been done in [11]. We consider here the
cases FA2 2 fREG;LIN;CFg for FA1 one of REG;LIN;CF;CS (of course,
Sg(RE;FA2) = RE, hence the case of FA1 = RE is not of interest.)

3 The power of the splicing operations

In [7] it is proved that Sf (FA;REG) � FA; for FA 2 fREG;CFg, but
Sf (LIN; FIN)� LIN 6= ;.

Given a regular target splicing scheme � = (V;R; T), if we denote �0 = (V;R),
then we have

�tr(L) = L [(�0f (L) \ T);

227Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

hence for all families closed under intersection with regular sets (and union),
the closure under the f splicing implies the closure under the tr splicing, for all
types of splicing schemes.

A similar reduction to the free splicing is true for the fr variant. Speci�cally,
if � = (V;R;C) is a splicing scheme with C = fC1; C2; : : : ; Cng a partition of
V � into a �nite number of regular sets, then, for �0 = (V;R); we have

�fr(L) = L [

n[

i=1

�0f (L \ Ci):

For families closed under intersection with regular sets (and union), the closure
under the f splicing implies the closure under the fr splicing.

Consequently, we do not have to consider explicitly the tr and fr variants.
As previously presented, the de�nition of the or splicing is too general. More

speci�cally, the order restriction is natural for splicing schemes with �nite sets
of rules, but, in the general form considered above, it leads to arti�cial results,
due to the unrestricted character of the order relation.

Consider, for instance the regular language

L = ca+c [fdg;

and the ordered regular splicing scheme � = (fa; c; dg; R;�), where

R = ca+c#$#d [c#$d#;

with the order relation de�ned by

c#$d# > caic#$#d; for i 6= 2j ; j � 0:

We obtain
�or(L) \ ca+cd = fca2

j

cd j j � 0g:

Indeed, the rule c#$d# prevents the use of caic#$#d, for all i 6= 2j ; j � 0,

hence only rules ca2
j

c#$#d; j � 0, can be used in order to produce strings in
ca+cd.

The language obtained is not context-free, but the non-context-freeness is
introduced by the way the order relation is de�ned (it selects from the regular
language R a non-context-free language of applicable rules).

A possible modi�cation of the de�nition of the ordered splicing schemes is
to consider the order relation de�ned among the classes of a �nite partition of
the set of rules, namely consisting of regular languages. We shall not investigate
this variant here.

In fact, in most of our considerations below, the order restriction will be
omitted from the setD of the variants of the splicing operation. In particular, this
will happen in our main Theorem 4.1. (We have introduced the order restriction
for the sake of completeness and, mainly, because the idea of a priority relation
on the set of splicing rules is quite natural and it deserves further investigations.)

We give now a series of lemmas, relating the splicing variants to other opera-
tions with languages, then we shall collect the results for families in the Chomsky
hierarchy in a summarizing theorem.

Lemma 1. If FA1 and FA2 are two families of languages such that FA1 �
FA2 and

228 Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

1. FA1 is closed under shu�e with regular sets, intersection with regular sets,
quotient with regular sets, and restricted morphisms, whereas

2. FA2 is closed under shu�e, intersection with regular sets, restricted mor-
phisms, and �-free gsm mappings,

then Spr(FA1; REG) � FA2.

Proof. Take a language L � V �; L 2 FA1, and a splicing scheme � = (V;R)
with R 2 REG. De�ne the coding h : V �! V 0, where V 0 = fa0 j a 2 V g, by
h(a) = a0; a 2 V . Consider a �nite automaton A = (K;V [f#; $g; s0; F; �) for
the language R.

Construct the following series of languages:

R1 = fs0u1(s1; s2)u2s2u3[s2; s3]u4sf j u1#u2$u3#u4 2 R;

s1 2 �(s0; u1); s2 2 �(s1;#u2); s3 2 �(s2; $u3); sf 2 �(s3;#u4); sf 2 Fg;

R2 = V �fs0u1(s1; s2)u2s2 j s0u1(s1; s2)u2s2u3[s2; s3]u4sf 2 R1gV
�;

L1 = (L t? fs0(s1; s2)s2 j s1; s2 2 Kg) \R2;

L0
1 = fx1u1(s1; s2)u2x2 j x1s0u1(s1; s2)u2s2x2 2 L1g;

R3 = V �fs2u3[s2; s3]
2u4sf j s0u1(s1; s2)u2s2u3[s2; s3]u4sf 2 R1gV

�;

L2 = (L t? fs2[s2; s3]
2sf j s2; s3 2 K; sf 2 Fg) \ R3;

R4 = fw1s2w2[s2; s3] j w1; w2 2 V �; s2; s3 2 Kg;

L3 = R4nL2 = f[s2; s3]u4sfy2 j y1s2u3[s2; s3]
2u4sfy2 2 L2g;

L0
3 = f[s2; s3]u4y2 j [s2; s3]u4sfy2 2 L3g;

R5 = V �f(s1; s2)[s2; s3] j s1; s2; s3 2 Kgfaa0 j a 2 V g�V 0+;

L4 = (L0
1 t? h0(L0

3)) \ R5;

where h0 : (V [f[s; s0] j s; s0 2 Kg)� �! (V 0 [f[s; s0] j s; s0 2 Kg)� is the
coding obtained by extending h, that is h0(a) = a0 for a 2 V , and h0([s; s0]) =
[s; s0]; s; s0 2 K:

Note that we consider here as symbols both the elements of V , of K, as well
as the pairs (s; s0); [s; s0] for all s; s0 2 K. Observe also the fact that the pairs
(s1; s2); [s2; s3] identify rules in R via the regular languages R1; R2; R3.

More speci�cally, the strings in R1 are exactly the strings u1#u2$u3#u4 of R
with the occurrences of the marker # replaced by pairs (s1; s2); [s2; s3] of states,
with $ replaced by s2, and bordered by s0 and some sf 2 F , where s0; s1; s2; s3; sf
are states used in a recognition of u1#u2$u3#u4 by the automaton A. The \�rst
half" of the strings in R are arbitrarily prolonged to the two ends with strings in
V �; the \second half" of strings in R1 are arbitrarily prolonged to the two ends
with strings in V � and the symbol [s2; s3] is doubled. The obtained languages
are denoted by R2; R3. Intersecting these languages R2; R3 with the language
L shu�ed with strings of the form s0(s1; s2)s2, s2[s2; s3]

2sf , respectively, we
identify occurrences of u1u2, u3u4, respectively, in the strings of L. The resulting
languages are L1 and L2. The language L

0
1 is a slight variant of L1: the symbols

s0 and s2 are erased. The obtained strings are meant to be the �rst term of the
splicing operations, hence we need them as they are (by the splicing, they should
be prolonged to the right with at least one symbol).

From the strings in L2 we erase the pre�x bounded by the �rst copy of
[s2; s3]; this is done by the left quotient of L2 with respect to R4. We obtain the

229Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

language L3. Then, as when passing from L1 to L
0
1, we remove the state sf from

the strings of L3 (it is now useless), leading to L0
3.

The passing from L0
1; L

0
3 to L4 simulates the splicing: the symbols of L

0
3 are

primed and then L0
3 is shu�ed with L0

1 in such a way that the pre�x of the strings
in L0

1 bounded by (s1; s2) is preserved. This is ensured by the intersection with
R5, which also selects from the result of the shu�ing those strings where the
remaining symbols of the string in L0

1 are interleaved with symbols in the strings
in L0

3.
Therefore, each w 2 L4 is of the form

w = fx1u1(s1; s2)[s2; s3]a1a
0
1 : : : aka

0
kak+1a

0
k+1 : : : ak+ra

0
k+r

a0k+r+1 : : : a
0
k+r+p j x1u1(s1; s2)a1 : : : akak+1 : : : ak+r 2 L0

1;

with a1 : : : ak = u2; k � 0; r � 0; and

[s2s3]a1 : : : akak+1 : : : ak+rak+r+1 : : : ak+r+p 2 L0
3; p � 1g:

Note that in the above writing we have p � 1 indeed: each string in R5 ends
with at least a primed symbol which is not paired with its non-primed variant.

We have now only to remove from the strings of L4 those symbols which do
not appear in the output of the splicing. This is an easy operation which can be
performed by as follows.

Consider a gsm which scans strings of L4 of the above form and:

{ leaves unchanged the pre�x x1u1,
{ replaces (s1; s2)[s2; s3] by cc, for a new symbol c,
{ from that point on, replaces each occurrence of symbols a 2 V with c and
each occurrence of symbols a0 2 V 0 with the corresponding a 2 V .

Consider also the morphism h00 : (V [fcg)� �! V � de�ned by h00(a) = a; a 2
V and h00(c) = �.

We obtain
�pr(L) = h00((L4)):

The equality follows from the way of constructing the languagesL1; L
0
1; L2; L3;

L0
3; L4 (see the explanations above) and of de�ning h; h0; h00; .
The languages R1; R2; R3; R4; R5 are regular, all languages L1; L

0
1; L2; L3; L

0
3

are in FA1. Then L4 is in FA2, hence also �pr(L) is in FA2 (clearly, h00 is a
restricted morphism). 2

Corollary. Spr(FA;REG) � CS, for FA 2 fLIN;CFg, and Spr(REG;
REG) � REG.

Observe in the previous proof, when applied for FA1 = LIN (or FA1 = CF)
and FA2 = CS, how the quotient by R4, in the de�nition of L3, is done in FA1,
thus avoiding the erasing of an unbounded pre�x of the second term of the
splicing operation after passing to a language in the family FA2 = CS, which is
not closed under arbitrary erasings (by a quotient or in any other way).

The proof above can be modi�ed in order to cover also other splicing variants.

Lemma 2. If FA1; FA2 are families as in Lemma 1, then Sde(FA1; REG) �
FA2.

230 Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

Proof. As in the previous proof, take L � V �; L 2 FA1, and � = (V;R); R 2
FA2, then de�ne the coding h. Take the �nite automatonA = (K;V [f#; $g; s0; F;
�) recognizing the language R.

As in the proof of Lemma 1, construct the languages R1; R2; R3; L1; L
0
1; L2.

Then construct

L0
2 = fy1u3[s2; s3]u4y2 j y1s2u3[s2; s3]u4sfy2 2 L2g

as well as

L3 = (L0
1=V

+)fdg;

L4 = fdg(V +nL0
2);

where d is a new symbol. (Observe that the quotient by V + removes in each case
at least one symbol; instead of the removed symbols one adds one occurrence of
d.)

Now consider the language

L5 = (L3 t? h0(L4)) \ R5;

where h0 is obtained by extending h by h0(d) = d; and h0([s2; s3]) = [s2; s3]; s2; s3 2
K, and

R5 = fdgfab0 j a; b 2 V g�f(s1; s2)[s2; s3] j s1; s2; s3 2 Kgfab0 j a; b 2 V g�fdg:

Consider now the gsm which replaces by a new symbol c all primed symbols
to the left of (s1; s2) and the non-primed symbols to the right of [s2; s3], as well
as the symbols (s1; s2;); [s2; s3] and d, then consider the morphism h00 erasing
the symbol c. We obtain the equality

�de(L) = h00((L5)):

(The correct use of a splicing rule is ensured, as in the proof of Lemma 1, by the
construction of the involved languages; the fact that we obtain a string which is
strictly shorter than the terms of the splicing is entailed by the presence of the
symbol d.) Consequently, �de(L) 2 FA2. 2

Corollary. Sde(FA;REG) � CS, for each FA 2 fLIN;CFg, and Sde(REG;
REG) � REG.

A much stronger result is true for the length-increasing variant.

Lemma 3. Sin(CS;CS) � CS.

Proof. For L � V �; L 2 CS, and � = (V;R); R 2 CS, take the coding
h : V �! V 0 as above. Consider two new symbols, c; d, and construct

L1 = (L t? fdg)c�;

L2 = c�(h(L) t? fdg);

R1 = fac j a 2 V g+fab0 j a; b 2 V g�fddgfab0 j a; b 2 V g�fca0 j a 2 V g+;

L3 = (L1 t? L2) \R1:

Clearly, L3 2 CS. Take a length-increasing grammar for L3 and modify it to
obtain a grammar G (of type-0) working as follows:

231Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

{ generate a string w 2 L3; it is of the form w = a1c : : : arcar+1b
0
1 : : :

ar+kb
0
kddar+k+1b

0
k+1 : : : ar+k+lb

0
k+lca

0
r+k+l+1 : : : ca

0
r+k+l+p, with r � 1; k �

0; l � 0; p � 1;
{ check whether or not around the substring dd the string u1 appears to
the left and u2 appears to the right of dd, on symbols in V (that is, u1
is a su�x of a1 : : : arar+1 : : : ar+k and u2 is a pre�x of ar+k+1 : : : ar+k+l),
as well as u3 to the left and u4 to the right, on positions where primed
symbols appear (that is, u3 is a su�x of b01 : : : b

0
k and u4 is a pre�x of

b0k+1 : : : b
0
k+la

0
r+k+l+1 : : : a

0
r+k+l+p), for some rule u1#u2$u3#u4 in R (this

can be done by guessing the rule, hence nondeterministically generating an
element of R somewhere in the current string, then checking the presence of
u1; u2; u3; u4 for the guessed rule, on the indicated positions; in this way, the
length of the string is multiplied at most by 2),

{ erase all occurrences of the symbols c; d, as well as all occurrences of primed
symbols from the left of dd and the occurrences of non-primed symbols from
the right of dd; moreover, all primed symbols from the right of dd are replaced
by the corresponding non-primed symbols.

From the above construction, we have L(G) = �in(L).
Because the obtained string, w, is strictly longer than the strings x; y 2 L

whose splicing is simulated by G, the workspace of G is linearly bounded with
respect to jwj (it is at most 4jwj+k, where k is the number of possible scanners,
markers and other auxiliary symbols { whose number of occurrences is precisely
de�ned in the construction of G).

Consequently, �in(L) = L(G) 2 CS. 2

Corollary. Sin(FA1; FA2) � CS for all FA1; FA2 � CS.

A modi�cation of the construction in Lemma 1 similar to that in Lemma 2 is
possible for the length-increasing splicing for the remaining case (REG;REG).

Lemma 4. Sin(REG;REG) � REG.

Proof. We proceed as in the proofs of Lemma 1 and 2, namely we construct
L1; L

0
1 and L2 as in the proof of Lemma 1, then L0

2 as in the proof of Lemma 2.
Then, we consider the language

L3 = (L0
1 t? h0(L0

2)) \ R4;

for

R4 = V +fab0 j a; b 2 V g�f(s1; s2)[s2; s3] j s1; s2; s3 2 Kgfab0 j a; b 2 V g�V 0+:

The presence of V +; V 0+ ensures the fact that by splicing (by simulating
the splicing using the mentioned constructions) we get a string which is strictly
longer than the strings we have started with. By a gsm we can remove the
primed symbols to the left of (s1; s2), the non-primed symbols to the right of
[s2; s3], as well as the mentioned symbols (s1; s2); [s2; s3], and we can replace
the primed symbols to the right of [s2; s3] by their non-primed counterparts.
Therefore, (L3) = �in(L) is a regular language. 2

We have started this section by mentioning the result in [7] that Sf (FA;REG)
� FA, for families FA with certain (rather weak) closure properties. A coun-
terpart of this result is also true, interchanging the places of FA and REG in
Sf (FA;REG) above.

232 Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

Lemma 5. If FA is a family of languages closed under concatenation with
regular sets, substitution with regular sets, intersection with regular sets, and
under arbitrary gsm mappings, then Sf (REG;FA) � FA.

Proof. Take L � V �; L 2 REG, and � = (V;R) with R 2 FA. Consider the

regular substitution s : (V [f#; $g)� �! 2(V [fc;dg)� de�ned by

s(a) = fag; a 2 V;

s(#) = fcg;

s($) = V �fdgV �;

and construct the language

L1 = V �s(R)V �:

Consider also the regular language

L2 = (L t? fcg)fdg(L t? fcg):

Then we have L1 \ L2 2 FA and the strings w 2 L1 \ L2 are of the form

w = x1u1cu2x2dy1u3cu4y2;

for x1u1u2x2 2 L; y1u3u4y2 2 L, and u1#u2$u3#u4 2 R.
If is a gsm which erases the substring cu2x2dy1u3c from strings w as above,

then we get
�f (L) = (L1 \ L2);

hence �f (L) 2 FA. 2

Corollary. Sf (REG;FA) � FA for FA 2 fLIN;CFg:

As we have pointed out at the beginning of this section, the result in Lemma
5 also implies Sg(REG;FA) � FA for g 2 ftr; frg and all families FA with the
mentioned closure properties (hence for FA 2 fLIN;CFg, too).

We give now a surprisingly simple and surprisingly powerful result:

Lemma 6. If FA is a family of languages which is closed under concate-
nation with symbols, then for all L1; L2 2 FA, L1; L2 � V �, and for all g 2
ff; tr; or; fr; de; sl; sf;mi;mdg we can write L1=L2 = L \ V �, where
L 2 Sg(FA; FA).

Proof. Take two languages L1; L2 2 FA;L1; L2 � V �, and a symbol c =2 V .
For the splicing scheme

� = (V [fc; dg;#L2c$c#):

We obtain
L1=L2 = �f (L1fcg) \ V �:

Indeed, the only possible splicing of strings in L1fcg is of the form

(x1x2c; yc) `
f x1; for x1x2 2 L1; x2 2 L2; y 2 L1:

Therefore, also the cases g 2 fmi;mdg are covered.
Taking V � as a target language, we have directly L1=L2 = �tr(L1fcg).

233Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

For g = or it is enough to consider the trivial order on the rules of �. The
case g = fr is covered taking the one-class partition of (V [fcg)�.

For g = sl and g = sf we take (x1x2c; x1x2c) `
g x1 for all x1x2 2 L1;

x2 2 L2.
As jx1j < jx1x2cj, we also have the equality for the de mode. 2

Corollary 1. Each language L 2 RE;L � V �, can be written as L = L0 \
V �, for L0 2 Sg(FA1; FA2), for g 2 ff; tr; or; fr; de; sl; sf;mi;mdg and FA1 2
fLIN;CFg; FA2 2 fLIN;CFg.

Proof. According to [6], each languageL 2 RE can be written in the form L =
L1=L2 for two linear languages L1; L2. Because LIN has the closure properties
in the previous lemma, L1=L2 = L0 \ V � for L0 2 Sg(LIN;LIN), therefore
L = L0 \ V �, L0 2 Sg(FA1; FA2) for all FA1; FA2 containing LINand g as
above. 2

Corollary 2. Sg(FA1; FA2) � CS 6= ; for all g; FA1; FA2 as in Corollary
1.

Proof. The family CS is closed under intersection with regular sets and
strictly included in RE. 2

The lemmas which follow refer to precise families Sg(FA1; FA2), with
FA1; FA2 in the Chomsky hierarchy.

Lemma 7. Ssl(REG;REG) � REG.

Proof. We slightly modify the proof given for the corresponding relation
Ssl(REG;FIN) � REG in the proof of Theorem 1 in [7].

Take L 2 REG;L � V �, and � = (V;R); R 2 REG. Consider the symbols
a; c =2 V and construct the language

L1 = (LfcgL t? fancan j n � 1g) \ (V fag)+fccg(V fag)+:

Because the language fancan j n � 1g is linear, LfcgL is regular and LIN is
closed under shu�e with regular sets and intersection with regular sets, we have
L1 2 LIN . The strings of L1 are of the form

w = b1ab2a : : : bnaccd1ad2a : : : dna;

for x = b1b2 : : : bn 2 L; y = d1d2 : : : dn 2 L, for some n � 1. Clearly, the splicing
according to the rules in (the regular language) R can be performed by a gsm
associated with a �nite automaton recognizing R and transforming w as above
to z such that (x; y) `sl z. Therefore �sl(L) 2 LIN . 2.

In the same way as above, the proof of the relation Ssf (REG;FIN) � CS
in [11] can be modi�ed to obtain the inclusion Ssf (REG;REG) � CS.

The results which follow give examples of families Sg(FA1; FA2) containing
non-context-free languages. They are rather surprising, because in each case we
splice regular languages (using, however, splicing schemes with linear or context-
free sets of rules).

Lemma 8. Ssl(REG;LIN)� CF 6= ;:

Proof. Take the regular language

L = b1a
+b2a

+b3

234 Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

and the splicing scheme � = (fa; b1; b2; b3g; R) with

R = fb1a
nb2a

mb3#$#b1a
nb2a

pb3 j n;m; p � 1g:

Clearly, R is a linear language. Consider also the regular language

L0 = b1a
+b2a

+b3b1a
+b2a

+b3:

We obtain

�sl(L) \ L0 = fb1a
nb2a

mb3b1a
nb2a

mb3 j n;m � 1g:

Indeed, if
(b1a

nb2a
mb3; b1a

pb2a
qb3) `

sl w;

then we must have n+m = p+q (the two strings must have the same length) and
n = p (from the form of rules in R). Consequently, m = q, hence the obtained
string is

w = b1a
nb2a

mb3b1a
nb2a

mb3;

which implies that �sl \L
0 is not a context-free language, hence �sl(L) =2 CF .2

Lemma 9. Spr(REG;LIN)� CF 6= ;.

Proof. Take the regular language

L = ca+b+a+c [ca+b+a+cd

and the splicing scheme � = (fa; b; c; dg; R) with

R = fc#anbmamc$#capbqancd j n;m; p; q � 1g:

Clearly, R 2 LIN . However,

�pr(L) \ cca+b+a+cd = fccanbnancd j n � 1g:

Indeed, if (x; y) `pr z, then we must have

x = canbmapc; n;m; p � 1;

y = can
0

bm
0

ap
0

cd; n0;m0; p0 � 1;

because the splicing according to the rules in R removes the su�x anbmamc�
from canbmamc� in L, for � 2 f�; dg, and adds capbqancd, which is a string
in L. This implies that � = �, otherwise the obtained string is not a strict
prolongation of x.

Moreover, from the form of rules in R, in x we must have m = p and in y
we must have p0 = n. As x 2 Pref(z), we also have n = n0;m = m0; p = p0.
Together with m = p; p0 = n, these relations imply n = n0 = m = m0 = p = p0,
hence

z = ccanbnancd:

Consequently, �pr(L) =2 CF . 2

Lemma 10. Sin(REG;CF) � CF 6= ;; Sde(REG;CF)� CF 6= ;:

235Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

Proof. Take the regular language

L = ca+b+c [cb+cb+c

and the splicing scheme � = (fa; b; cg; R), with

R = fcan#bnc$c#bmcbmc j n;m � 1g:

Clearly, this is a context-free language. However,

�in(L) \ ca+b+cb+c = fcanbmcbmc j n;m � 1; n < 2m+ 1g:

Indeed, if (x; y) `in z, then we must have

x = canbnc; n � 1;

y = cbmcbmc; m � 1

(from the form of rules in R), hence we obtain

z = canbmcbmc:

In order to have jzj > jxj we must have jbncj < jbmcbmcj, hence n+1 < 2m+2,
that is n < 2m+ 1. (On the other hand, the relation jzj > jyj is obvious.)

The obtained language is not context-free, hence �in(L) =2 CF .
For the length-decreasing mode of splicing we consider the same splicing

scheme, �. For the regular language

L0 = ca+b+c [c+b+cb+c

we obtain

�de(L
0) \ ca+b+cb+c = fcanbmcbmc j n;m � 1; n > 2m+ 1g:

Now we have (x; y) `de z for

x = canbnc; n � 1;

y = cpbmcbmc; m; p � 1;

and we obtain
z = canbmcbmc;

for p > n+1 (in order to have jzj < jyj) and n+1 > 2m+2, that is n > 2m+1
(in order to have jzj < jxj).

Again we obtain a language which is not context-free. 2

236 Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

4 Main results

Theorem 1. The closure properties in Tables 1, 2, 3, 4 hold, where for each
triple (g; FA1; FA2); g 2 D, at the intersection of the row of g and the column
marked with FA2 in the table associated with FA1 we have written the smallest
family FA (among the families considered here) such that Sg(FA1; FA2) � FA

or the overlined CF for the cases when the corresponding family Sg(FA1; FA2)
contains non-context-free languages. (When FA = FA1, this means that the
family FA1 is closed under the type g of splicing with respect to splicing schemes
of type FA2; conversely, FA1 6= FA indicates the nonclosure.)

FIN REG LIN CF
f REG REG LIN CF

pr REG REG CF

in REG REG CF

de REG REG CF
mi REG
md REG
tr REG REG LIN CF
fr REG REG LIN CF
sf CS CS

sl LIN LIN CF

Table 1 (FA1 = REG)

FIN REG LIN CF
f CF CF RE RE
pr CS CS
in CS CS CS CS
de CS CS RE RE
mi CF RE RE
md CF RE RE
tr CF CF RE RE
fr CF CF RE RE

sf CF RE RE

sl CF RE RE

Table 2 (FA1 = LIN)

237Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

FIN REG LIN CF
f CF CF RE RE
pr CS CS
in CS CS CS CS
de CS CS RE RE
mi CF RE RE
md CF RE RE
tr CF CF RE RE
fr CF CF RE RE

sf CF RE RE

sl CF RE RE

Table 3 (FA1 = CF)

FIN REG LIN CF
f RE RE RE RE
pr RE RE RE RE
in CS CS CS CS
de RE RE RE RE
mi RE RE RE RE
md RE RE RE RE
tr RE RE RE RE
fr RE RE RE RE
sf RE RE RE RE
sl RE RE RE RE

Table 4 (FA1 = CS)

The results corresponding to families Sg(FA1; F IN) are from [11] (with the
exception of g = md); however, the relations Sg(FA1; F IN) � CS; g 2 fpr; deg,
for FA1 2 fLIN;CFg, are improvements in the relations Sg(FA1; F IN) � RE
given in [11]. The other relations are proved in the preceding section (or are
direct consequences of the lemmas in the preceding section).

The empty boxes in Tables 1 and 2 indicate open problems. Also for the
boxes where CF appears we have the problem of �nding families containing
the corresponding families Sg(FA1; FA2) (we only know that they contain non-
context-free languages). Do the families Sg(REG;LIN), g 2 fin; deg, contain
non-context-free languages ?

Several remarks about the results in Table 1 are worth mentioning:

{ Many families Sg(FA1; FA2) are \almost equal" with the family RE of re-
cursively enumerable languages (see again Lemma 6), hence new charac-
terizations of RE are obtained in this way. We stress the fact that these
characterizations are obtained by using uniterated splicing operations. Com-
pare this with the series of characterizations of RE obtained in [10], where
iterated splicing is involved.

238 Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

{ Splicing schemes with linear sets of rules are \universal" as far as power is
concerned, leading in most cases (when starting from linear languages) to
simple characterizations of RE; this suggests using splicing schemes (and
systems: a construct H = (V;A;R), where (V;R) is a splicing scheme and A
is a given language of axioms is called a splicing system; a language L(H)
is associated with H by iterating the splicing scheme starting from A) with
sublinear sets of rules (and/or a sublinear set of axioms, in the case of splicing
systems), otherwise the (generative) power is too large.

{ The regulated variants of the splicing operation are more powerful than the
free splicing especially when starting from linear and context-free languages
and using regular splicing schemes, but not for splicing schemes with linear
sets of rules (already the family Sf (FA;LIN) goes beyond CS); however,
the pr; in; de; sf and sl variants have a signi�cant inuence on the power of
the splicing.

In [10] one considers several di�erent restricted modes of using the splic-
ing rules: looking for leftmost/rightmost occurrences of the strings u1u2; u3u4
in the strings which are spliced, for maximal/minimal occurrences of the sites
u1u2; u3u4, and so on. They are considered in [10] in the iterated mode. It remains
as a research topic to investigate also their uniterated version (as operations with
languages). Symmetrically, it remains to examine the generative power of splic-
ing systems based on the splicing variants considered in [11] and in the present
paper.

Notes: Research supported by the Academy of Finland, project 11281, and
Grant OGP0007877 of the Natural Sciences and Engineering Research Council
of Canada.

Useful remarks by two anonymous referees are gratefully acknowledged.

References

[1] K. L. Denningho�, R. W. Gatterdam, On the undecidability of splicing systems,
Intern. J. Computer Math., 27 (1989), 133 { 145.

[2] R. W. Gatterdam, Splicing systems and regularity, Intern. J. Computer Math.,
31 (1989), 63 { 67.

[3] S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal Lan-
guages, North-Holland, Amsterdam, 1975.

[4] T. Head, Formal language theory and DNA: an analysis of the generative ca-
pacity of speci�c recombinant behaviors, Bull. Math. Biology, 49 (1987), 737 {
759.

[5] T. Head, Splicing schemes and DNA, in Lindenmayer Systems; Impacts on
Theoretical Computer Science and Developmental Biology (G. Rozenberg, A.
Salomaa, eds.), Springer-Verlag, Berlin, 1992, 371 { 383.

[6] M. Latteux, B. Leguy, B. Ratoandromanana, The family of one-counter lan-
guages is closed under quotient, Acta Informatica, 22 (1985), 579 { 588.

[7] Gh. P�aun, On the splicing operation, Discrete Appl. Math., to appear.
[8] Gh. P�aun, The splicing as an operation on formal languages, First IEEE Symp.

on Intelligence in Neural and Biological Systems, Washington, 1995, 176 { 180.
[9] Gh. P�aun, On the power of the splicing operation, Intern. J. Computer Math.,

59 (1995), 27 { 35.

239Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

[10] Gh. P�aun, G. Rozenberg, A. Salomaa, Computing by splicing, Theor. Computer
Sci., to appear.

[11] Gh. P�aun, G. Rozenberg, A. Salomaa, Restricted use of the splicing operation,
Intern. J. Computer Math., to appear.

[12] D. Pixton, Regularity of splicing languages, First IEEE Symp. on Intelligence
in Neural and Biological Systems, Washington, 1995.

[13] G. Rozenberg, A. Salomaa (eds.), The Handbook of Formal Languages, Springer-
Verlag, Heidelberg, 1996.

[14] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

240 Kari L., Paun G., Salomaa A.: The Power of Restricted Splicing with Rules from ...

