
An Optimal Parallel Algorithm for Learning DFA

Jos�e L. Balc�azar
(Universitat Polit�ecnica de Catalunya

balqui@lsi.upc.es)

Josep D��az
(Universitat Polit�ecnica de Catalunya

diaz@lsi.upc.es)

Ricard Gavald�a
(Universitat Polit�ecnica de Catalunya

gavalda@lsi.upc.es)

Osamu Watanabe
(Tokyo Institute of Technology

watanabe@cs.titech.ac.jp)

Abstract: Sequential algorithms given by Angluin (1987) and Schapire (1992) learn
deterministic �nite automata (DFA) exactly fromMembership and Equivalence queries.
These algorithms are feasible, in the sense that they take time polynomial in n and m,
where n is the number of states of the automaton and m is the length of the longest
counterexample to an Equivalence query. This paper studies whether parallelism can
lead to substantially more e�cient algorithms for the problem. We show that no CRCW
PRAM machine using a number of processors polynomial in n and m can identify DFA
in o(n= log n) time. Furthermore, this lower bound is tight up to constant factors: we
develop a CRCW PRAM learning algorithm that uses polynomially many processors
and exactly learns DFA in time O(n= log n).

Key Words: computational learning theory, query learning, membership query, equiv-
alence query, DFA, optimal parallel learning

Category: F.2, F.1.3

1 Introduction

In the last �fteen years there has been an important e�ort aimed at giving a
rigorous and formal theoretical framework to the act of learning concepts using
a reasonable amount of resources. Several models have been proposed; among
them, the PAC-learning model proposed by Valiant [Valiant 84] and the query-
learning model proposed by Angluin [Angluin 87, Angluin 88]. In query learning,
the learning process must exactly identify the unknown concept by obtaining
information through certain types of queries.

For any of the models, it is an interesting question whether parallel machines
can speed-up learning signi�cantly. In the PAC model, the issue of parallelism
has been addressed by Vitter and Lin [Vitter, Lin 88]. In query learning, Bshouty
and Cleve [Bshouty, Cleve 92] have studied the complexity of exactly learning
Boolean formulas in parallel. This paper is concerned with how much help we
can expect from parallelism when learning the concept class of Deterministic
Finite Automata, from now on DFA.

Journal of Universal Computer Science, vol. 2, no. 3 (1996), 97-112
submitted: 9/11/95, accepted: 9/2/96, appeared: 28/3/96 Springer Pub. Co.

The learnability of DFA has been successfully studied in the context of
sequential query learning. In the seminal paper of the �eld [Angluin 87], An-
gluin exhibits an algorithm that learns DFA from Membership and Equivalence
queries. More e�cient algorithms for the same problem were developed later by
Rivest and Schapire [Rivest, Schapire 93, Schapire 92]. (See also
[Hellerstein, Pillaipakkamnat, Raghavan, Wilkins 95, Heged�us 95] for more re-
cent results on DFA learnability.)

Here, we study �rst the parallelization of such algorithms, and give a CRCW
PRAM algorithm that uses a number of processors polynomial in n and m

and runs in time O
�

n
logn

�
, where n is the number of states of the unknown

automata and m is the length of the longest counterexample received. This
algorithm is in essence a parallelization of Angluin's. However, to obtain the
maximum parallelism, a number of important changes have to be introduced in
the algorithm as well as in its analysis. In particular, we have to use amortized
analysis to prove the running time bound.

Next we show that this algorithm is actually time-optimal, by proving a
matching lower bound. More precisely, there is no CRCWPRAM learner running

in time o
�

n
logn

�
with a polynomial number of processors. In other words, even

with strong use of parallelism, learning DFA must take close to linear time.
Finally, we show how our time-optimal algorithm can be converted into the

PAC setting, obtaining another algorithm that PAC-learns DFA from Member-
ship and Example queries in time O(n � log(n+m)= logn).

Both the upper bound and the lower bound are partially based on our re-
cent work [Balc�azar, D��az, Gavald�a, Watanabe 94], where we give tight bounds
on the number of Equivalence queries needed to learn DFA in polynomial time
(when Membership queries are also available). The same results were obtained in-
dependently by Bshouty, Goldman, Hancock, and Matar
[Bshouty, Goldman, Hancock, Matar 93].

Besides potential implementations in multiprocessor machines, we believe
that studying parallelization of learning algorithms is useful as it gives informa-
tion on the �ne structure of learning problems. For example, in the case of DFA,
Equivalence queries seem to be the bottleneck for parallelization; our results
roughly say that getting counterexamples is an inherently sequential process. It
would be interesting to know whether this is a general phenomenon in query
learning.

2 Preliminaries

In this paper we follow standard de�nitions and notations in formal language
theory and computational complexity theory; in particular, those for �nite au-
tomata are used without de�nition. The reader will �nd them in standard text-
books such as [Hopcroft, Ullman 79].

All our languages are de�ned over a �xed �nite alphabet �. For any set A of
strings, let A denote the complement of A, i.e., �� � A. The length of a string
x is denoted by jxj, and � denotes the empty string. Symbols ��m and A�m

denote the sets fx 2 �� : jxj � mg and fx 2 A : jxj � mg respectively. For
any sets A and B of strings, A4B denotes the set (A � B) [(B � A). The
cardinality of a �nite set A is written as kAk.

98 Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

In this paper, except explicity stated, we assume that all logarithms are in
base 2.

The type of learning we consider is called learning via queries or query learn-
ing . In it, some learning algorithm or learner tries to infer a representation of
some target concept by making queries to some external teacher for the con-
cept. See [Angluin 87, Angluin 88, Watanabe 94] for detailed explanations of
the model. In our case, representations are encodings of deterministic �nite au-
tomata over the �xed alphabet �. The target concept is some regular language
L� over �, �xed during the computation of the learner. The teacher is a function
mapping query strings to answers.

We consider two types of queries, Membership and Equivalence. The input to
a Membership query is a string x 2 ��, and the answer is YES or NO depending
on whether x 2 L� or not. The input to an Equivalence query is a string r 2 ��

that encodes a dfa in some straightforward way. The answer is either YES if
r accepts the target concept L� correctly, or else the pair (NO; w) where w is
any string in L�4L(r). String w is called the counterexample. Note that each
Membership query has a unique answer but that there may be many counterex-
amples to the same Equivalence query, and hence many di�erent teachers for
the same concept. A learner that asks Membership and Equivalence queries is
called a (Mem,Equ)-learner.

The model of computation used in this paper consists of a number of Random
Access Machines (or processors) that execute synchronously a single instruction
ow and communicate through a common memory. Simultaneous reading and
writing by several processors on the same memory cell is allowed. Such a model
is called the Concurrent{Read, Concurrent{Write Parallel Random Access Ma-
chine, or CRCW PRAM. See [Ja'Ja' 92, Karp, Ramachandran 90] for a survey
of algorithm design using PRAMs.

Our model of a PRAM is thus a SIMD machine. However, MIMD programs
can be run in SIMD machines with only a constant factor slowdown and no
additional processors, so our lower bound result is also valid for more general
synchronous MIMD models.

Several conventions can be de�ned to resolve write conicts. For example, in
the COMMON convention, all processors writing into the same cell must write
the same value (otherwise the operation is illegal and the program stops). In
the ARBITRARY convention, any of the conicting processors can succeed in
writing, and the program must give correct results regardless of the choice. In
the PRIORITY convention, the processor that succeeds in writing is the one
with highest processor number. It is immediate that COMMON programs work
correctly under ARBITRARY protocol, and these also under PRIORITY.

In the usual PRAM model, memory cells contain arbitrary integers and the
processors execute a RAM instruction on these integers in unit time. This as-
sumption becomes unrealistic as the integers involved grow. To perform an accu-
rate analysis of resources, we sometimes assume that each memory cell in global
memory contains a single bit and that, at each step, a processor reads one bit
from global memory and writes another bit depending on the �rst one and its
internal state. (This restriction is not imposed on local memory, and simple in-
structions for address arithmetic and indirect addressing of global memory are
allowed). We call these two models the \integer processor" and \bit processor"
model. We assume that a string over � is represented as an integer in the �rst
case and as a sequence of consecutive bits in memory in the second case.

99Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

Note that we show our upper bound (Theorem 3.1) for the weakest of the
CRCW PRAM models mentioned (COMMON, bit processors), and our lower
bound (Theorem 4.1) for the strongest (PRIORITY, integer processors).

A processor makes a query to the teacher by presenting it with the mem-
ory address of the queried string and the address where the answer should be
returned.

We can now de�ne our concept of learnability. A PRAM learner S learns DFA
if for every target regular language L� and every teacher function T that answers
queries according to L�, S halts and outputs some dfa M such that L(M) = L�.
Let us stress that learning has to occur even with the least cooperative teacher.

We consider two resources in a PRAM algorithm, the number of processors
used and the (parallel) execution time. In a learning algorithm, we measure
these resources as a function of two parameters, the number of states of the
minimumdfa for the target language and the length of longest counterexample.
That is, we allow more resources to learn if the target language is accepted only
by larger dfa, or if the teacher provides longer counterexamples in the course of
the computation. For example, we say that a learner uses a polynomial number
of processors meaning polynomial in these two parameters.

Sometimes we apply these de�nitions to \sequential learners" instead of par-
allel ones. In this paper, we de�ne a sequential learner as a PRAM learner that
uses exactly one processor.

3 The Optimal Algorithm

This section is devoted to the proof of the following theorem.

Theorem 3.1. There is a PRAM (Mem,Equ)-learner for DFA running in time

O

�
n

logn

�
with a polynomial number of processors. This PRAM learner uses

the CRCW COMMON convention and bit processors.

In the following, let L� be a given target regular language, and let M� be the
minimumdfa (in the number of states) accepting L�. Let also n� be the number
of states in M�.

We design an algorithm as claimed in the theorem that takes n� as input, i.e.,
knows n� before starting the computation. At the end of the section we explain
how to modify the algorithm so that this prior knowledge is not needed.

The algorithm is strongly based on Angluin's sequential algorithm [Angluin 87].
Before presenting it formally, let us discuss the problems that arise when trying
to parallelize it optimally.

Angluin's algorithm keeps a two-dimensional table with all experiments per-
formed so far on the target dfa. It can be rewritten as a loop in which each
iteration does one of the following: (1) build a dfa out of the table, ask an
Equivalence query, and process the counterexample, or (2) using Membership
queries, �nd that the table is not closed or not consistent, then add a new row
or a new column, hence adding a new state to the table. The goal is to restruc-

ture the algorithm so that at most O
�

n
�

logn
�

�
iterations are needed, and each

iteration takes O(1) time on a CRCW PRAM. Note that this latter requirement

100 Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

explains why the number of processors depends on m and not only on n�, unlike
the running time.

To reduce the number of iterations of type (1), we start from the algorithm in
[Balc�azar, D��az, Gavald�a, Watanabe 94, Bshouty, Goldman, Hancock, Matar 93]

making no more than O
�

n
�

logn
�

�
Equivalence queries. To reduce the number of

iterations of type (2), the �rst idea is to try in parallel all possible outcomes of
the next logn� iterations of Angluin's algorithm; then, seeing all answers, select
the correct outcome and discard all others to avoid exponential blow-up. Ideally,
this should be done in constant time and add about logn� states to the table.

Two problems arise, however. One is that �nding the actual outcome followed
by Angluin's algorithm seems to require more than constant time, due to the
adaptive nature of the Membership queries. A greedy solution is to blindly keep
all new rows and columns, and purge the table of all rows and columns that
seem redundant at this moment. This leads to the second problem: because of
this strategy, it may be false that as many as logn� states are added at every
iteration. Still, doing some sort of amortized analysis, we can show that
(logn�)
states must be added in average.

Now we present the algorithm in detail. The following notions are inherited
from [Angluin 87].

(Observation Table)
An observation table is a 3-tuple (S;E; T), where:

{ S � �� is a �nite, pre�x-closed set of strings;
{ E � �� is a �nite, su�x-closed set of strings;
{ T is a two-dimensional table with rows indexed by strings in S, columns
indexed by strings in E, and entries whose value is 0 or 1.

For any row s and column e, the value of entry (s; e) in T is denoted as T [s; e]. In
our learning algorithm, T [s; e] is set to 0 if s � e is not in the target set L�, and is
set to 1 if it is in L�. In general, for any strings w and v, let L�[w; v] denote the
membership of w � v in L�. For a string s 2 S, row(s) is the row vector de�ned
by (T [s; e])e2E , and for a string e 2 E, col(e) is the column vector de�ned by
(T [s; e])s2S. Similarly, for any string w, row�(w) is the row vector de�ned by
(L�[w; e])e2E.

To describe the parallel algorithm, we introduce some notations. A string
s 2 S, or row(s), is called essential if there is no s0 lexicographically smaller
than s such that row(s) = row(s0). We say that column e separates rows s1 and
s2 if T [s1; e] 6= T [s2; e], and we say that e 2 E, or col(e), is essential if e is the
lexicographically smallest column that separates s1 and s2 for some two rows s1
and s2. Rows or columns that are not essential are called nonessential.

(Consistent DFA)
We say that a dfa M is consistent with table (S;E; T) if for every s 2 S and

every e 2 E, T [s; e] = 1 if and only if M accepts s � e.

(Closed and Self-Consistent Table)
We say that table (S;E; T) is closed if for every s 2 S and every a 2 �, there

is some s0 2 S such that row�(s � a) = row(s0). (S;E; T) is self-consistent if for
every s1; s2 2 S, row(s1) = row(s2) implies that row�(s1 � a) = row�(s2 � a) for
all a 2 �.

101Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

For any closed and self-consistent table (S;E; T) we can de�ne an associated
dfa M (S;E; T) = hQ;�; �; q0; F i as follows:

{ Q = f row(s) : s 2 S g;
{ q0 = row(�);
{ F = f row(s) : s 2 S ^ T [s; �] = 1 g;
{ �(row(s); a) = row�(s � a), for every s 2 S and a 2 �.

State q0 is guaranteed to exist because S is pre�x-closed. Entry T [w; �] exists for
each w 2 S because E is su�x-closed. Transition function � is well de�ned since
the table is closed and self-consistent. In particular, because (S;E; T) is closed,
every row�(s � a) corresponds to some row(s0), s0 2 S. Clearly, the number of
states of M (S;E; T) is the same as that of essential rows in (S;E; T).

(Algorithm POLFA)

1. let h = dlogn�e; build initial table (S;E; T);
2. while true do
3. expand table (S;E; T) by h;
4. remove useless rows and columns from (S;E; T);
5. if (S;E; T) is closed and self-consistent then
6. build M (S;E; T);
7. ask M (S;E; T) as Equivalence query;
8. if answer = YES then
9. outputM (S;E; T) and halt
10. else (i.e., answer = hNO; wi for some w)
11. add w to (S;E; T) � �
12. od.

Figure 1: Learning Algorithm POLFA

Figure 1 presents the learning algorithm POLFA (\Parallel Optimal Learner for
F inite Automata") that achieves the time-optimal upper bound.

We �rst detail the meaning and implementation of some of the lines in the
algorithm.

Line 1 � \build initial table": This means setting S = f�g and E = f�g, and
then �lling in entry T [�; �] of T by asking one Membership query \� 2 L�?".

Line 3 � \expand table (S;E; T) by h = dlogn�e": This means expanding ta-
ble (S;E; T) and making an auxiliary table (S;E; Taux) by asking Membership
queries. Table Taux is a two-dimensional table that is used to check whether
(S;E; T) is closed and self-consistent in line 5. In a way similar to T , Taux keeps
L�[s � a; e] for every s 2 S, a 2 �, and e 2 E.

The details of line 3 are as follows:

102 Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

for all pairs (s; u) with s 2 S and u 2 ��h � f�g
do in parallel add s � u to S;

for all pairs (e; v) with e 2 E and v 2 ��h � f�g
do in parallel add v � e to E;

for all pairs (s; e) with s 2 S and e 2 E
do in parallel �ll the entry T [s; e] of T
by asking the Membership query \s � e 2 L�?";

for all triples (s; a; e) with s 2 S, a 2 �, and e 2 E
do in parallel �ll the entry Taux[s � a; e] of Taux
by asking Membership query \s � a � e 2 L�?";

Line 4 � \remove useless rows and columns": This means removing from S
all elements such that: (i) they were not in S before executing line 3, (ii) they
are nonessential, and (iii) they are not pre�xes of any essential element in S.
Remove from T all rows indexed by elements removed from S. All in all at most
one representative for each row is left, if we consider only the elements of S that
are not pre�xes of other elements in S.

Useless columns are removed similarly. That is, \remove useless columns"
means removing from E all elements such that: (i) they were not in E before
executing line 3, (ii) they are nonessential, and (iii) they are not su�xes of any
essential element in E. Remove from T all columns indexed by elements removed
from E.

Note that, by condition (i), an element added to S or E in line 3 is either
removed immediately after at line 4, or else it is never removed in later iterations.

Line 5 � \if (S;E; T) is closed and self-consistent": The test can be done just
following the de�nition by using the auxiliary table (S;E; Taux).

Line 10 � \add w to (S;E; T)": This means adding u to S as a new row of T , for
each u 62 S pre�x of w, then �lling in the new entries with Membership queries.

(Correctness of POLFA)
Consider the execution of the algorithm above when the minimum dfa M�

for L� has n� states. We will prove next that the algorithm terminates in
O(n�=h) = O(n�= logn�) iterations, and that after these many iterations it holds
that M (S;E; T) =M�, i.e., M� has been identi�ed.

For the following technical discussion, we introduce some more notions. For
any table (S;E; T), the k-expansion of (S;E; T) is a table (S0; E0; T 0) (or building
a table (S0; E0; T 0)) such that S0 = S ���k, E0 = ��k �E, and T 0 is consistent
with L�. When k = 1, we omit \1-" and simply say expansion.

Although line 3 in the algorithm computes the h-expansion of T in paral-
lel, we can regard this as a sequence of h expansions. More precisely, we view
any execution of POLFA taking I iterations as I sequences of expansions of ta-
bles. See Figure 2. In the �gure, each table (Si+1;0; Ei+1;0; Ti+1;0) is obtained by
removing useless rows and columns in (Si;h; Ei;h; Ti;h), and possibly adding a
counterexample.

We prove that the number of iterations I is at most (2n� + h)=h by showing
that the number of expansions in the trace of POLFA is at most 2n�+h. In the
following, let us assume that observation tables are consistent with the target
L�.

103Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

(S1;0; E1;0; T1;0)

h expansions at line 3z }| {
! (S1;1; E1;1; T1;1) ! � � � ! (S1;h; E1;h; T1;h);

(S2;0; E2;0; T2;0)! (S2;1; E2;1; T2;1) ! � � � ! (S2;h; E2;h; T2;h);
...

(SI;0; EI;0; TI;0) ! (SI;1; EI;1; TI;1) ! � � � ! (SI;h; EI;h; TI;h)

Figure 2: Execution of POLFA viewed as sequences of expansions

Let (S0; E0; T 0) be the expansion of (S;E; T). We say that the expansion of
(S;E; T) is at if no essential row is introduced in (S0; E0; T 0), or more precisely,
both (S;E; T) and (S0; E0; T 0) have the same number of essential rows.

The total number of expansions in the execution of POLFA is given by the
next two lemmas, 3.5 and 3.7, bounding separately the number of nonat and
at expansions, respectively. To prove them, we use the following three facts
concerning observation tables. The �rst one is Lemma 5 in [Angluin 87], the
second one is Theorem 1 in [Angluin 87], and the third one is easily veri�ed.
Therefore, we omit their proofs here.

Fact 3.2. Let (S;E; T) be an observation table that has n essential rows. Then
any dfa consistent with (S;E; T) must have at least n states.

Fact 3.3. Let (S;E; T) be a closed and self-consistent observation table. Then
the minimum dfa consistent with (S;E; T) is uniquely determined (up to iso-
morphism), and is precisely M (S;E; T).

Fact 3.4. For any observation table (S;E; T), (S;E; T) is closed and self-consistent
if and only if the expansion of (S;E; T) is at.

Now the bound on the non-at expansions follows from Fact 3.2.

Lemma 3.5. The total number of non-at expansions in the execution of POLFA
is at most n� � 1.

Proof. Suppose that n� non-at expansions are made during the execution.
Then after the n�th expansion, observation table (S;E; T) has at least n� + 1
essential rows because the number of essential rows increases at least by one by
each non-at expansion. Then from Fact 3.2, any dfa consistent with (S;E; T)
has at least n� + 1 states, which contradicts that M�, which has n� states, is
consistent with (S;E; T). tu

Bounding the number of at expansions is more di�cult. We need the follow-
ing lemma, that generalizes Lemma 4 in [Angluin 87] and whose proof is similar
to that of Lemma 4.2 in [Balc�azar, D��az, Gavald�a, Watanabe 94].

104 Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

Lemma 3.6. Let (S;E; T) be any closed and self-consistent observation table
whose next k expansions are all at. Then any acceptor that is consistent with
the k-expansion of (S;E; T) but inequivalent to M (S;E; T) must have at least
k more states than M (S;E; T).

Proof. De�ne M = M (S;E; T) = (Q;�; �; q0; F) and n = kQk. Let M 0 =
(Q0; �; �0; q00; F

0) be an acceptor consistent with the k-expansion of (S;E; T),
with kQ0k < n + k. We will show that M and M 0 are isomorphic and thus
equivalent. We assume without loss of generality that M 0 is minimum. That is,
every state ofM 0 can be reached from q00 and no two states inM 0 are equivalent.

To show the isomorphism, we use the following de�nitions.

� For a string s 2 x ���k , let row(s) denote the �nite function mapping each
e 2 E to Tk(s; e), where Tk is the k-expansion of T .

� For every q0 2 Q0, de�ne row0(q0) to be a �nite function from E to f0; 1g
such that row0(q0)(e) = 1 i� �0(q0; e) 2 F 0.

� For every s 2 S, de�ne f(s) = �0(q0
0
; s). Note that row0(f(s)) = row(s), from

the assumption that M 0 is consistent with Tk. In fact, for every u 2 ��k,
row0(�0(f(s); u)) = row(s � u).

� For every q 2 Q, de�ne �(q) = ff(s) : row(s) = qg.

The following sequence of claims shows that � de�nes a bijection between Q and
the set ffq0g : q0 2 Q0g. Clearly, then we can transform � into a bijection from
Q to Q0, which turns out to be the desired isomorphism.

Claim 1. kRange(f)k � n.

Proof. From the above remark, it is easy to see that f(s1) = f(s2) implies
row(s1) = row(s2). On the other hand, there are n di�erent rows row(s) in
T (i.e., the states of M); hence, there must be at least n di�erent f(s). Thus,
kRange(f)k � n. tu Claim 1

Intuitively, the next claim states that for any two states in M 0 there is already
some string in ��k �E that proves them di�erent.

Claim 2. For any two di�erent states q0
1
and q0

2
in Q0, row0(q0

1
) 6= row0(q0

2
).

Proof. By induction on the length of a string x witnessing that q0
1
and q0

2
are

not equivalent.
If x is the empty string, functions row0(q01) and row0(q02) di�er when applied

to x.
Consider the case where x is not empty. For the �rst symbol a 2 � of x, de�ne

q03 = �0(q01; a) and q
0
4 = �0(q02; a). Then q

0
3 6= q04 (otherwise x is not a witness), and

a string shorter than x witnesses that q0
3
and q0

4
are not equivalent. By induction

hypothesis, row0(q03) is di�erent from row0(q04).
On the other hand, because there are less than k states in Q0 � Range(f)

(since kRange(f)k � n from Claim 1), q0
1
and q0

2
must be reachable from states

in Range(f) with a path of length less than k. More precisely, there exist u, v
in �<k and s1, s2 in S such that q01 = �0(f(s1); u) and q02 = �0(f(s2); v). Then

row(s1 � ua) = row0(q03) 6= row0(q04) = row(s2 � va)

105Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

(the equalities are true because M 0 is consistent with Tk and ua and va are in
��k).

It must happen that row(s1 �u) 6= row(s2 �v); otherwise, Tk has one more row
than T (namely, the result of separating row(s1 � u) and row(s2 � v) by a). But
row(s1 �u) = row0(q0

1
) and row(s2 �v) = row0(q0

2
), again because M 0 is consistent

with Tk and u and v are in ��k . Hence row0(q1) 6= row0(q2). tu Claim 2

Now using Claim 2, we prove that � is a bijection from Q to ffq0g : q0 2 Q0g
in the following way.

Claim 3.
(1) For every q 2 Q, k�(q)k � 1,
(2) Q0 � Range(f), and
(3) � is a bijection from Q to ffq0g : q0 2 Q0g.
Proof. Part (1): Suppose that some �(q) contains two di�erent states q0

1
and

q0
2
in Q0. By Claim 2, row0(q0

1
) 6= row0(q0

2
). Since both q0

1
and q0

2
are in �(q),

there are strings s1; s2 in S such that q0
1
= f(s1), q

0
2
= f(s2), and row(s1) =

row(s2) = q. However, we have row(s1) (= row0(f(s1))) = row0(q0
1
) 6= row0(q0

2
)

= (row0(f(s2)) =) row(s2). A contradiction.

Part (2): Take any q0 in Q0. By an argument as in Claim 2, q0 must be reachable
from some state f(s1) using a string u 2 �<k, that is, row0(q0) = row(s1 � u).
Then there is some s2 2 S such that row(s1 � u) = row(s2), or otherwise Tk has
one more row than T . Therefore, row0(q0) = row(s2) = row0(f(s2)). By Claim
2 this means q0 = f(s2), and thus q0 2 Range(f).

Part (3): From the above part (2) and our de�nitions, we have

Q0 � Range(f) �
[
q2Q

�(q) � Q0:

Note also that kRange(f)k � n (but kQk = n) and that k�(q)k � 1 for every
q 2 Q. Thus, it must happen that k�(q)k = 1 for every q 2 Q and that all �(q)
are di�erent. Furthermore, every q0 2 Q0 has some q 2 Q such that q0 2 �(q),
which is in fact fq0g = �(q). tu Claim 3

Finally we must show that � is not only a bijection but also an isomorphism
between M and M 0. That is, it carries q0 to q

0
0
, it preserves � to �0, and it carries

F to F 0. But having proved that Q and Q0 have the same cardinality, the rest
is exactly as in [Angluin 87]. tu

Now we can argue the following bound on the number of at expansions:

Lemma 3.7. The total number of at expansions in the execution of POLFA
is at most n� + h.

Proof. Again, we view all table expansions as in Figure 2. We group them into
sequences of adjacent tables, where adjacency is de�ned as follows:

{ Tables (Si;j ; Ei;j; Ti;j) and (Si;j+1; Ei;j+1; Ti;j+1) are adjacent if and only if
the expansion from one to the other is at.

{ Tables (Si;h; Ei;h; Ti;h) and (Si+1;0; Ei+1;0; Ti+1;0) are adjacent if and only if
no counterexample is added between them. Note that there is no expansion
here, and that removing rows and columns alone does not prevent adjacency.

106 Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

Let the �rst sequence of adjacent tables start from table A1 and end in table
B1, let the second start from A2 and end in B2, Note that each Bi is
either followed by a non-at expansion, or else the end of an iteration and a
counterexample is inserted immediately after; hence, the number of essential
rows increases between Bi and Ai+1. Thus, we only have �nitely many sequence
of adjacent tables. Let the last one be from Al to Bl.

De�ne ki as the number of expansions from Ai to Bi. Based on the previous
facts and lemmas, we observe the following:

{ Each Ai is closed and self-consistent, because it has a at expansion (Fact 3.4).
Thus, for every i, M (Ai) is well de�ned and is the minimum dfa consistent
with Ai (Fact 3.3).

{ Acceptor M (Ai+1) is consistent with table Ai+1, so it is also consistent with
tables Ai and Bi. This is because all strings indexing rows and columns of
Ai and Bi are still in Ai+1.

{ Also M (Ai) and M (Ai+1) are not equivalent. Indeed, if Bi is followed by a
non-at expansion, then Ai+1 has at least one essential row more than Bi,
and by Fact 3.2M (Ai+1) at least one state more than M (Bi); otherwise, the
algorithm adds some counterexample to table Bi, and this counterexample
is classi�ed di�erently by M (Bi)(= M (Ai)) and M (Ai+1).

{ Therefore, by Lemma 3.6,M (Ai+1) has at least ki more states than M (Ai).

Thus, M (Al) has at least k1+ � � �+ kl�1 states. Acceptor M� is consistent with
table Al so, by Fact 3.2, k1 + � � �+ kl�1 � n�.

Finally, observe that kl is at most h. Otherwise, the end of some iteration
must occur between Al and Bl. At that moment the observation table is closed
and self-consistent so POLFA asks an Equivalence query and a counterexample
is inserted in the table. This contradicts the assumption that all tables between
Al and Bl are adjacent.

Hence k1 + � � � + kl � n� + h, proving the bound on the number of at
expansions. tu

Now we have both bounds by Lemmas 3.5 and 3.7; this completes the proof
that POLFA learns DFA in O(n�= logn�) iterations.

(Conclusion of proof)
To conclude the proof of Theorem 3.1, it remains to show that 1/ each iter-

ation takes constant time using a polynomial number of CRCW processors, and
2/ it is possible to learn in almost the same time without knowing n�. Let us
explain �rst why 1/ holds.

Each line of POLFA, except for 3, 4, 5, 6, and 11, takes constant time even
if executed sequentially (i.e., using a single processor). We claim that even these
lines can be implemented in constant time, using Concurrent Reads and Con-
current Writes and a number of processors that is polynomial in kSk and kEk.

As an example, we discuss in detail the implementation of the step \remove
useless rows" in line 4. Other steps use similar techniques of CRCW PRAM
programming. This part is programmed as follows:

for all u 2 S do in parallel
for all pairs v 2 S, e 2 E do in parallel

rowsequal [u; v] := true;

107Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

if T [u; e] 6= T [v; e] then rowsequal [u; v] := false;
rowessential [u] := true;
for all v 2 S do in parallel

if v < u and u added to S in this iteration
and rowsequal [u; v]
then rowessential [u] := false;

for all v 2 S do in parallel
if u pre�x of v and rowessential [v]

then rowessential [u] := true;
if not rowessential [u] then

remove u from S and mark row u of T as \deleted"

Clearly, this algorithm takes constant time and O(kSk2 � kEk) processors. Note
that in steps with Concurrent Write, all processors writing into the same cell
write the same value, either true or false. That is, the program obeys the COM-
MON convention.

To establish the true polynomial bound on the number of processors, it suf-
�ces to bound kSk and kEk by a polynomial in n� and m, the length of the
longest counterexample received so far.

Note that elements can be added to S [E in three ways:

� In line 1, � is added.
� In line 3, S ���h and ��h �E are added.
� In line 11, strings of length at most m are added.

Since line 3 is executed at most O(n�= logn�) times, strings in S[E have length
at most m +O(n�= logn�) � h = O(m+ n�).

Next, observe that at the beginning of an iteration S contains the following
rows:

� By Fact 3.2, at most n� essential rows from the previous iteration.
� All the pre�xes of the strings indexing essential rows, that is, O(m+ n�) per
essential row.

� Plus at most the m + 1 pre�xes of the counterexample inserted at the last
iteration.

So at the beginning of each iteration we have kSk � n� �O(m+ n�) +m+ 1 =
O(mn�+n2�). Also, at the beginning of the iteration kEk contains only essential
columns. Recalling that a column is essential if it is the �rst one separating a
pair of rows, the number of essential columns is bounded above by the number
of pairs of rows, i.e., kSk2.

After the expansion at line 3, T contains kSk � k�k�h rows and kEk � k�k�h

columns. But � is �xed and h is dlogn�e, so we have k�k�h = n
O(1)
� . Hence,

both kSk and kEk are polynomial in n� and m at any moment of the execution
of POLFA. (We can also set h = logj�j n�. Then the degree of polynomial that

bounds kSk and kEk is independent from the alphabet size; on the other hand,
the constant factor for the time complexity changes depending on the alphabet
size.)

Let us note that in the analysis above we assumed that processors can move
a string, compare two strings, or test whether a string is a pre�x of another

108 Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

in constant time. However, these operations can be implemented in constant
time in a COMMON CRCW PRAM using a number of bit processors linear in
the length of the operands. So we can reprogram algorithm POLFA in the bit
processor model multiplying by at most O(m + n�) the number of processors.

Finally, we show how to remove the assumption that n� is given as input.
We substitute line 3 of POLFA by the following:

ni := max(2;number of essential rows in T);
expand table (S;E; T) by h = dlognie;

That is, instead of using a �xed h to expand the table we let it grow with the
size of the table.

Clearly, the correctness of the algorithm is not a�ected and the number of
processors is not larger than in the original POLFA. We only have to show that
the number of iterations is still O(n�= logn�).

Consider the number of expansions that can occur for each value of h. A non-
at expansion adds at least one row, so as in Lemma 3.5, there can be at most
2k non-at expansions while h = k. With an argument as in Lemma 3.7, we can
show that at most 2k + k at expansions occur while h = k. Since an iteration
with h = k captures exactly k expansions, the total number of iterations is
bounded by

dlogn
�
eX

k=1

(2k + k) + k

k
=

dlogn
�
eX

k=1

2k

k
+ 2 � dlogn�e:

It is easy to prove by induction on m that

mX
k=1

2k

k
< 3 �

2m

m

so we conclude that the number of iterations is less than

3 �
2dlogn�e

dlogn�e
+ 2 � dlogn�e � 6 �

n�

logn�
+ 2 � dlogn�e:

4 Lower Bound

In this section we prove that the algorithm in the previous section is essentially
time-optimal, at least among those using a feasible (i.e., polynomial) number of
processors.

Theorem 4.1. There is no CRCW PRAM (Mem,Equ)-learner for DFA running

in time o

�
n

logn

�
with a polynomial number of processors. This holds even for

the PRIORITY convention and the integer processor model.

In the proof we use two main ideas. First, a lower bound on the number of
Equivalence queries needed for sequential learning, which we obtained in a pre-
vious work [Balc�azar, D��az, Gavald�a, Watanabe 94]. Second, a trick introduced

109Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

by Bshouty and Cleve [Bshouty, Cleve 92] to reduce the number of Equivalence
queries when transforming a parallel into a sequential learner.

The following result was proved in [Balc�azar, D��az, Gavald�a, Watanabe 94]
(Corollary 4.7), and independently obtained by Bshouty, Goldman, Hancock,
and Matar [Bshouty, Goldman, Hancock, Matar 93].

Theorem 4.2. There is no polynomial-time sequential (Mem,Equ)-learner S

for DFA making o

�
n

logn

�
Equivalence queries.

In fact, this is only a special case of more general trade-o�s between Member-
ship and Equivalence queries shown in [Balc�azar, D��az, Gavald�a, Watanabe 94,
Bshouty, Goldman, Hancock, Matar 93].

We prove Theorem 4.1 by contradiction. Assume that there is a CRCW

PRAM that learns DFA in o

�
n

logn

�
parallel time and using p(n;m) processors,

with p a polynomial. We use this PRAM to build a sequential learner for DFA

that makes o

�
n

logn

�
Equivalence queries and runs in polynomial time. This

contradicts Theorem 4.2.
So take the hypothetical PRAM, without loss of generality a SIMD. In par-

ticular, we may assume that in each query step, either only Membership queries
or only Equivalence queries are asked by the processors. The sequential learner
S simulates sequentially steps 1, 2, . . . of the PRAM. If, at step i, the processors
compute, S simply updates the simulated PRAM memory. If, at step i, the pro-
cessors ask Membership queries, S asks all of these queries sequentially and re-
turns to each processor its corresponding answer. If, at step i, the q processors ask
Equivalence queries r1, r2, . . . , rq, it uses the technique in [Bshouty, Cleve 92] to
answer all of them by making q�1 Membership queries and a single Equivalence
query.

To do this, �nd a string w in the symmetric di�erence of �(r1) and �(r2).
(If r1 and r2 are the same, we let ri1 = r1 and proceed to the next step.) This
can be done in polynomial time (w.r.t. the size of r1 and r2) because r1 and r2
are dfa, and furthermore, the length of such w is polynomially bounded. Thus,
we can ask w as a Membership query. Depending on the answer, the string can
be used as a counterexample for either r1 or r2. Let ri1, i1 2 f1; 2g, be the dfa
that did not get a counterexample. Find another string in �(ri1)4�(r3), ask it
for membership, obtain a counterexample for one of the dfa, and call the other
ri2, i2 2 fi1; 3g; and so on. After q � 1 rounds, we are left with only one query
riq�1, iq�1 2 f1; : : : ; qg, whose counterexample is obtained with an Equivalence
query.

Simulating a parallel step of the PRAM clearly takes polynomial time, and
there are o(n= logn) parallel steps. Hence, S runs in polynomial time. Also,
S makes at most one Equivalence query per simulated step. This gives us the
desired contradiction.

Finally, note that the proof of the lower bound applies in fact to PRAMs
with unit-cost string operations, i.e., if we assume that a PRAM processor can
compare, concatenate, and extract pre�xes of arbitrarily long strings in a single
step. Also, the proof works for every Write-conict rule that can be computed
in polynomial time.

110 Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

5 Parallel PAC

To conclude, let us argue that our learner can be turned into a parallel PAC
algorithm with Membership queries. It su�ces to use the technique developed
by Angluin in the original paper on learning DFA from queries [Angluin 87].
She showed how to replace Equivalence queries with a source of examples, at the
expense of transforming an algorithm that learns exactly into another one that
learns only approximately with high probability.

The idea is as follows.When the exact learning algorithmasks an Equivalence
query, the PAC-learner instead asks for a certain number of labeled examples.
Then it tests whether any of the examples is a counterexample for the query.
If so, computation proceeds with that counterexample. Otherwise, the learner
assumes that the answer to the Equivalence query is YES and stops. It is shown
in [Angluin 87] that a polynomial number of examples is enough to guarantee a
small error probability, and in fact achieve learning in the PAC sense.

The observation now is that this procedure can be parallelized very well.
Asking for a polynomial number of examples takes constant parallel time. The
problem of determining whether a given dfa of n states accepts a given string
of length m can be solved in O(log(n +m)) time. Hence, applying this method
to our O(n= logn)-time algorithm gives a PAC algorithm for learning DFA that
uses Membership queries, a polynomial number of processors, and running time
O(n � log(n +m)= logn), where m is the length of the longest labelled example
it receives.

Acknowledgements

This research was partially supported by the ESPRIT II Program of the EC un-
der contract No. 7141 (project ALCOM II), and by DGICYT, project number
PB92{0709. A part of this work has been done while the fourth author was vis-
iting Centre de Recerca Matem�atica, Institut D'Estudis Catalans. The authors
would like to thank anonymous referees for careful reading and constructive
comments that helped them to improve the presentation of the paper.

References

[Angluin 87] D. Angluin, \Learning regular sets from queries and counterexamples",
Information and Computation, Vol. 75, 1987, pp. 87{106.

[Angluin 88] D. Angluin, \Queries and concept learning", Machine Learning, Vol. 2,
1988, pp. 319{342.

[Balc�azar, D��az, Gavald�a, Watanabe 94] J.L. Balc�azar, J. D��az, R. Gavald�a, and O.
Watanabe, \The query complexity of learning DFA", New Generation Com-
puting, Vol. 12, 1994, pp. 337{358.

[Bshouty, Cleve 92] N.H. Bshouty and R. Cleve, \On the exact learning of formulas
in parallel", in Proc. 33rd Annual Symposium on Foundations of Computer
Science, IEEE Computer Society Press, 1992, pp. 513{522.

[Bshouty, Goldman, Hancock, Matar 93] N.H. Bshouty, S.A. Goldman, T.R. Hancock,
and S. Matar, \Asking queries to minimize errors", in Proc. 6th Annual ACM
Conference on Computational Learning Theory, ACM Press, 1993, 41{50.

111Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

[Heged�us 95] T. Heged�us, \Generalized teaching dimension and the query complexity
of learning", in Proc. 8th Annual ACM Conference on Computational Learning
Theory, ACM Press, 1995, 108{117.

[Hellerstein, Pillaipakkamnat, Raghavan, Wilkins 95] L. Hellerstein, K. Pillaipakkam-
natt, V. Raghavan, and D. Wilkins, \How many queries are needed to learn?",
in Proc. 27th Annual ACM Symposium on the Theory of Computing, ACM
Press, 1995, pp. 190{199.

[Hopcroft, Ullman 79] J.E. Hopcroft and J.D. Ullman, Introduction to Automata The-
ory, Languages, and Computation, Addison-Wesley, 1979.

[Ja'Ja' 92] J. Ja'Ja', An Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[Karp, Ramachandran 90] R.M. Karp and V. Ramachandran, \Parallel algorithms

for shared-memory machines", in Handbook of Theoretical Computer Science,
vol. A, J. van Leeuwen (editor), Elsevier / MIT Press, 1990, pp. 869{942.

[Rivest, Schapire 93] R.L. Rivest and R.E. Schapire, \Inference of �nite automata
using homing sequences", Information and Computation, Vol. 103, 1993.
pp. 299{347.

[Schapire 92] R.E. Schapire, The Design and Analysis of E�cient Learning Algorithms.
MIT Press, 1992.

[Valiant 84] L.G. Valiant, \A theory of the learnable", Communications of the ACM,
Vol. 27, 1984, pp. 1134{1142.

[Vitter, Lin 88] J.S. Vitter and J.-Y. Lin, \Learning in parallel", in Proc. 1988 Work-
shop on Computational Learning Theory,Morgan Kaufmann Publishers, 1988,
pp. 106{124.

[Watanabe 94] O. Watanabe, \A framework for polynomial time query learnability",
Mathematical Systems Theory, Vol. 27, 1994, 211{229.

112 Balcazar J. L., Diaz J., Gavalda R., Watanabe O.: An Optimal Parallel Algorithm ...

