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Abstract: Plethora of ensemble techniques have been implemented and studied in
order to achieve better classification results than base classifiers. In this paper an
algorithm for integration of decision trees is proposed, which means that homogeneous
base classifiers will be used. The novelty of the presented approach is the usage of the
simultaneous distance of the object from the decision boundary and the center of mass
of objects belonging to one class label in order to determine the score functions of
base classifiers. This means that the score function assigned to the class label by each
classifier depends on the distance of the classified object from the decision boundary and
from the centroid. The algorithm was evaluated using an open–source benchmarking
dataset. The results indicate an improvement in the classification quality in comparison
to the referential method – majority voting method.
Key Words: distance to decision boundary, classifier integration, ensemble of classi-
fiers
Category: Topic I.5.2 - Design Methodology

1 Introduction

The supervised classification algorithm builds a mathematical model based on

training data [Jordan and Mitchell, 2015]. This model is used to make predic-

tions or decisions for a new object, in general, not belonging to the training

set. Thus, the final effect of the recognition system uses the previously learned

model to indicate the class label to the new object. In this general scenario, a

classifier maps a feature space into a class label space. This mapping process

can be decomposed into three stages. The first is to determine the value of the

scoring function. The second one is the calibration of the scoring function, and

the last is the conversion of the calibrated scoring function into a class label. For

example, the scoring function of a linear SVM classifier is the object’s distance

from the decision boundary. Then, Platt scaling [Platt et al., 1999] computes the

probability that a given object belongs to a particular class label.

The purpose of a classifier calibration is an approximation of the predicted

scores to the actual probabilities. The calibration converts the scores function

into probabilities, or more precisely transforms classifier outputs into values

that can be interpreted as probabilities. The calibration methods can be gen-

erally divided into two groups: parametric and non-parametric methods. The
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sigmoidal transformation maps the score of a classifier to a calibrated proba-

bility output as was proposed by Platt [Platt et al., 1999]. The non-parametric

methods are based on binning [Zadrozny and Elkan, 2001] or isotopic regres-

sion [Zadrozny and Elkan, 2002].

Ensemble methods (an ensemble of classifiers EoC) [Giacinto and Roli, 2001],

[Ponti Jr, 2011], [Przyby la-Kasperek and Wakulicz-Deja, 2017] are a popular ap-

proach in building a classification model that is more stable and a model that

uses a set of many individual classifiers (base learners) and combine them to

classify new data [Le et al., 2013], [Rokach, 2010]. The main concept behind the

ensemble technique is to create a classification method that outperforms every

one of the base classifiers and, as it was previously mentioned, the outputs of

the base classifiers can be used in a variety of ways to determine the decision of

a classifiers committee.

The impact of distance from the decision boundary in boosting algorithms

which are examples of EoC have been proposed. An emphasis function in which

the first term takes large values for patterns with large quadratic error, and

the second term increases for objects that lie close to the decision boundary is

presented in paper [Gómez-Verdejo et al., 2010]. The emphasis function that bal-

ances also the contribution of the error and the distance to the decision boundary

is considered in [Ahachad et al., 2017].

In this paper we present the concept of a scoring function which depends on

the distance of the object from the decision boundary of a given base classifier

and the centroid defined by the center of mass of objects belonging to one class

label. The advantage of the proposed method is therefore the dependence of the

scoring function on two coefficients: the distance from the decision boundary

and the distance from the class label centroid. Experimental studies concern a

classifiers committee built from heterogeneous base classifiers which are decision

trees.

Given the above, the objectives of this work are the following:

– A proposal of a new score function that uses location of the cluster centroids

defined by the class label and distance to the decision boundary defined by

a base classifier.

– The use of the proposed score function in an ensemble of homogeneous de-

cision tree classifiers.

– A new experimental setup to compare the proposed algorithm with the ma-

jority voting and random forest methods.

This paper is organized as follows: Section 2 presents the necessary terms of

the classification. The proposed method for the calculation of the score function

for decision trees is presented in Section 3. In the next sections experimental

studies are discussed. Finally, some conclusions are presented.
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2 Basic concept of classification

The recognition algorithm Ψ maps the feature space X ⊆ R
d to the set of class

labels Ω = {ω1, ω2, . . . , ωC} according to the general formula:

Ψ : X → Ω. (1)

For the feature vector x ∈ X , that represents the recognised object Equation (1)

can be written as

Ψ(x) = ωc. (2)

The Equation (2) represents the so-called abstract level of the base classifier

output [Kuncheva, 2014]. This level represents the information that the classi-

fier Ψ assigns the unique class label ωc to a given recognized object x, i.e. the

output of the base classifier indicates uniquely the class label [Dey et al., 2014],

[Przyby la-Kasperek and Wakulicz-Deja, 2017]. The other most commonly used

type of the classifier output is the score function that addresses the degree of

assigning the class label to the given recognized object x. An example of such a

representation of the output is a posteriori probability returned by Bayes clas-

sifier [Bloch, 1996], [Ho et al., 1994].

Let us assume that K (k ∈ {1, 2, . . . ,K}) different decision trees Ψ1, . . . , ΨK

are used to solve the classification task. These decision trees are the base clas-

sifiers for the considered case of EoC. If all K base classifiers are equal con-

tribution to make the final decision of EoC and the abstract level is consid-

ered, then the majority vote rule can be applied [Fechner and Keller, 2004],

[Mohandes et al., 2018]. This method allows counting base classifiers outputs

as a vote for a class and assigns the input pattern to the class with the greatest

count of votes. It is defined as follows:

ΨMV (x) = arg max
ωc

L∑

k=1

I(Ψk(x) = ωc), (3)

where I(·) is the indicator function. This function takes the value equal to 1

when the object described by the feature vector x is classified to the label ωc,

i.e. when Ψk(x) = ωc.

Another method of combining the base classifiers is the weighted voting. In

this approach each of the base classifiers has an allocated weight, which may

depend on the weight coefficient measured on the learning or validation dataset.

In this approach Equation (3) takes the form:

ΨMV (x) = arg max
ωc

L∑

k=1

wk ∗ I(Ψk(x) = ωc), (4)

where wk is a weight of Ψk classifier.
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If the output of each base classifier is a score function, Equation (3) can be

expressed as

ΨSum(x) = arg max
ωc

L∑

k=1

Sfk(ωc), (5)

where Sfk(ωc) is the score function of Ψk classifier calculated for ωc class label.

The weighting of Equation (6) takes a form:

ΨSum(x) = arg max
ωc

L∑

k=1

wk ∗ Sfk(ωc). (6)

In the paper [Mao et al., 2015] this form of determining the output of EoC is

called double weighting. This means that EoC takes into account the weight of

each base classifier and the scoring function, which is treated as a certain weight.

In this article, we propose an algorithm in which weights are not assigned to

base classifiers, but to an object that is recognised i.e. the weights are defined

by the values of the scoring function.

3 Proposed method

Suppose that, the distance from the decision boundary is defined as the smallest

distance from an object x0 that would be assigned a different class by the base

classifiers. The definition can be written formally using the following formula:

distB(x0, Ψ) = min
x∈X;Ψ(x) 6=Ψ(x0)

(dist(x;x0)), (7)

where X denotes the whole classification space, i.e. the cube based on feature

values.

This is a general formula, that works for any classification algorithm. When

the representation of the decision space cannot be described or is difficult to

describe in terms of analytical functions, the decision space needs to be scanned

in search for the solution. Of course, in the case of decision trees, for any given

x0, the closest point along feature axes needs to be found. The distance from

the centroid is calculated for the centroid with the same label. The centroid’s

coordinates are calculated using the training subset.

Formally a score function for the given distance is defined as follows:

f(dist, β, γ) = exp(−γ(dist− β)2). (8)

In this paper, β parameter of the scoring function for the distance from the

decision boundary is fixed as βB = 0.5 and for the distance from the centroid

of the class label ω – as βω = 0. This causes the scoring function to achieve

its maximum at 0.5 and minimum at 0 and 1 when scoring the distance from
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Table 1: Combinations of γ parameter of the score function (8) examined.

γB γω

20 5

5 5

20 20

10 10

Formally, the proposed classification algorithm can be presented as:

Ψα(x, βB , βω, γB , γω) = arg max
ωc

K∑

k=1

I(Ψk(x), ωc)wΨk
(x) (10)

The pseudocode of the proposed approach to creating EoC with score func-

tion depends on two coefficients in geometric space is given in Algorithm 1.

Algorithm 1: Classification algorithm based on distance from decision

boundary and centroid of the class label.

Input : K – number of base classifiers (Ψ1, Ψ2, . . . , ΨK), α -

contribution of the distance from the decision boundary to

weight calculation (0 ≤ α ≤ 1), x – the classified object

Output: ωc – the label predicted by the integrated classifier

1 Scale all features into the range [0, 1].

2 Split the dataset into K + 1 subsets (K for training every base decision

tree and 1 for testing purposes).

3 for k := 1 to K do

4 Determine centroids for each class label using learning subsets.

5 Train a base classifier Ψk using k-th learning subset

6 Calculate wΨk
(x)

7 end

8 return Output the final decision of the ensemble classifier:

Ψx = arg maxωc

∑K

k=1 I(Ψk(x), ωc)wΨk
(x)

4 Experimental Setup

In the experiment decision trees as base classifiers were used and a pool of clas-

sifiers consisting of five decision trees was created, i.e. K = 5 and EoC consists

of five base classifiers. The decision tree implementation from apache spark was
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utilised. The integration algorithm was implemented in scala. To perform sta-

tistical tests Numpy [Oliphant, 2020 ] and scipy [Jones et al., 2020] were used.

The experiments were conducted using open-source data sets available on

platforms UCI Machine Learning Repository [Dua and Graff, 2017] and KEEL

Data Set Repository [Alcalá-Fdez et al., 2011]. For clarity the following abbrevi-

ations for datasets names are used: bio – Biodeg, bup – Bupa, cry – Cryotherapy,

dba – Data banknote authentication, hab – Haberman, ion – Ionosphere, met

– Ultrasonic flowmeter diagnostics, pop – Pop failures, sei – Seismic bumps,

wdb – Breast Cancer Wisconsin (Diagnostic), wis – Breast Cancer Wisconsin

(Original).

For all datasets the feature selection process was performed to indicate two

most informative features [Guyon and Elisseeff, 2003], [Rejer, 2015]. In the case

of the two-dimensional space classification, decision trees can be considered in

the geometric space as finite sets of rectangular regions with a specified class

label.

Table 2: ACC values and Friedman rank of integrated classifiers and random

forest for γB = 20 and γω = 5.

bio bup cry dba hab ion met pop sei wdb wis rank

Ψ0.0 0.715 0.658 0.742 0.915 0.717 0.736 0.777 0.915 0.938 0.906 0.955 2.73

Ψ0.3 0.722 0.497 0.761 0.907 0.691 0.789 0.762 0.914 0.935 0.889 0.937 3.68

Ψ0.7 0.726 0.528 0.769 0.907 0.725 0.730 0.763 0.902 0.926 0.907 0.953 3.68

Ψ1.0 0.692 0.582 0.758 0.921 0.742 0.746 0.713 0.913 0.927 0.888 0.929 4.09

Ψmv 0.720 0.568 0.716 0.912 0.707 0.759 0.753 0.910 0.931 0.900 0.935 4.23

Ψrf 0.724 0.546 0.840 0.919 0.746 0.775 0.727 0.911 0.931 0.909 0.944 2.59

Table 3: MCC values and Friedman rank of integrated classifiers and random

forest for γB = 20 and γω = 5.

bio bup cry dba hab ion met pop sei wdb wis rank

Ψ0.0 0.435 0.304 0.514 0.828 0.171 0.417 0.484 0.000 0.000 0.801 0.896 2.73

Ψ0.3 0.377 -0.026 0.605 0.815 0.072 0.460 0.501 0.000 -0.003 0.773 0.859 4.09

Ψ0.7 0.405 0.059 0.589 0.817 0.023 0.491 0.524 0.000 0.000 0.804 0.890 3.18

Ψ1.0 0.236 -0.067 0.505 0.843 0.072 0.445 0.437 0.000 0.000 0.767 0.841 4.59

Ψmv 0.406 0.095 0.426 0.826 0.032 0.465 0.488 -0.002 0.022 0.791 0.853 3.82

Ψrf 0.415 0.078 0.691 0.836 0.169 0.512 0.468 0.000 -0.003 0.810 0.876 2.59
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Table 4: ACC values and Friedman rank of integrated classifiers and random

forest for γB = 5 and γω = 5.

bio bup cry dba hab ion met pop sei wdb wis rank

Ψ0.0 0.729 0.624 0.806 0.924 0.637 0.792 0.701 0.917 0.930 0.918 0.961 2.55

Ψ0.3 0.685 0.593 0.800 0.910 0.723 0.769 0.624 0.899 0.933 0.901 0.942 4.41

Ψ0.7 0.718 0.608 0.680 0.915 0.756 0.779 0.750 0.931 0.933 0.906 0.954 2.86

Ψ1.0 0.737 0.494 0.738 0.917 0.768 0.710 0.683 0.926 0.935 0.864 0.928 3.73

Ψmv 0.720 0.568 0.716 0.912 0.707 0.759 0.753 0.910 0.931 0.900 0.935 4.41

Ψrf 0.724 0.546 0.840 0.919 0.746 0.775 0.727 0.911 0.931 0.909 0.944 3.05

Table 5: MCC values and Friedman rank of integrated classifiers and random

forest for γB = 5 and γω = 5.

bio bup cry dba hab ion met pop sei wdb wis rank

Ψ0.0 0.412 0.175 0.614 0.846 0.027 0.500 0.387 0.000 -0.007 0.827 0.917 2.64

Ψ0.3 0.321 0.145 0.587 0.823 0.093 0.496 0.216 0.000 -0.005 0.790 0.873 4.27

Ψ0.7 0.403 0.113 0.323 0.830 0.193 0.490 0.348 0.000 -0.003 0.793 0.899 3.59

Ψ1.0 0.449 -0.010 0.477 0.838 0.126 0.428 0.378 0.000 0.000 0.710 0.831 3.91

Ψmv 0.406 0.095 0.426 0.826 0.032 0.465 0.488 -0.002 0.022 0.791 0.853 4.09

Ψrf 0.415 0.078 0.691 0.836 0.169 0.512 0.468 0.000 -0.003 0.810 0.876 2.50

Table 6: ACC values and Friedman rank of integrated classifiers and random

forest for γB = 20 and γω = 20.

bio bup cry dba hab ion met pop sei wdb wis rank

Ψ0.0 0.705 0.623 0.746 0.907 0.712 0.779 0.732 0.892 0.941 0.907 0.956 3.00

Ψ0.3 0.711 0.571 0.881 0.907 0.694 0.794 0.671 0.878 0.929 0.899 0.959 3.77

Ψ0.7 0.698 0.520 0.721 0.903 0.712 0.771 0.633 0.914 0.934 0.893 0.928 4.86

Ψ1.0 0.702 0.573 0.740 0.911 0.735 0.787 0.747 0.903 0.937 0.914 0.931 2.91

Ψmv 0.720 0.568 0.716 0.912 0.707 0.759 0.753 0.910 0.931 0.900 0.935 3.77

Ψrf 0.724 0.546 0.840 0.919 0.746 0.775 0.727 0.911 0.931 0.909 0.944 2.68

To evaluate the proposed methods the following classification measures are

used: average accuracy (ACC) and Matthews correlation coefficient (MCC).
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Table 7: MCC values and Friedman rank of integrated classifiers and random

forest for γB = 20 and γω = 20.

bio bup cry dba hab ion met pop sei wdb wis rank

Ψ0.0 0.402 0.173 0.482 0.816 0.205 0.490 0.454 -0.027 0.033 0.801 0.897 3.00

Ψ0.3 0.408 0.081 0.768 0.811 0.111 0.530 0.367 0.000 -0.003 0.790 0.910 3.09

Ψ0.7 0.327 -0.039 0.448 0.804 0.083 0.460 0.282 0.000 0.000 0.777 0.841 5.09

Ψ1.0 0.203 0.060 0.470 0.822 0.030 0.518 0.467 0.000 0.000 0.817 0.848 3.73

Ψmv 0.406 0.095 0.426 0.826 0.032 0.465 0.488 -0.002 0.022 0.791 0.853 3.55

Ψrf 0.415 0.078 0.691 0.836 0.169 0.512 0.468 0.000 -0.003 0.810 0.876 2.55

Table 8: ACC values and Friedman rank of integrated classifiers and random

forest for γB = 10 and γω = 10.

bio bup cry dba hab ion met pop sei wdb wis rank

Ψ0.0 0.746 0.632 0.745 0.915 0.730 0.752 0.779 0.907 0.931 0.904 0.925 3.14

Ψ0.3 0.742 0.608 0.768 0.903 0.707 0.758 0.606 0.917 0.942 0.919 0.932 3.14

Ψ0.7 0.734 0.528 0.848 0.914 0.693 0.781 0.643 0.889 0.928 0.895 0.925 4.32

Ψ1.0 0.710 0.530 0.594 0.911 0.715 0.769 0.718 0.914 0.936 0.915 0.924 4.00

Ψmv 0.720 0.568 0.716 0.912 0.707 0.759 0.753 0.910 0.931 0.900 0.935 3.86

Ψrf 0.724 0.546 0.840 0.919 0.746 0.775 0.727 0.911 0.931 0.909 0.944 2.55

Table 9: MCC values and Friedman rank of integrated classifiers and random

forest for γB = 10 and γω = 10.

bio bup cry dba hab ion met pop sei wdb wis rank

Ψ0.0 0.434 0.310 0.508 0.829 0.231 0.497 0.592 -0.024 -0.004 0.797 0.825 3.59

Ψ0.3 0.464 0.193 0.574 0.804 0.032 0.503 0.209 0.000 -0.003 0.827 0.845 3.41

Ψ0.7 0.435 0.054 0.705 0.829 -0.017 0.544 0.294 0.000 0.000 0.785 0.839 4.59

Ψ1.0 0.263 0.059 0.358 0.821 0.074 0.515 0.416 0.000 0.000 0.816 0.841 3.82

Ψmv 0.406 0.095 0.426 0.826 0.032 0.465 0.488 -0.002 0.022 0.791 0.853 3.86

Ψrf 0.415 0.078 0.691 0.836 0.169 0.512 0.468 0.000 -0.003 0.810 0.876 2.73

MCC is a more reliable statistical rate which produces a high score only if

the prediction obtained good results in all of the four confusion matrix cate-

gories [Chicco and Jurman, 2020].

As reference classifiers the majority voting Ψmv and random forest Ψrf EoC

were used.
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voting. Additionally obtained results indicate that the distance from the centroid

of class label is more significant than the distance from the decision boundary

in case of EoC consisting of decision trees.
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