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Abstract: Histograms of oriented gradients (HOG) are still one of the most frequently
used low-level features for pattern recognition in images. Despite their great popularity
and simple implementation performance of the HOG features almost always has been
measured on relatively high quality data which are far from real conditions. To fill
this gap we experimentally evaluate their performance in the more realistic conditions,
based on images affected by different types of noise, such as Gaussian, quantization,
and salt-and-pepper, as well on images distorted by occlusions. Different noise scenarios
were tested such anti-distortions during training as well as application of a proper
denoising method in the recognition stage. As underpinned with experimental results,
the negative impact of distortions and noise on object recognition with HOG features
can be significantly reduced by employment of a proper denoising strategy.
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1 Introduction

Despite great advances in pattern recognition with deep architectures, many im-

age processing systems still rely on low-level lightweight features such as the local

binary patterns (LBP), scale-invariant feature transform (SIFT) [Lowe, 2004],

speeded up robust features (SURF) [Bay et al., 2008], binary robust indepen-

dent elementary features (BRIEF), their rotation invariant versions (ORB)

[Rublee, 2011] or the histograms of oriented gradients (HOG)

[Dalal and Triggs, 2005]. This is usually due to much lower resources required

for computation, training and operation of such systems, which are available

e.g. in embedded systems or in systems with ensembles of simple classifiers. In

this paper we focus on performance of the HOG features in such systems but

evaluated in more realistic conditions. That is, performance of all of the above

mentioned features have been already investigated and reported, as described in

the next section. However, although the HOG features have been also reported,

such scrutiny has been performed only with help of the high quality images. In

practice, however, we usually face more realistic conditions in which images are

frequently affected by different types of noise and distortions. Therefore in this

paper we fill this gap. More precisely, in the real applications we often deal with

low quality signals, affected by various phenomena caused by the environmental

factors and imperfect process of image acquisition, mostly noise and distortions.

Under these circumstances it is important to consider to what extent distortions

can affect the performance of the HOG based model in the object recognition

tasks. The second and more important question is what techniques can be ap-

plied to successfully mitigate the negative impact of distortions? In this paper

we address these problems and provide some practical advises.

This is an extended version of our previous work [Bukala et al., 2019]. Here

we experimentally evaluate the impact of various image distortions on the perfor-

mance of classification with the HOG features. Our analysis is based on several

benchmarks in combination with different classification models. We start with

a classifier trained on the undistorted data, while distortions are present during

the evaluation. This corresponds to the settings in which either the conditions

change during the evaluation stage, or we are forced to train the model on images

of a different quality than the ones observed during the evaluation. Afterwards,

the case in which the same type of distortions affecting both, training and test

data is considered. This setting corresponds to either the case in which overall

quality of the data is low during training and testing, or we anticipate the pres-

ence of distortions during the testing, but try to induce the artificial distortions

during the training as a strategy to mitigate the negative impact of distortions.

Finally, in the case of noise, the possibility of applying denoising prior to classi-

fication while training the classifier on undistorted data is considered as another

strategy of dealing with distortions during the evaluation of the model.
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The rest of this paper is organized as follows: in Section 2 an overview of re-

lated works is provided. In Section 3 the HOG feature descriptors are described.

In Section 4 the distortion models used throughout the paper is defined. The con-

ducted experiments as well as the observed results are presented and discussed

in Section 5. Finally, Section 6 presents conclusions.

2 Related Works

Noise and distortions are immanent features of all real signal processing frame-

works [Grabek and Cyganek, 2019][Cyganek, 2007][Cyganek and Gongola, 2018].

However, relatively little works has been devoted to test performance of common

classification patterns in presence of these phenomena. In this section we’ll briefly

outline the most important ones with special stress on performance of the group

of the sparse feature detectors in real situations. Operation of the SIFT and

SURF features in presence of deformations and noise is investigated in the work

by Khan et al. [Khan et al., 2011]. Similarly, Karami et al. [Karami et al., 2017]

evaluated the impact of distortions on SIFT, SURF, BRIEF and ORB features

descriptors in the image matching task. Dutta et al. [Dutta et al., 2012] ex-

amined an affect of distortions in a commercial face recognition system. In-

terestingly, various types of signal distortions have been also scrutinized in

the context of the convolutional neural networks [Koziarski and Cyganek, 2017,

Dodge and Karam, 2016, Karahan et al., 2016, Vasiljevic et al., 2016]. HOG fea-

tures were successfully used in numerous image recognition tasks, with the

most notable examples including human detection [Dalal and Triggs, 2005, ] and

face recognition [Déniz et al., 2011, Do and Kijak, 2012, Tan et al., 2013], but

also problems such as smile detection [Bai et al., 2009], traffic sign recognition

[Stallkamp et al., 2012] and handwritten digit recognition

[Ebrahimzadeh and Jampour, 2014]. To this day HOG remain important tools in

the image recognition, especially in the environment in which the computational

resources at our disposal are limited. However, since in such setting low-end

image acquisition devices are likely to be used affecting quality of the captured

data, it is important to consider the possible impact of introduced distortions on

the classification performance. Nonetheless, to the best of our knowledge previ-

ous works, except our previous publication [Bukala et al., 2019], didn’t examine

the impact of low image quality on object recognition in images with help of the

HOG features. In this paper we fill this gap.

3 Histograms of Oriented Gradients

Computation of gradients in digital signals constitutes the basic block of major-

ity of signal analysis methods, such as the modern convolutional neural networks,
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the already mentioned sparse descriptors such as SIFT and SURF, as well as the

HOG features which we investigate in our paper. Frequently object recognition

based on gradients leads to better results than using only unprocessed intensity

or statistical moments computed in discrete signals. Furthermore, it has been

observed that gathering the local phases of gradient into histograms provides

highly discriminative features. Following this idea many object detection and

classification methods were proposed which can be divided into two groups: the

global methods, in which histograms of gradients are collected from the entire

image [Freeman and Roth, 1995], and the local methods, in which histograms of

gradients are computed only in selected regions of the image [Cyganek, 2009].

The method of histograms of oriented gradients, as proposed by Dalal et al.

[Dalal and Triggs, 2005], belongs to the latter group. It is based on evaluat-

ing normalized histograms of image gradients, computed on a dense grid with

uniformly spaced cells. HOG based representation of an image provides several

advantages. Namely, the gradient structure conveys information on local shapes

in an image; Moreover, gradients are invariant to some of the local geometric

and photometric transformations. HOG is computed by dividing the image into

small spatial regions, also called cells, and then for each such a cell calculating

a 1-D histogram of oriented directions, or edge orientations, over the pixels of

that cell. In addition, histogram entries are weighted by the gradient magni-

tude computed for that entry. Finally, the HOG descriptor is constructed from

the concatenated histograms of each cell. However, to increase the invariance

to such phenomena as illumination, shadowing, etc. it is useful to further cross-

normalize local responses in larger spatial regions. For this purpose, the cells

are grouped together into larger and spatially connected regions, called blocks.

In our experiments the L1-sqrt normalization is used which can be expressed as

follows:

f =

√

υ

‖υ‖1 + ǫ

where υ is a non-normalized vector, containing all histograms in a given block,

‖υ‖1 is its k-norm, This provides better invariance to illumination, shadowing,

etc. In the following sections of this paper such a normalized version of the

descriptor is called the HOG descriptor.

4 Image Distortion Models

In this section a short characteristics of the distortions used in the experiments

are presented and discussed.
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(a) σ = 0 (b) σ = 0.1 (c) σ = 0.2

Figure 1: Gaussian noise applied on example image.

4.1 Gaussian noise

The Gaussian noise is an additive distortion of pixel values with probability

function expressed by the normal distribution, given as follows:

p(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2

where µ represents mean value and σ the standard deviation. In digital images

the front-end photon acquisition sensors, as well as further electronic modules

in the camera, are the main the source of this type of noise

[Cyganek and Siebert, 2009]. An example of an image affected by the Gaussian

noise is shown in Figure 1.

(a) σ = 0 (b) σ = 2 (c) σ = 4

Figure 2: Gaussian blur applied on example image.

4.2 Gaussian blur

A Gaussian blur is another type of image distortion which can also be modeled

with the help of the normal distribution function, affecting values of each pixel
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of an image. A visual effect of this type of distortion reflects the fact of passing

only the low-frequency components of the image signal. This leads to smoothing

of sharp edges and corners, also resembling the out-of-focus camera effect, as

shown in (figure 2). The Gaussian function in two dimensions is:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

where x is the distance from the origin in horizontal axis, y is the distance from

origin in vertical axis, and σ is standard deviation of the Gaussian distribution.

This function produces a surface with concentric circles with a Gaussian distribu-

tion from the center point. Values from this distribution are used to build a con-

volution matrix which is then applied on the source image. It is interesting to note

that in some algorithms of gradient computation in images, Gaussian blurring

is sometimes considered as a preprocessing step [Cyganek and Siebert, 2009].

4.3 Quantization noise

(a) q = 0 (b) q = 0.2 (c) q = 0.4

Figure 3: Quantization noise applied on example image.

The quantization noise arises as a result of the quantization of the continuous

intensity signal to discrete levels of the image sensor. It is dependent on the

number of bits in the analog-to-digital converter, which limits the number of

possible values to a set of discrete values. This type of noise can be modeled by

adding a random value η from range:

−1

2
q ≤ η ≤ +

1

2
q

, where q denotes a quantization level. On the other hand, value of η follows an

uniform probability distribution p, expressed as follows:

p(x) =

{

1

xmax−xmin
for xmin ≤ x ≤ xmax

0 otherwise
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where xmax and xmin stand for the maximum and minimum values of the argu-

ment x. The random variable η takes the values ± 1

2
q with a uniform distribution,

where q is a quantization parameter that is chosen in the experiments. An ex-

ample of the images affected by the quantization noise is presented in figure 3.

4.4 Salt-and-pepper noise

(a) p = 0 (b) p = 0.05 (c) p = 0.15

Figure 4: Salt-and-Pepper noise applied on example image.

The salt-and-pepper noise can be caused by errors in the analog-to-digital

converters or memory as well as by the deteriorating phenomena in the image

sensor of the camera. An image distorted in this way has erroneously bright pixels

in dark areas or vice versa. Figure 4 presents an example of this phenomena.

This type of noise can be modeled by combination of multiplicative and additive

components, as follows:

ŝ(x) = (1− µ)s(x) + µβ

where ŝ(x) and s(x) stand for distorted and pure signal respectively, µ is a

random variable with probability p = Pr(µ = 1) and β is a random variable

satisfying the equation Pr(β = smax) = Pr(β = smin) = 0.5.

4.5 Occlusions

Another common type of distortions encountered in practice are image occlu-

sions. They arise naturally as an effect of interaction of the light rays with solid

objects on a pathway between the object of interest and the camera sensor. Oc-

clusions are also influenced by the scene geometry, as well as by front-end of

the camera. In our experimental setup, a randomly positioned black square is

placed in an image to simulate occlusions. Figure 5 shows an example of this

phenomena.
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(a) f = 0 (b) f = 0.2 (c) f = 0.4

Figure 5: Simulation of occlusions by positioning a black rectangle at random

position in an image. The parameter f controls size of the occluding rectangle.

5 Experiments

5.1 Experimental Set-up

Datasets. In order to provide a reliable and varied data for our experiments we

used four different image databases. Differences between datasets include both

content and size of image data. The German Traffic Sign Recognition Bench-

mark, later referred as GTSRB [Stallkamp et al., 2012] consists of around 50,000

road sign images divided into 40 classes. For the purpose of our experiments, all

images were resized to 32× 32 pixels. The STL-10 database [Coates et al., 2011]

contain 13,000 96× 96 images divided into 10 classes describing such objects, as

airplanes, birds and cars. The MNIST database [LeCun et al., 1998] is made of

70,000 32× 32 grayscale images presenting handwritten digits. Finally we used

grayscale version of FERET [Phillips et al., 2000] facial recognition database.

Over 14,000 256× 256 images are labelled into 2337 classes.

Preprocessing. To provide a benchmark for classification with HOG fea-

tures we trained all classifiers also on vectorized images. For that purpose FERET

data was downscaled 4 times. Furthermore, all datasets were normalized to 0-1

range prior to feature computing.

Image distortion models. In Gaussian noise models we tested different dis-

tortion levels, using σ ∈ {0.025, 0.05, ..., 0.25}. For Salt-and-Pepper noise we

varied the probability of flipping a pixel p ∈ {0.02, 0.04, ..., 0.2}. Quantization

noise levels were chosen within range q ∈ {0.05, 0.1, ..., 0.5}. Standard deviation

for Gaussian blur ranged σ ∈ {0.5, 1, ..., 5}. For experiments with occlusion we

changed the fraction of image being concealed p ∈ {0.1, 0.2, ..., 0.8}. In tests

with random distortion levels values were chosen within the same range, inde-

pendently for each image.

Histograms of Oriented Gradients were calculated using fixed number of

pixels per cell and cells per block. Best parameters were found with 5-fold cross-
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validated grid-search independently for each dataset. Most time and memory

consuming cases were removed from the results giving final parameters used in

all tests, which are presented in Table 1. For the STL-10 database we tested

cells of 8× 8, 10× 10, 12× 12 and 16× 16 pixels, respectively. For the GTSRB

database tested values were 3× 3, 4× 4, 6× 6 and 8× 8, 3× 3, 4× 4 and 6× 6

for the MNIST, as well as 24 × 24, 28 × 28, 32 × 32, 40 × 40, 48 × 48 for the

FERET, respectively. For each setting, we also tested 1× 1, 2× 2 and 3× 3 cells

per block values.

Classification. All experiments utilized four classifiers for comparison: the

K-nearest neighbors (KNN), the Random Forest Classifier (RFC), the Linear

Discriminant Analysis (LDA), as well as the Support Vector Machine (SVM)

with a linear kernel. Classifier hyperparameters were fitted for each individ-

ual case with the use of 5-fold cross-validated grid-search within range: C ∈
{0.001, 0.1, 1, 10, 100} for SVM, n estimators ∈ {5, 10, 25,
50, 100} for RFC, n components ∈ {1, 2, 4, 6, 8} for LDA and n neighbors ∈
{1, 5, 10, 25, 50} for KNN.

5.2 Classification of distorted images

First experimental case focused on analyzing the impact of distortions with

known intensity on the classification accuracy. For each scenario both HOG and

vectorized image representations were examined. Furthermore, we considered

two settings: distortions applied either only to the test data, or to both training

and test data. This was done to simulate situation in which distortion levels

vary between data used to train classifiers and test data. This can happen due

to uncertainty of possible distortions on evaluated data. Maximum distortion

levels were chosen to cause near to random classification scores.

The results for this part of the experimental study were grouped by the

distortion type and are presented in Figures 6 through 12. As predicted, in all

cases, presence of distortions severely impacted the classification accuracy, even

for distortions of seemingly small values. As can be seen on examples in Section 4,

that levels of distortion do not affect the possibility of image recognition by a

human examiner.

Table 1: HOG parameters chosen for each dataset

Dataset pixels per cell cells per block

GTSRB (4, 4) (2, 2)

STL-10 (16, 16) (3, 3)

MNIST (4, 4) (1, 1)

FERET (32, 32) (1, 1)
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types of noise were discussed in section 5.1.

Results for this stage are presented in Figures7 through 13. For the reference

both the case in which no denoising algorithm was applied, as well as strategy

in which distortions are applied on the training data are presented. In this case

only classification with HOG descriptors is considered. In almost all cases ap-

plying denoising algorithms resulted in as-good-as or better performance than

in the baseline scenario. Only 4 out of 48 considered cases turned out otherwise:

classification on MNIST distorted with Gaussian noise using LDA, classification

on MNIST and GTSRB distorted with salt-and-pepper noise using KNN, and

classification on MNIST distorted with quantization noise using LDA. However,

in none of these cases did the baseline case outperform both scenario using de-

noising algorithms, and the one in which noise was applied to the training data.

For both Gaussian and quantization noise, applying training noise led to at least

as-good-as or better classification accuracy than denoising for STL-10, FERET

and MNIST datasets for all of the classification algorithms, while for GTSRB

results varied depending on the classifier. Considering medium to high inten-

sity salt-and-pepper distortions denoising improved performance for GTSRB,

STL-10 and MNIST, while decreasing accuracies for FERET.

5.4 Handling mixtures of distortions

In the final stage of experimental study we considered the scenario of unknown

distortion type and intensity. This was divided into two cases:

– noise type with unknown intensity and

– unknown noise type and intensity.

This setting is the closest to a real conditions, in which both the type and in-

tensity of the distortions can change on a case-by-case basis. Once again, similar

strategies were examined - the baseline case, applying the same, in this case

random, distortions on the training data, as well as applying denoising when

possible. Classification accuracy for undistorted data is presented for the refer-

ence.

The results of these experiments were presented in Tables 2 through 5. As

can be seen, applying one of the strategies for dealing with distortions leads to

an improved performance in almost all of the cases, with the exception of KNN

classifier used to classify the occluded images from the GTSRB and FERET

datasets, as well as the MNIST with applied noise of random type. Applying

denoising on the training data also proved to be beneficial in 11 out of 12 con-

sidered examples. For other types of noise no clear trends regarding the choice of

strategy of dealing with distortions were observed, with classification accuracy

varying depending on the dataset and the used classifier.
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6 Conclusions

In the paper the experimental evaluation of the impact of different types of

distortions on image recognition with the HOG features is presented. Four dif-

ferent classification methods and on four reference databases have been used.

For reference the classification with vectorized images with pure intensity has

been used. Moreover two strategies of dealing with distortions were evaluated.

First relies on applying similar distortions on the training data; In the second

case, one of the filtering (denoising) method is applied to the nosiy data. Our

main conclusions can be summaraized as follows:

– Distortions significantly affects classification performance when using HOG

Table 2: Results of classification with random distortion intensity using HOG

features combined with the SVM classifier. Two strategies of dealing with dis-

tortions were tested: The same distortions on the training data (TD) and, when

applicable, denoising (DN)

Distortion type Dataset Baseline TD DN

Gauss. noise

GTSRB 0.32 0.40 0.41

STL-10 0.19 0.38 0.32

MNIST 0.64 0.96 0.68

FERET 0.01 0.02 0.03

S&P noise

GTSRB 0.50 0.65 0.77

STL-10 0.14 0.45 0.51

MNIST 0.75 0.95 0.97

FERET 0.02 0.27 0.53

Quant. noise

GTSRB 0.45 0.54 0.54

STL-10 0.25 0.45 0.37

MNIST 0.70 0.97 0.73

FERET 0.03 0.06 0.16

Random noise

GTSRB 0.43 0.51 0.58

STL-10 0.19 0.40 0.39

MNIST 0.70 0.96 0.70

FERET 0.02 0.05 0.23

None

GTSRB 0.92

STL-10 0.57

MNIST 0.98

FERET 0.69
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features, as well as when classifying on pure intensities of the vectorized

images. However, HOG descriptors are more susceptible to distortions than

the pure intensity signals. As a result, despite better performance observed

for HOG feature descriptors in case on undistorted images, classification

with vectorized images can be a potentially useful alternative in case of

highly distorted evaluation data. This can be explained by the well-known

effect of noise when computing derivatives of the signal. Hence, consecutive

computation of orientation histograms leads to poor results.

– The strategy of applying a similar distortion on the training data, as well as

the strategy of using denoising algorithms, led to significant improvements

in the classification accuracy. Particularly, in the case of the salt-and-pepper

noise, denoising turned out to be the preferable approach. For other types

of distortions no universal trends for all datasets were observed with results

varying depending on data and classification algorithms.

– In the case of unknown distortions similar trends were observed. Most notice-

ably, both considered strategies of dealing with distortions led to improved

performance compared to the baseline scenario.

Nevertheless it is important to notice that while both of the aforementioned

strategies of dealing with distortions led to significant improvements in classifi-

cation accuracy on distorted images, complete restoration of the baseline perfor-

mance on undistorted data was rarely possible. A negative impact of distortions

on image recognition tasks could be further reduced by developing better image

restoration algorithms. This leaves us with the room for improvement especially

considering classification with HOG features.
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Table 3: Classification results with random distortion intensity using HOG fea-

tures and the KNN classifier. Two strategies of dealing with distortions were

used: Applying the same distortions on training data (TD) and, when applica-

ble, denoising (DN))

Distortion type Dataset Baseline TD DN

Gauss. noise

GTSRB 0.28 0.29 0.34

STL-10 0.15 0.31 0.26

MNIST 0.91 0.94 0.92

FERET 0.03 0.32 0.15

S&P noise

GTSRB 0.47 0.41 0.67

STL-10 0.19 0.36 0.43

MNIST 0.93 0.88 0.96

FERET 0.06 0.52 0.58

Quant. noise

GTSRB 0.40 0.43 0.46

STL-10 0.18 0.38 0.27

MNIST 0.95 0.96 0.95

FERET 0.06 0.41 0.22

Random noise

GTSRB 0.38 0.37 0.50

STL-10 0.18 0.34 0.29

MNIST 0.93 0.91 0.92

FERET 0.04 0.26 0.26

Occlusion

GTSRB 0.21 0.18

STL-10 0.23 0.26

MNIST 0.37 0.54

FERET 0.32 0.04

Blur

GTSRB 0.32 0.48

STL-10 0.40 0.37

MNIST 0.45 0.91

FERET 0.50 0.54

None

GTSRB 0.78

STL-10 0.47

MNIST 0.97

FERET 0.66

474 Bukala A., Koziarski M., Cyganek B., Koc O.N., Kara A.: A Study ...



Table 4: Results of HOG based classification with random distortion intensity

and the LDA classifier. Two strategies of dealing with distortions were presented:

The same distortions on training data (TD) and, when applicable, denoising

(DN)

Distortion type Dataset Baseline TD DN

Gauss. noise

GTSRB 0.26 0.40 0.34

STL-10 0.19 0.33 0.32

MNIST 0.64 0.96 0.68

FERET 0.01 0.02 0.03

S&P noise

GTSRB 0.41 0.61 0.74

STL-10 0.17 0.40 0.45

MNIST 0.71 0.93 0.94

FERET 0.01 0.42 0.44

Quant. noise

GTSRB 0.38 0.51 0.47

STL-10 0.25 0.40 0.34

MNIST 0.29 0.95 0.24

FERET 0.05 0.23 0.15

Random noise

GTSRB 0.35 0.48 0.53

STL-10 0.20 0.35 0.35

MNIST 0.42 0.94 0.27

FERET 0.03 0.19 0.20

Occlusion

GTSRB 0.17 0.34

STL-10 0.19 0.45

MNIST 0.34 0.55

FERET 0.03 0.28

Blur

GTSRB 0.33 0.59

STL-10 0.36 0.40

MNIST 0.34 0.87

FERET 0.31 0.49

None

GTSRB 0.89

STL-10 0.52

MNIST 0.96

FERET 0.60
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Table 5: Classification results with random distortion intensity using HOG fea-

tures and the RFC classifier. Two strategies of dealing with distortions were

presented: Applying the same distortions on training data (TD) and, when ap-

plicable, denoising (DN)

Distortion type Dataset Baseline TD DN

Gauss. noise

GTSRB 0.30 0.31 0.37

STL-10 0.16 0.34 0.28

MNIST 0.66 0.94 0.68

FERET 0.00 0.12 0.02

S&P noise

GTSRB 0.43 0.55 0.72

STL-10 0.21 0.40 0.49

MNIST 0.77 0.94 0.96

FERET 0.01 0.18 0.03

Quant. noise

GTSRB 0.42 0.45 0.50

STL-10 0.21 0.40 0.31

MNIST 0.70 0.96 0.71

FERET 0.01 0.23 0.15

Random noise

GTSRB 0.39 0.40 0.54

STL-10 0.20 0.36 0.35

MNIST 0.71 0.93 0.69

FERET 0.01 0.10 0.06

Occlusion

GTSRB 0.17 0.31

STL-10 0.25 0.36

MNIST 0.35 0.60

FERET 0.07 0.27

Blur

GTSRB 0.35 0.61

STL-10 0.35 0.40

MNIST 0.46 0.91

FERET 0.06 0.37

None

GTSRB 0.90

STL-10 0.54

MNIST 0.98

FERET 0.57
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