
Solver Requirements for Interactive Configuration1

Andreas Falkner, Alois Haselböck, Gerfried Krames

Gottfried Schenner, Herwig Schreiner, Richard Taupe

(Siemens AG Österreich, Corporate Technology, Vienna, Austria
{andreas.a.falkner, alois.haselboeck, gerfried.krames, gottfried.schenner,

herwig.schreiner, richard.taupe}@siemens.com)

Abstract: Interactive configuration includes the user as an essential factor in the
configuration process. The two main components of an interactive configurator are a
user interface at the front-end and a knowledge representation and reasoning (KRR)
framework at the back-end. In this paper we discuss important requirements for the
underlying KRR system to support an interactive configuration process. Representative
of many reasoning systems and tools used for implementing product configurators, we
selected MiniZinc, Choco, Potassco, Picat, CP-SAT solver, and Z3 for evaluation and
reviewed them against the identified requirements. We observe that many of those
requirements are not well supported by existing stand-alone solvers.
Key Words: interactive configuration, product configuration, constraint program-
ming, knowledge representation and reasoning, user interface
Category: I.2.4, F.4.1, H.5.2

1 Introduction

With the significant rise of individualized products over the last few years,
product configuration has strengthened its role as an important business pro-
cess [Felfernig et al., 2014]. State-of-the-art configurators are tools that support
this process using knowledge representation and reasoning (KRR) technologies
such as constraint satisfaction [Junker, 2006]. Configuration is usually an inter-
active task, iteratively involving two parties: the user and the configurator. The
user’s goal is to configure a product such that it is a valid and complete product
variant that meets all his/her individual needs and requirements. The configu-
rator is a digital companion that supports the configuration process by deriving
consequences of the user’s choices and by helping to avoid or resolve conflicts.
In this paper, we focus on configurators where a tailor-made user interface (UI)
or legacy system is enhanced with solving capabilities, i.e. by calling a general
solver as a component.2

[Fig. 1] gives an overview of the typical architecture and scenario: At the
front-end, a user interacts with the configurator via a UI. The solver is avail-

1 This is an extended version of [Falkner et al., 2019]. Author names are ordered
alphabetically.

2 We neglect the alternative of implementing a special UI for an integrated configura-
tion system such as a commercial CPQ tool or sales configurator suite, as this bears
high risk of vendor-lock-in.

 Journal of Universal Computer Science, vol. 26, no. 3 (2020), 343-373
 submitted: 1/10/19, accepted: 15/3/20, appeared: 28/3/20 CC BY-ND 4.0

user interaction

Solver

Configuration APIControl

Product Model

Configurator

User

Interface

solver

interaction

Figure 1: Components of an interactive configurator

able as a stand-alone library or program (open-source or commercial) and has a
general API, and potentially an API extension, for solving configuration prob-
lems in particular. Together with a domain-specific product model (or knowl-
edge base, KB), it forms the KRR component. This back-end is invoked by the
control component, which first hands over product model and user-set values
for decision variables from the UI to the API, and then sends the solver’s re-
sults back to the UI. While other back-end technologies, such as recommender
systems, could facilitate interactive solving as well, in this article we focus on
solvers for declarative knowledge bases.

The configurator helps the user to configure a product according to his/her
needs and in full compliance with the product model. The user expects the
configurator to show in a clear and concise way what decisions are necessary, to
highlight or preset the “best” alternative (value), to filter or grey-out infeasible
values, to recommend alternatives in case of conflicts, and to respond quickly
(preferably instantaneously) to user inputs. Of course, the user should also be
able to withdraw his/her decision, which corresponds to unsetting a configuration
parameter.

In most non-trivial configuration problems, a dynamic number of configura-
tion objects plays an important role [Falkner et al., 2016]. This requires a differ-
ent kind of user interaction: the creation and deletion of configuration objects.
Typically, there are two different ways how the user manipulates the number of
individual configuration objects in the user interface: either by creating them one
by one, or by specifying the number of objects and allowing the configuration
tool to create the individual objects. However, in both cases the result is a set
of configuration objects whose number was not known beforehand, and whose
properties can be configured further.

344 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

User interactions are: (i) create configuration object, (ii) delete configura-
tion object, (iii) set/unset configuration object attribute, (iv) set/unset associ-
ation between configuration objects.

User interactions change the state of the configuration by making decisions.
Solver interactions make implicit knowledge explicit to assist the user, e.g. via
domain filtering or rules which set attributes depending on values of other at-
tributes. Such knowledge is implicitly contained in the configuration model of the
problem and the solver makes its consequences explicit, thus creating a distinct
benefit to the user.

A solver interaction is a set of consequences following a user interaction.
Typical solver interactions are: (i) set or change the value of a variable not yet
set by the user, (ii) add or remove a value to/from a variable domain (“domain
filtering”), (iii) create or delete a configuration object because of resource de-
mands by the user (such as the number of seats), (iv) explain a conflict between
values of several variables, (v) propose alternative solutions to a conflict, (vi)
automatically complete a partial configuration (“autocompletion”).

Many of the solver interactions mentioned above must distinguish whether a
configuration parameter has no value or a default value, or whether it has been
set by the user or by the solver, because user-set values are typically not allowed
to be overwritten by the solver.3

An interactive configuration is an alternating sequence of user and solver
interactions. In this paper, we formalize those interactions as requirements on
a functional interface (Configuration API) for solvers and evaluate to which
extent existing, stand-alone solvers fulfil those requirements and thus support
interactive configuration. This work is relevant for all involved parties: Product
vendors, i.e. companies which sell configurable products or solutions, want to
use solvers which cover as many requirements as possible to avoid cumbersome
workarounds or proprietary implementations. Configurator system companies
may improve their offerings and internal architecture. Solver providers can focus
on those features of their tools that configuration customers really need.

Being aware that there are many different scenarios for using configurators,
we do not see our work, which may be somewhat biased by personal experiences
and opinions, as a complete and fully methodical evaluation, but as the first
step of an incremental process to evaluate and improve tooling for interactive
product configuration that will hopefully be continued.

The remainder of this paper is organized as follows: [Section 2] discusses re-
lated work. In [Section 3], an example for interactive configuration is introduced
by means of a model and an interactive process. We define the requirements for

3 With the current rise of data analytics and machine learning techniques and tools,
additional types of solver interactions will become state-of-the-art in the future, like
recommendation of input values learned from previous configuration sessions or the
support of group decisions.

345Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

an interactive configuration API in [Section 4], and investigate in [Section 5]
how some typical constraint solvers satisfy these requirements. We conclude the
paper in [Section 6] with a summary and future work.

2 Related Work

In his PhD thesis, [Ferrucci, 1994] summarized the inherent interactivity of con-
figurators as follows:

“Interactive configuration is a view of the configuration task which in-

cludes the user as an essential component of a dynamic process. The

interactive configurator is designed to assist the user in an interactive

and incremental exploration of the configuration space. It may guide or

advise the user’s decision making but it must communicate requirements

or inconsistencies effected by the constraints in response to the user’s

choices. This feedback helps the user to refine the configuration space

toward a satisfying solution.”

[Hertum et al., 2017] studied how the knowledge base paradigm (the sepa-
ration of concerns between information and problem solving) could hold in the
context of interactive configuration. They identified a set of subtasks that over-
laps well with the set of requirements we propose in [Section 4] of this paper:
Acquiring information from the user, generating consistent values for a param-
eter, propagation of information, checking the consistency for a value, checking
a configuration, autocompletion, explanation, and backtracking.

[Queva et al., 2009] describe requirements on interactive configurators mainly
from the modelling perspective and call for high-level, expressive languages like
UML or SysML. They also mention constraint modelling as an important aspect
of configuration.

From the viewpoint of constraint reasoning, [Madsen, 2003] identified three
fundamental interactivity operations in his master thesis: add constraint, re-
move constraint, and restoration. Other approaches to interactive configura-
tion define the list of main types of user interactions differently. For exam-
ple, structure-based configuration considers the following types of user interac-
tion: parametrization, decomposition, integration, and specialization [Hotz et al.,
2014].

In product configuration often the product model language and the language
of the used solver differ. [Schneeweiss and Hofstedt, 2011] show how to map a
product model based on feature models to a constraint model and discuss the
challenges of implementing interactive features like retracting a user decision.
[Janota, 2010] gives definitions for user actions like “completing a configuration”,
“making a choice for the user” for interactive configuration in combination with
a SAT solver.

346 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

[Pleuss et al., 2011] focus on visualisation aspects of interactive product con-
figuration in the context of product line engineering.

3 Example

We show the challenges of interactive configuration in a small example for a
configurable product with components that can occur multiple times (similar to
generative constraint satisfaction [Fleischanderl et al., 1998] or cardinality-based
feature modelling [Czarnecki et al., 2005]). The example comprises the main con-
figuration challenges that we experience in real-world projects in domains such
as power generation or rail automation [Falkner et al., 2016].

3.1 Product Definition

A Metro train wagon has as configurable attributes the size (length in millime-
tres: 10000..20000) and the expected load (number of passengers: 50..200) which
can be realized as seats or standing room. As components we consider only seats
(max. 4 per meter of length) and handrails, and their numbers are configurable.

There is at most one handrail in a wagon (mandatory if there is standing
room) and it has a configurable type: standard or premium.

A single seat occupies the standing room for 3 persons and has as configurable
attributes the type (standard, premium, special) and the color (blue, red,
white). The type is constrained such that standard is not allowed to be mixed
with premium (for seats and handrails). The color of all seats must be the same,
except for special seats which have to be red.

Users expect the following (static) default values: type = standard, color
= blue. Furthermore, they prefer to use all available space (as defined by the
length) for passengers (i.e. maximize the load factor).

3.2 Product Models

[Fig. 2] shows a UML class diagram for this sample specification, including
pseudo code for all constraints.

A model for a standard constraint solver is much more verbose because it
requires the mapping of the UML classes to arrays of variables and some other
implementation decisions, e.g. special handling of the “dynamic” parts, i.e. num-
ber of seats depending on the expected load and length. The MiniZinc program
in [Listing 1] is a full implementation of the example in a standard constraint lan-
guage which can be executed by most constraint solvers but requires modelling
knowledge to be understood.

In the example problem presented in [Section 3], seats are configuration
objects whose number is not known beforehand, and where each seat can be

347Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Wagon

length_mm: 10000...20000
nr_passengers: 50..200
nr_seats: 0..200
standing_room: 0..200

nr_seats + standing_room = nr_passengers
nr_seats + standing_room/3 ≤ 4*length_mm/1000
nr_seats = count(Seat)
standing_room>0 → count(Handrail)=1
all-equal-type()
all-equal-color()
maximize nr_passengers/length_mm

Handrail

type: {standard, premium}

Seat

type: {standard, premium, special}
color: {blue, red, white}

type=special → color=red

0..1 0..80

Figure 2: Class diagram of the Wagon example. Default values are underlined.
Wagon.all-equal-type() stands for a constraint that all sub-parts must have the same type
except for special. Wagon.all-equal-color() stands for a constraint that all associated seats (except
if type=special) must have the same color.

configured individually (attributes color and type). This is not the case for
the representation of standing_room in our example. The user can set only the
capacity as a number but no additional individual properties. Thus, standing
room need not be modelled as configuration objects in our example.

3.3 User and Solver Interactions

An example of a typical configuration dialog between user and configurator is
shown in [Fig. 3]. The solver responds to user actions and thus makes implicit
knowledge explicit to assist the user, e.g. by domain filtering.

For instance, user action 1 in [Fig. 3] sets the nr_passengers to 160 and
the solver changes the lower bound of length_mm from 10000 to 13334 because
of the constraint nr_seats + standing_room/3 ≤ 4*length_mm/1000 (for the
case that nr_seats is 0). Analogously, for the case that length_mm is 20000, the
upper bound of nr_seats must be not more than 40 in order to achieve the 160

passengers (and leads to a lower bound of 120 for standing_room).
In addition, the solver can set some values which are the only remaining

valid alternatives, e.g. creating a handrail after user action 1 in [Fig. 3] because
standing_room/3 > 0 requires one. Similarly in user action 5, the user sets the
attribute type of a seat to special and the solver automatically changes its
attribute color to red because of the according constraint and because that
color was not set explicitly by the user before.

Following user action 2, the solver creates the correct amount of seats and
sets their attributes to the predefined default values.

348 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

% Constants , Domains
int : min_length = 10000 ;
int : max_length = 20000 ;
int : max_seats = max_length∗4 div 1000 ;
int : min_load = 50 ;
int : max_load = 200 ;

enum Color = { blue , red , white , noColor } ;
enum Type = { standard , premium , sp e c i a l , noType } ;

% Wagon
var min_length . . max_length : length_mm ;
var min_load . . max_load : nr_passengers ;
var 0 . . max_seats : nr_seats ;
var 0 . . max_load : standing_room ;
var 0 . . 1 : nr_handrai l s ;

% Seats
array [1 . . max_seats] of var Color : seat_co lor ;
array [1 . . max_seats] of var Type : seat_type ;

% Handrail
var Type : handrai l_type ;

% Constrain numbers
constraint nr_seats + standing_room = nr_passengers ;
constraint nr_seats + standing_room/3 <= length_mm∗4/1000 ;

% Mandatory handrai l for standing room with proper type
constraint standing_room > 0 −> nr_handrai l s = 1 ;
constraint handrai l_type != s p e c i a l ;
constraint nr_handrai l s = 0 <−> handrai l_type = noType ;
constraint nr_handrai l s > 0 −> fora l l (i in 1 . . nr_seats where

→֒ seat_type [i] != s p e c i a l) (handrai l_type = seat_type [i]) ;

% Same co lor and type for a l l s ea t s but s p e c i a l
constraint fo ra l l (i in nr_seats+1 . . max_seats) (seat_co lor [i] =

→֒ noColor) ;
constraint fo ra l l (i in nr_seats+1 . . max_seats) (seat_type [i] = noType) ;
constraint fo ra l l (i , j in 1 . . nr_seats where i<j) (seat_type [i] !=

→֒ s p e c i a l /\ seat_type [j] != s p e c i a l −> seat_type [i] =
→֒ seat_type [j]) ;

constraint fo ra l l (i , j in 1 . . nr_seats where i<j) (seat_type [i] !=
→֒ s p e c i a l /\ seat_type [j] != s p e c i a l −> seat_co lor [i] =
→֒ seat_co lor [j]) ;

constraint fo ra l l (i in 1 . . nr_seats) (seat_type [i] = s p e c i a l −>
→֒ seat_co lor [i] = red) ;

% Use f u l l l eng th for passengers (avoid dead space)
solve maximize nr_passengers /length_mm ; % load fac tor

Listing 1: MiniZinc program for the Wagon example

User action 3 causes a conflict and the solver proposes different ways to
resolve it. The user chooses to take back an earlier decision by unsetting the
corresponding parameter with user action 4 and the solver adjusts dependent
values accordingly.

Autocompletion in user action 6 sets only length_mm to the minimal valid
value (according to the optimization function). All the other parameters and
necessary configuration objects were already set before.

349Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

User action 1:
Set nr_passengers = 160

Solver changes:
domain (length_mm) = [13334 ,20000]
domain (nr_seats) = [0 ,40]
domain (standing_room) = [120 ,160]
c r e a t e handra i l with

type = standard

User action 2:
Set nr_seats = 30

Solver changes:
domain (length_mm) = [18334 ,20000]
standing_room = 130
c r ea t e 30 s e a t s with

type = standard
c o l o r = blue

User action 3:
Set standing_room = 140

Solver proposes alternative conflict resolutions:
1 . nr_passengers = 170
2 . nr_seats = 20

User action 4:
Unset nr_seats (accept proposa l 2)

Solver changes:
domain (length_mm) = [16667 ,20000]
nr_seats = 20
d e l e t e l a s t 10 s e a t s

User action 5:
Set f i r s t seat ' s type = s p e c i a l

Solver changes:
f i r s t seat ' s c o l o r = red

User action 6:
Autocomplete (with opt imizat i on)

Solver changes:
length_mm = 16667 (maximize load f a c t o r)

User action 7:
Set handra i l ' s type = premium

Solver changes:
f o r a l l s e a t s except f i r s t , type = premium

Figure 3: Example of a configuration dialog

4 Requirements

In this section we summarize the most important requirements on a functional
configuration API for general solvers with the aim to facilitate interactive prod-
uct configuration as defined in [Section 1]. Although they are only a systematic
compilation of our personal opinions, they are based on experiences of configura-
tor users in the domains of health care, production industry, power generation,
and rail automation, and they were confirmed in discussions with the product
configuration community, e.g., at the International Workshop on Configuration.

350 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

4.1 Modelling

Before using a general solver as underlying reasoning system for a configurator,
a domain-specific product model must be defined. Many of the major commer-
cial configurator frameworks offer some kind of object-based models, although
none of them covers all aspects of object-orientation. A representation such as
UML has advantages for specifying complex products: highly understandable,
compact, easy to maintain.

However, most constraint and logic-based solvers are built to work on flat
(i.e. not object-oriented) integer-valued variable domains. They concentrate on
optimizing the performance of search for a solution – see the high number of per-
formance challenges and competitions, such as the MiniZinc Challenge [Stuckey
et al., 2014] or the international SAT competitions [Heule et al., 2018].

Therefore, a mapping from the object-oriented product model to the solver
model is necessary, but this is often cumbersome. The encoding of objects and
links between objects is especially tricky (for instance see [Schenner and Taupe,
2016]). Our requirement for solvers is not to support UML or object-oriented
encodings directly, but that mapping from object-oriented models to the solver
model is uncomplicated.

Requirement M1 (ModelTransformation). Support mapping between a

high-level, object-oriented product model and the solver-specific representation.

Example from [Section 3]: Mapping from [Fig. 2] to [Listing 1].

Requirement M2 (ConfigurationObjects). Allow the definition and spe-

cialization of classes (abstract types) for multiple configuration objects.

Example from [Section 3]: Wagon, Seat, and Handrail are classes. For Seat,
multiple objects are allowed. Specialization, i.e. inheritance, does not occur in
the example.

Requirement M3 (AttributesAndAssociations). Allow the definition of

parameters (aka attributes, features, properties) of various types for each class

as well as links (aka associations) with defined cardinalities (i.e. multiplicities)

between configuration objects.

Example from [Section 3]: Objects of type Wagon have 4 integer attributes,
e.g. length_mm. Handrail has an enumeration attribute – type. The association
between Wagon and Seat has a cardinality of exactly one on the Wagon side and
allows up to 80 objects on the Seat side.

Requirement M4 (RulesAndConstraints). Support constraints (or rules)

to define dependencies between configuration objects and their parameters. The

language of the solver must be rich enough to allow the formulation of all neces-

sary integrity, consistency, and resource constraints of the configuration domain.

351Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Example from [Section 3]: The first two constraints of Wagon define dependen-
cies between its integer attributes. The third one binds the attribute nr_seats

to the cardinality of the association to Seat. The implication of the fourth con-
straint can be seen as a rule to create a handrail as soon as some standing room
is configured.

Requirement M5 (StaticDefaults). Allow the definition of a static default

value (constant) for configuration parameters.

Example from [Section 3]: The default value for type is standard, for color
it is blue. See the solver changes after user actions 1 and 2 in [Fig. 3].

Requirement M6 (DynamicDefaults). Allow the definition of dynamic de-

fault values – they can be computed by almost arbitrary functions which may use

as input other variables of the same configuration as well as variable values from

historic configurations (e.g. most popular value).

Requirement M7 (SoftConstraints). Support soft (aka weak) constraints

which are not seen as hard requirements but as preferred alternatives. They can

be used for setting dynamic default values and for optimization (set as many

highly preferred values as possible).

There are no soft constraints in the example in [Section 3], but see [Meseguer
et al., 2006] for an overview.

4.2 Basic interactions

The most basic interactions between the front-end (UI) and the configuration
API allow users to change the configuration (by setting/unsetting configuration
parameters and creating/deleting configuration objects) – thus taking decisions
towards their individualized product. All the time, the internal solver model
must be kept synchronized with the front-end model.

Requirement B1 (CreateOrDeleteObject). Allow the user to create or

delete configuration objects.

Example from [Section 3]: Manually create an instance of Handrail.

Requirement B2 (SetValue). Allow the user to set or change the value of an

attribute of a configuration object or an association link between two configura-

tion objects. The solver model must be updated to be in sync with the front-end

model.

Example from [Section 3]: The user sets the number of passengers (attribute
nr_passengers of a Wagon) as in user action 1 in [Fig. 3].

352 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Requirement B3 (UndoDecision). Support Undo and Unset (i.e. set to UN-

DEF) of an earlier user decision.

The user interface shall support overriding the default value as well as re-
verting to the default value. A “revert to default” capability is essential for good
usability, guiding the users back to the path from which they strayed.

Example from [Section 3]: User action 4 in [Fig. 3].

Requirement B4 (Recommendations). Recommend decisions to the user,

e.g. by setting default values.

Recommendation can be done by setting default values as defined in require-
ments M5 (StaticDefaults), M6 (DynamicDefaults), and M7 (SoftCon-

straints), but also by using heuristics or a history of user actions. They are an
essential means for enhanced usability, because the user is not forced to type in
each parameter and the user is guided to the most common configuration. They
can be overridden by user interaction or further solver decisions without loss of
data.

Example from [Section 3]: Given that the default color of a seat is blue but
special seats are only available in red, the solver overrides the default color
selection with red for all special seats – see user action 5 in [Fig. 3]. Usually
this would not be perceived as data loss. However, if color blue has been chosen
by a deliberate user action, and the seat type is changed to special, then
the configuration is inconsistent. In this case, the user must be notified and
prompted for a corrective action, as discussed in [Section 4.5] – the color must
not be changed without prior confirmation by the user.

4.3 Filtering

In an interactive configuration session, a user may be faced with many choices.
For example, the number of configuration parameters for which the user can
choose a value can be very high, and the number of possible values that can be
chosen for a given parameter can also be very high. A user might consecutively set
several parameters to values which at the end, possibly after several further steps
of interaction between solver and user, do not allow a valid solution compatible
to all those choices.

The goal of filtering is to offer to the user as few alternatives as possible
which do not lead to a valid solution. The challenge is to find, as efficiently as
possible, all consistent values and show those for variables in the window that the
user currently sees, even for complicated constraints. Besides the computational
performance (the problem is NP-hard in general), it may also be difficult to
present all consistent values to the user in a clear and understandable way – e.g.
for an integer variable show all even values greater than 100 except 2000.

353Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Constraint solvers use two main approaches in interleaved steps: While search
explores a solution space opened up by variables for which several possible value
assignments exist, propagation (aka constraint inference) deals with determinis-
tic assignments that are forced by constraints. If a constraint satisfaction prob-
lem (CSP), in which some domains may already have been reduced due to user
actions, can be extended to a solution, it is called globally consistent. Since
global consistency is very expensive to maintain, various forms of local consis-
tency – mainly arc consistency – are used in practice [Bessiere, 2006, Russell
and Norvig, 2010]. Another approach is to compile a CSP into a data structure
that can maintain global consistency, such as an automaton [Amilhastre et al.,
2002] or a binary decision diagram (BDD) [Nørgaard et al., 2009].

Filtering can be used to grey-out values in the UI that are inconsistent with
values already user-set (or communicate the fact that they are infeasible to the
user in another appropriate way) so that the user cannot choose them and end
up in an invalid solution, e.g. the domains after user actions 1 and 2 in [Fig. 3].4

Requirement F1 (CompleteFiltering). Filter all invalid values from the

domains (i.e. those which do not lead to a consistent solution) of all relevant

parameters and return the current domain of a given variable on request.

Example from [Section 3]: As an example see the definition of user interaction
in [Section 3] and the configuration dialog in [Fig. 3] – e.g. the solver changes
after user action 2.

Requirement F2 (FastFiltering). Filter many of the invalid values from

domains (e.g. up to a certain degree of consistency) and return the resulting

domain of a given variable, suitable for interactive usage (e.g. answer within

100 msec).

Requirement F3 (LocalFiltering). Filter values from domains w.r.t. con-

straints in the local neighbourhood even if there are violated constraints in other

parts of the system.

4.4 Solving

After having set the values for “important” variables, the user expects the system
to automatically complete the partial solution (i.e. the user-set values) to a valid
solution.
4 Hiding those inconsistent values completely from the user, e.g. not showing values
< 13334 for length_mm after user action 2 in [Fig. 3], is often not a good option as
it reduces information and flexibility (i.e. the possibility to change decisions) of the
user too much because the user would not know that he/she can set length_mm to
12000, for example (see [Section 4.5] for more details).

354 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Requirement S1 (ExistsSolution). Report whether there is at least one valid

solution, given the values which the user set so far.

Requirement S2 (ValidSolution) can be used to check whether there is a
valid solution or not:

Requirement S2 (ValidSolution). Compute a valid solution for the current

state of the UI, i.e. user-set values are to be treated as fixed.

As an alternative, the commercial configurator Tacton CPQ offers a complete
solution to the user all the time [Orsvärn and Axling, 1999].

Requirement S3 (OptimalSolution). Compute an optimal solution, prefer-

ably based upon multiple optimization criteria.

Example from [Section 3]: User action 6 in [Fig. 3] is an example of a simple
objective function: maximizing the load factor minimizes length_mm if nr_-

passengers is already set.

Requirement S4 (NextSolution). Compute the next valid solution. In the

case of Requirement S3, it must be at least as good as previous solutions or – for

multiple optimization criteria – another instance in the Pareto front.

For interactive configuration, we prefer the sequential computation of solu-
tions over the computation of all solutions or the next N solutions for perfor-
mance and utility reasons.

We prefer to show a user few but noticeably distinct alternatives instead of
many similar solutions. In [Hebrard et al., 2005] and [Eiter et al., 2009], methods
for finding diverse solution sets are described. ClaferMOO Visualizer is an exam-
ple for an optimizer which supports the handling of the Pareto front [Murashkin
et al., 2013].

Requirement S5 (IncrementalSolving). In order to increase performance,

support incremental solving, i.e. do not start from scratch after each user input

but continue with the latest solver state.

In an interactive configuration scenario, the user sets one variable after the
other – without a predefined order. Typically, there is a sequence of decisions
within one session.

4.5 Explanation

Unless the solver maintains global consistency after each user interaction
(which is too expensive, especially when fast response times are required,
cf. [Section 4.3]), users can reach a dead end, i.e. a state where they have to

355Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

revise a decision to be able to find a solution. It may also happen that a
conflict is produced because the user deliberately sets a value that has already
been filtered away by the solver.

The goal of explanation is to assist the user in this situation by suggesting
previously made choices to be undone. For a good user experience it is important
that these suggestions are understandable, i.e. violated constraints should be
explained by descriptive prose.

Requirement E1 (Explanation). Explain in understandable terms why a cur-

rent state cannot be extended to a valid solution.

This can be achieved by model-based diagnosis (see chapter 7 of [Felfernig
et al., 2014]) where the constraints from the problem specification are considered
background knowledge and the user decisions are considered as additional con-
straints which can lead to conflicts. The first are assumed to be correct and only
the latter can be part of explanations. A subset of user decisions is a conflict
if the problem obtained by combining this subset with background constraints
has no solution. There might be an exponential number of conflicts that explain
the inconsistency of an over-constrained problem. For this reason, QuickXPlain
[Junker, 2004] can be used to compute preferred explanations.

Requirement E2 (CorrectiveExplanation). Suggest user actions that cor-

rect a current state which cannot be extended to a valid solution.

Conflict diagnosis like QuickXPlain can be combined with a hitting-set al-
gorithm to compute minimal diagnoses, i.e. minimal sets of faulty constraints.
A diagnosis is a subset of user decisions so that the problem becomes consistent
when this subset is removed from it [Felfernig et al., 2012]. A corrective explana-
tion is more than a diagnosis in the sense that it does not just point out decisions
(i.e. assignments of values to variables) that have to be retracted, but also pro-
poses alternative assignments that guarantee to yield a solution [O’Callaghan
et al., 2005].

Example from [Section 3]: After user action 3 in [Fig. 3], the solver suggests
the only two reasonable (i.e. minimal) repair actions.

4.6 Integrability

Today’s typical enterprise IT landscape is a system of systems with many inter-
nal and external interfaces. It must be possible to integrate a newly developed
configurator into the existing infrastructure in order to be accepted and used. As
the solver is invoked by or intermingled in the configurator, the solver provider
must contribute to meet the challenges of integration, or at least it should not
impose new ones.

356 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

In this section, we put our focus on the integration of a solver into a product
configurator application via a configuration API. There are many other aspects
of integrating configurators, e.g. interfaces to customer relation management
(CRM), product data management (PDM), enterprise resource planning (ERP)
systems and the like, or generation of quotations and other documents. Despite
being considered more important by product managers and consuming much
more effort in configurator solutions than product modelling itself, such aspects
are out of scope here.

Requirement I1 (LanguageAPI). Provide a well-documented API for a ge-

neral-purpose programming language that is widely accepted and used in industry,

e.g. Java or C#.

Desirable properties of the chosen host language(s) comprise: (i) a standard-
ized or de-facto industrial standard language, (ii) type-safety, (iii) portability,
(iv) tool support (e.g. debugger, profiler).

Requirement I2 (NotificationAPI). Support a notification concept, such as

listeners or callbacks: After the change of an input variable, which output vari-

ables change their values and which constraints change their violation state?

Requirement I3 (SpecificationLanguage). Support a well-established, de-

facto standard language for model and problem specification (e.g. constraint def-

inition), such as MiniZinc or XCSP.

Command-line interfaces to the solver are appreciated for testing purposes,
but using them for integration is a potential source of problems for integration
and long-term maintenance. For this reason, a command-line interface alone is
not sufficient.

Requirement I4 (TestSupport). Support automated (regression) testing.

This can be implemented by compatibility with existing testing tools of the
host language as well as tool-specific facilities.

Requirement I5 (DebugSupport). Support finding bugs in configuration

models.

Requirement I6 (LicenseCompatibility). Friendly license model, i.e. not

hampering industrial usage – for the solver itself and all its third-party compo-

nents.

Companies are reluctant to adopt open-source components with “sticky” li-
censes such as GPL, because they fear the legal risks imposed on their own
intellectual property. A commercial license at a fair price is more likely to be

357Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

accepted than a sticky open-source license. In general, industry-friendly licenses
such as BSD and MIT style licenses will be appreciated.

Note that this also applies to the components depending on the solver: a
dependency on a third-party component with restrictive license conditions is
very likely to inhibit the adoption of the solver. All dependencies shall have a
license as least as liberal as that of the main solver component.

Requirement I7 (MinimumDependencies). Minimize the number of de-

pendencies to third-party components.

The list of dependencies (libraries but also other resources) of the solver
shall be as short as possible, because each added dependency is also regarded
as an additional burden in terms of version management, license and security
assessment, export and customs control, and long-term maintenance.

5 Survey of Existing Solvers

In this chapter we investigate how some selected solver systems satisfy our
proposed requirements for an interactive configuration API. We selected the
systems/tools for evaluation based on the following criteria: Does the system
provide basic solver functionality suitable for the special needs of configuration
applications? Is the system prominent in the sense of being known or used by
a greater community? Is the system alive in the sense of further development,
regular updates, and an active community? Is the system non-commercial? Is the
system representative of a whole class of systems (e.g. constraint-based solvers,
answer set solvers)?

Due to limited space, we had to restrict our investigation to the following 6
systems: MiniZinc [Section 5.1] is a prominent constraint system that mainly
provides a front-end language and IDE, and that integrates third-party solvers
(like Gecode) for solving. Choco [Section 5.2] is a well-known, classical, Java-
based constraint system. A similar Java-based system is JaCoP [Kuchcinski and
Szymanek, 2013]. Potassco [Section 5.3] with its integrated solver clasp is a
typical representative of an answer set programming system. Another such tool is
DLV [Alviano et al., 2017]. Picat [Section 5.4] is a representative of a constraint
logic programming system. Another such system which is reasonably well-known
is ECLiPSe [Apt and Wallace, 2007]. CP-SAT Solver [Section 5.5] is a part of
the Google OR Toolkit. It is a typical constraint system that uses a SAT solver
for solving and is quite successful in solver competitions. Finally, Z3 [Section 5.6]
is a prominent instance of an SMT solver.

We asked the authors/owners of the selected systems to review our ratings
of their respective system and got some valuable comments which we integrated
in this version of the article.

358 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Some systems, though suitable for interactive configuration in principle, are
not part of this study due to space restrictions, but are candidates for future
work: feature Model systems like Clafer [Bak et al., 2016]; MILP solvers (mixed-
integer linear programming) like lpsolve [Berkelaar, 2019]; constraint solvers
based on MDD technology (multiple-valued decision diagram) like the commer-
cial tool Configit [Møller et al., 2001]; planning tools like OptaPlanner [De Smet
and open source contributors, 2006], another system quite prominent and potent
because of its focus on planning and scheduling, but not on configuration.

The following sections contain a short description of each selected system
and our ratings to what degree each requirement of [Section 4] is supported by
the respective system. We use the following simple rating scale:
++ : The system natively supports the requirement or there is an easy, straight-

forward workaround.
+ : The system does not natively support the requirement, but there is a man-

ageable workaround.
0 : The system does not natively support the requirement, and there is no

workaround at all or a workaround would be disproportionately elaborate.
Even though we use this rating scale to quantify the extent to which vari-

ous solvers meet our requirements, this evaluation is not about comparing tools
against each other. Our aim is to investigate how the field of KRR solvers sup-
ports interactive configuration in general and how this situation could be im-
proved.

5.1 MiniZinc

MiniZinc [Nethercote et al., 2007] is a solver-independent constraint modelling
language. The MiniZinc system is free and open-source. It includes various com-
mand line tools and the MiniZinc IDE for editing and solving MiniZinc models.
For solving, the high-level MiniZinc models are compiled into FlatZinc, which is
a low-level standard for defining constraint problems supported by most current
constraint solvers. One reason for this is the annual MiniZinc challenge, which
is the most popular solving competition for constraint solvers. [Listing 1] shows
a MiniZinc encoding of the example in [Section 3].

Typically, you run MiniZinc via its IDE. Various approaches allow to inte-
grate MiniZinc into a software system. One such approach consists of manipu-
lating the MiniZinc files programmatically and call various tools (MiniZinc to
FlatZinc compiler, solver executable) via system calls and standard I/O. A more
efficient way to manipulate MiniZinc models is using libraries like JMiniZinc,5

PyMzn,6 or iminizinc.7 Another integration option is to compile the MiniZinc file

5 https://github.com/siemens/JMiniZinc
6 http://paolodragone.com/pymzn/
7 https://github.com/MiniZinc/iminizinc

359Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

to FlatZinc and use the FlatZinc parser of the used solver. This has the benefit
that solving can be controlled by the solver API, but the downside that it is not
always straightforward to map the low-level FlatZinc constraints and variables
back to those of the high-level MiniZinc model. This mapping is essential for
interactive solving as the user interface must provide feedback in terms of the
high-level constraints and variables.

[Tab. 1] shows our requirements evaluation for the tool MiniZinc.

5.2 Choco-solver

Choco-solver [Prud’homme et al., 2017] is a well-established constraint library
written in Java. It supports integer, boolean, set and real variables as well as basic
constraint expressions and global constraints. Constraint problems are defined
using Choco’s Java API.

The following example shows how interactive configuration can be realized
with Choco’s API. A user input is simulated by posting a constraint containing
the assignment selected by the user. The Choco constraint solver is based on
constraint propagation [Jussien and Lhomme, 2002]. Constraint propagation can
not only be utilized during solving, but also to compute the current domains of
the constraint variables. The example shows how variable domains are narrowed
down by propagation after calling Solver.propagate(), i.e. Choco-solver satisfies
Requirement F2 (FastFiltering).

// I n i t i a l domains :
// nr_seats = {0 . . 80}
// standing_room = {0 . . 200}
// nr_passengers = {50 . . 200}
// post cons t ra in t
m. arithm (nr_seats , "+" , standing_room , "=" , nr_passengers) . post () ;

// User input
m. arithm (nr_seats , "=" , 40) . post () ;

// Domain f i l t e r i n g
m. ge tSo lve r () . propagate () ;
// Updated domains
// nr_seats = 40
// standing_room = {10 . . 160}
// nr_passengers = {50 . . 200}

Choco is implemented in Java and therefore easy to integrate into an en-
terprise IT landscape. The source code of Choco is available on GitHub8 and
pre-built libraries are available for Maven.9 As Choco is open source, missing
features can easily be added to the current code base. On the downside the im-
plementation of the features often requires detailed knowledge of the API and
must be maintained if the API changes considerably (which has occurred in the
past).

[Tab. 2] shows our requirements evaluation for the system Choco.
8 https://github.com/chocoteam/choco-solver
9 https://search.maven.org/artifact/org.choco-solver/choco-solver/

360 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Requirement Rating Comment

M1 ModelTransformation + No native support of object-oriented models, but it is possi-
ble to encode objects using arrays of constraint variables.

M2 ConfigurationObjects + Cf. M1.

M3 AttrsAndAssocs + No native support of object attributes/associations as ob-
jects, but all basic data types supported, with a focus on
integers.

M4 RulesAndConstraints ++ All standard constraint types and global constraints are sup-
ported. As a system intrinsically based on constraints, rules
are not supported.

M5 StaticDefaults 0 Cannot be realized, because no default reasoning and no
distinction between user-set and tool-/initial-set variables
supported.

M6 DynamicDefaults 0 Cf. M5.

M7 SoftConstraints + Natively, only hard constraints are supported. By reification
in combination with optimization, soft constraints could be
simulated. Another option is MiniBrass [Schiendorfer et al.,
2018], which adds soft constraints and preferences to Mini-
Zinc.

B1 CreateOrDeleteObject + Incremental addition/removal of variables not supported;
when config. objects are created/removed, the constraint
model must be rebuilt.

B2 SetValue ++ Supported.

B3 UndoDecision 0 Not supported.

B4 Recommendations 0 Not supported.

F1 CompleteFiltering + Not natively supported; can be emulated by solver call for
each variable value.

F2 FastFiltering 0 Currently there is no way to directly access the domain fil-
tering capabilities of a solver from MiniZinc.

F3 LocalFiltering 0 In case of an inconsistent situation, MiniZinc solvers stop
further propagation.

S1 ExistsSolution ++ Supported.

S2 ValidSolution ++ Supported.

S3 OptimalSolution ++ Supported.

S4 NextSolution 0 Not supported; only solving for 1, N or all solutions sup-
ported.

S5 IncrementalSolving 0 Not supported.

E1 Explanation 0 Not supported.

E2 CorrectiveExplanation 0 Not supported.

I1 LanguageAPI + No native API in a standard programming language, but
several options to integrate in Java or Python.

I2 NotificationAPI 0 No event mechanism on solver decisions.

I3 SpecLanguage ++ MiniZinc and FlatZinc are de-facto standards for represent-
ing constraint problems.

I4 TestSupport 0 Not supported.

I5 DebugSupport 0 Not supported.

I6 LicenseCompatibility ++ Creative Commons Attribution-NoDerivatives 4.0 Interna-
tional License.

I7 MinimumDependencies + Beside some required libraries, at least one solver backend
must be installed.

Table 1: Requirements evaluation table for MiniZinc.

361Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Requirement Rating Comment

M1 ModelTransformation + No native support of object-oriented models, but it is possi-
ble to encode objects using arrays of constraint variables.

M2 ConfigurationObjects + Cf. M1.

M3 AttrsAndAssocs + No native support of object attributes/associations as ob-
jects, but all basic data types supported, with a focus on
integers.

M4 RulesAndConstraints ++ All standard constraint types and global constraints are sup-
ported. As a system intrinsically based on constraints, rules
are not supported.

M5 StaticDefaults 0 Cannot be realized, because no default reasoning and no
distinction between user-set and tool-/initial-set variables
supported.

M6 DynamicDefaults 0 Cf. M5.

M7 SoftConstraints + Natively, only hard constraints are supported. By reification
in combination with optimization, soft constraints can be
simulated.

B1 CreateOrDeleteObject + Incremental removal of variables not supported; when con-
figuration objects are removed, the constraint model must
be rebuilt.

B2 SetValue ++ Supported.

B3 UndoDecision + Not natively supported, but implementation can use Deci-
sionPath and Decision objects (not documented in the user
manual).

B4 Recommendations 0 Not supported.

F1 CompleteFiltering + Not natively supported; can be emulated by solver call for
each variable value.

F2 FastFiltering ++ Supported.

F3 LocalFiltering 0 In case of an inconsistent situation, the Choco solver throws
a contradiction exception on propagation.

S1 ExistsSolution ++ Supported.

S2 ValidSolution ++ Supported.

S3 OptimalSolution ++ Supported.

S4 NextSolution ++ Supported.

S5 IncrementalSolving + Supported through incremental model changes and solver
re-starts.

E1 Explanation + Choco provides an explanation engine based on [Veksler
and Strichman, 2010], but it is not active by default; some
amount of programming is necessary to use it.

E2 CorrectiveExplanation 0 Not supported.

I1 LanguageAPI ++ Native Java API.

I2 NotificationAPI 0 A callback function (not documented in the user manual)
could be used to trace solver actions, but no dedicated event
mechanism is available.

I3 SpecLanguage + Java API, support of FlatZinc and XCSP as input language.

I4 TestSupport + No native support, but Choco benefits from Java IDEs’ test
support.

I5 DebugSupport + No native support, but Choco benefits from Java IDEs’ de-
bugging features.

I6 LicenseCompatibility ++ BSD license.

I7 MinimumDependencies ++ Apart from a few required libraries, Choco has a very small
footprint.

Table 2: Requirements evaluation table for Choco.

362 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

5.3 Potassco

Potassco, the Potsdam Answer Set Solving Collection [Gebser et al., 2019a], in-
cludes clingo [Gebser et al., 2019b] as a popular and actively developed system
for Answer Set Programming (ASP). ASP is declarative knowledge representa-
tion formalism in which problems are encoded as logic programs [Gelfond and
Kahl, 2014, Baral, 2003, Gebser et al., 2012, Lifschitz, 2019]. This formalism is
quite different from classical constraint satisfaction, but lends itself quite well to
the representation of object-oriented models like in our example [Falkner et al.,
2015, Schenner and Taupe, 2017].

Compilations of clingo can be used to solve answer-set programs stored in
text files. Alternatively, the system provides APIs for C++ and Python. It is
licensed under the MIT license.

The language of ASP easily allows to formulate integrity, consistency, and
resource constraints as well as weak constraints [Gebser et al., 2015a, Calimeri
et al., 2020], but does not include typical global constraints (e.g. alldifferent)
known from constraint modelling languages like MiniZinc.

Defaults can very naturally be encoded in ASP by use of default negation.
For example, the following rule states that the type of a seat is standard except
if the user has set another type:

seat_type (S , standard) :− s ea t (S) , not userset_seat_type (S ,_) .

However, this rule will make the problem unsatisfiable if a seat cannot be of the
standard type because of constraints.

An alternative solution is to use the asprin extension for preferences [Gebser
et al., 2019a, Brewka et al., 2015], which allows for encodings like the following:

default_seat_type (S) :− seat_type (S , standard) .
#pr e f e r en c e (de f au l t s , more (c a r d i n a l i t y)) { default_seat_type (S) :

→֒ s ea t (S) } .
#opt imize (d e f a u l t s) .

Here, the answer set with the highest number of default-type seats is considered
optimal.

[Tab. 3] shows our requirements evaluation for the Potassco toolset.

5.4 Picat

Picat [Zhou et al., 2015] is a logic-based multi-paradigm language well-suited for
solving constraint problems. Most that will be said about Picat and interactive
constraint solving will also apply to other constraint logic programming systems.

In Picat, constraint programming support is added through the cp mod-
ule. After importing the cp module, constraint variables can be declared with
VAR::DOMAIN. Constraints can be formulated with variable expressions (using

363Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Requirement Rating Comment

M1 ModelTransformation + Mapping from object-oriented model to ASP must be done
manually by coding. An alternative is to use an extension
such as Clorm [Rajaratnam, 2019].

M2 ConfigurationObjects + Cf. M1.

M3 AttrsAndAssocs ++ Mapping from object-oriented model to ASP must be done
manually by coding. Associations are facilitated by predi-
cates and aggregates. Common data types are supported.

M4 RulesAndConstraints ++ Rich support for integrity, consistency, and resource con-
straints, but not for typical global constraints (e.g., alldif-
ferent) known from constraint modelling languages.

M5 StaticDefaults + Can be encoded manually using soft constraints. An alter-
native is using the asprin extension for preferences [Gebser
et al., 2019a, Brewka et al., 2015], which cannot be used to-
gether with optimization statements or soft constraints.

M6 DynamicDefaults + Cf. M5.

M7 SoftConstraints ++ Supported out of the box.

B1 CreateOrDeleteObject + Multi-shot solving (cf. S5) can be used to iteratively solve
problems without having to start from scratch; previous in-
formation can be retracted by setting external atoms to false.

B2 SetValue ++ Supported.

B3 UndoDecision + Cf. B1.

B4 Recommendations + Recommendation features not directly supported, but can
be implemented using weak constraints, optimization state-
ments or domain-specific heuristics.

F1 CompleteFiltering ++ Supported through brave reasoning (for the whole problem
at once).

F2 FastFiltering 0 Not supported without an elaborate encoding.

F3 LocalFiltering 0 Not supported without an elaborate encoding.

S1 ExistsSolution ++ Supported by actually computing a valid solution.

S2 ValidSolution ++ Solving for valid solutions supported.

S3 OptimalSolution ++ Definition of optimization criteria and solving for optimal
solutions supported.

S4 NextSolution + No support apart from searching for all solutions and pro-
cessing them as they appear.

S5 IncrementalSolving ++ Supported through multi-shot solving [Gebser et al., 2019b].
Furthermore, an interactive shell for clingo has been pro-
posed [Gebser et al., 2015b].

E1 Explanation 0 Not natively supported, but an active area of research
[Fandinno and Schulz, 2019].

E2 CorrectiveExplanation 0 Not natively supported, but an active area of research
[Fandinno and Schulz, 2019].

I1 LanguageAPI ++ Python, C++, and C APIs available.

I2 NotificationAPI 0 Callbacks for intercepting models available, but not for more
detailed solver actions, e.g. propagation.

I3 SpecLanguage ++ The language of ASP is standardized [Calimeri et al., 2020].

I4 TestSupport + Testing frameworks for implementation languages available,
but no built-in constraint testing framework.

I5 DebugSupport 0 Not natively supported, but an active area of research [Do-
daro et al., 2019].

I6 LicenseCompatibility ++ MIT license.

I7 MinimumDependencies ++ Potassco depends on few third-party components.

Table 3: Requirements evaluation table for Potassco.

364 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

special operators preceded with #), predicates and global constraints like all_-
different etc. The following shows the Picat implementation of the aforemen-
tioned example. In Picat every additional constraint expression triggers con-
straint propagation and the variable domains are adapted accordingly.

Picat> NR_SEATS: : 0 . . 80 ,
STANDING_ROOM: : 0 . . 200 ,
NR_PASSENGERS: : 50 . . 200 ,
NR_SEATS + STANDING_ROOM #= NR_PASSENGERS,
NR_SEATS #= 40 .

// output :
// NR_SEATS = 40
// STANDING_ROOM = DV_015c90_10 . . 160
// NR_PASSENGERS = DV_015d28_50 . . 200

Using the concept of action rules, it is possible to get notified of domain
changes of constraint variables. Action rules have the form Head, Cond,

{Event} => Body. Examples for events are:
– ins(X), when a variable gets instantiated
– bound(X), when the bounds of a variable change
– dom(X,T), when a value T gets excluded from the domain of X

Therefore it is possible to trace all variable domains that have been effected by
a user interaction, cf. Requirement I2 (NotificationAPI).

Picat programs can be executed as shell scripts. Picat allows to define pred-
icates by C functions. Unfortunately, it is currently not possible to call Picat
from C, so integration must be done via standard I/O.

[Tab. 4] shows our requirements evaluation for the tool Picat.

5.5 CP-SAT Solver

As an example of a constraint solver based on a non-constraint propagation
paradigm we have chosen Google CP-SAT Solver, which is part of Google OR-
Tools and based on boolean satisfiability (SAT).10

As the CP-SAT Solver is SAT-based, it does not provide an API for accessing
the current domain of variables. Therefore it is best treated as a black-box solver,
i.e. by defining the constraint problem and solving it. Domain filtering can be
simulated by calling the solver for a specific domain value or, as in the example
below for bounded domains, calling minimize/maximize for a variable to compute
its lower and upper bound. In the example the lower bound of the variable
standing_room is computed. Of course this strategy only works for constraint
problems where efficient solving is possible, otherwise the response time of the
interactive system would deteriorate.

from o r t o o l s . sa t . python import cp_model
model = cp_model . CpModel ()
nr_seats = model . NewIntVar (0 ,80 , "")
standing_room = model . NewIntVar (0 ,200 , "")

10 https://github.com/google/or-tools/

365Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

nr_passengers = model . NewIntVar (50 ,200 , "")

model .Add(sum([nr_seats , standing_room])==nr_passengers)
u i = model . NewIntVar (40 ,40 , "")
model .Add(nr_seats == ui)

Simulate domain f i l t e r i n g :
Cal l ing minimize for a var i a b l e
f inds the lower bound

model . Minimize (standing_room)
s o l v e r = cp_model . CpSolver ()
s t a tu s = s o l v e r . So lve (model)
print (s o l v e r . Value (standing_room))
Output : 10

The CP-SAT solver is written in C++, but via SWIG11 also an API in Java,
C# and Python is provided, which makes it one of the few constraint solvers
available in Python. Regarding Requirement I1 (LanguageAPI) this provides
a very good integrability for the basic functionality of the solver, although some
special features can only be accessed through the C++ API.

[Tab. 5] shows our requirements evaluation for the tool CP-SAT Solver.

5.6 Z3

Z3 [De Moura and Bjørner, 2008] is a satisfiability modulo theories (SMT) the-
orem prover by Microsoft Research. The main application of SMT solvers in the
past has been software verification, but it can also be used as a constraint solver
for product configuration.

As Z3 is not a classic constraint solver it does not provide domain filtering
out of the box. But it has some convenient features like incremental reasoning
using scopes. The following listing shows a simple example:

from z3 import ∗

s = So lve r ()
// add c on s t r a i n t s
s . add (nr_seats + standingroom == nr_passengers) ;
s . add (nr_passengers == 100)
s . add (nr_seats == 20)
// de f i n e new scope
s . push ()
s . add (standingroom == 10)
i f s . check ()==unsat :

// in case o f i n c on s i s t en cy
// return to prev ious scope
s . pop ()

Z3 supports the SMTLIB2 standard [Barrett et al., 2010] and can thus pro-
duce unsatisfiable cores and check assertions. These features can be exploited to
provide explanations for inconsistencies. The Z3 solver is written in C++ with
additional language bindings for .Net, Java, Python, OCaml and has a rich API.

[Tab. 6] shows our requirements evaluation for the tool Z3.
11 http://www.swig.org/

366 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Requirement Rating Comment

M1 ModelTransformation + Must be implemented by encoding the object-oriented model
as a constraint problem.

M2 ConfigurationObjects + Must be implemented.

M3 AttrsAndAssocs + Must be implemented.

M4 RulesAndConstraints ++ As Picat includes solver modules for cp, sat, mip and smt
(via Z3) there is a rich set of modelling options with standard
constraint programming and global constraints.

M5 StaticDefaults 0 Not supported.

M6 DynamicDefaults 0 Not supported.

M7 SoftConstraints + Implementation is possible, but will depend on the used
solver module.

B1 CreateOrDeleteObject + Implementation possible and facilitated by Picat data struc-
tures.

B2 SetValue ++ Supported.

B3 UndoDecision 0 Not supported.

B4 Recommendations 0 Not supported.

F1 CompleteFiltering + Not natively supported; can be emulated by solver call for
each variable value.

F2 FastFiltering ++ Supported by built-in constraint propagation and user-
defined constraint propagators.

F3 LocalFiltering + Can be implemented with constraint propagators.

S1 ExistsSolution ++ Supported.

S2 ValidSolution ++ Supported.

S3 OptimalSolution ++ Supported.

S4 NextSolution ++ Supported.

S5 IncrementalSolving + Supported by constraint-propagation.

E1 Explanation 0 Not directly supported.

E2 CorrectiveExplanation 0 Not directly supported.

I1 LanguageAPI 0 Language binding for Java etc. planned, but currently not
available.

I2 NotificationAPI + Supported via action rules.

I3 SpecLanguage + FlatZinc, XCSP (cp module), SMTLIB (smt module) etc.
supported.

I4 TestSupport 0 No testing framework available.

I5 DebugSupport ++ Built-in debugger.

I6 LicenseCompatibility ++ Mozilla Public License 2.0.

I7 MinimumDependencies ++ Standalone GitHub repository. Implemented in C/C++.

Table 4: Requirements evaluation table for Picat.

367Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Requirement Rating Comment

M1 ModelTransformation + Encoding of object-oriented model as constraint problem
necessary.

M2 ConfigurationObjects + Encoding of object-oriented model as constraint problem
necessary.

M3 AttrsAndAssocs + Must be implemented. Integer and boolean supported.

M4 RulesAndConstraints ++ Basic constraint expressions and global constraints sup-
ported. Some global constraints do not support reification.

M5 StaticDefaults 0 Not supported.

M6 DynamicDefaults 0 Not supported.

M7 SoftConstraints 0 With a considerable effort using reification and optimization.

B1 CreateOrDeleteObject + By rebuilding constraint model.

B2 SetValue ++ Supported.

B3 UndoDecision 0 Not supported.

B4 Recommendations 0 Not supported.

F1 CompleteFiltering + Must be implemented by calling solver for every domain
value.

F2 FastFiltering 0 Not supported.

F3 LocalFiltering 0 Not supported.

S1 ExistsSolution ++ Supported.

S2 ValidSolution ++ Supported.

S3 OptimalSolution ++ Supported.

S4 NextSolution ++ Supported.

S5 IncrementalSolving 0 Not supported.

E1 Explanation 0 Not supported.

E2 CorrectiveExplanation 0 Not supported.

I1 LanguageAPI ++ Implemented in C++. Language bindings (via SWIG) for
Python, Java and C#.

I2 NotificationAPI 0 Not supported.

I3 SpecLanguage + Up-to-date FlatZinc import available (Winner of 2019 Mini-
Zinc competition).

I4 TestSupport + Testing frameworks for implementation languages available,
but no built-in constraint testing framework.

I5 DebugSupport + Debugging of implementation languages. Source code of
solver available.

I6 LicenseCompatibility ++ Apache License 2.0.

I7 MinimumDependencies + Integrated into or-tools framework.

Table 5: Requirements evaluation table for CP-SAT Solver.

368 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

Requirement Rating Comment

M1 ModelTransformation + Encoding of object-oriented model as constraint problem
necessary.

M2 ConfigurationObjects + Encoding of object-oriented model as constraint problem
necessary.

M3 AttrsAndAssocs + Mapping from attributes and associations to a flat constraint
model must implemented.

M4 RulesAndConstraints ++ Z3 supports basic constraint expressions over booleans, in-
tegers, reals, uninterpreted functions, data structures and
some global constraints (Distinct).

M5 StaticDefaults + Can be emulated with soft constraints.

M6 DynamicDefaults + Can be emulated with soft constraints.

M7 SoftConstraints ++ Supported by API add_soft(constraint).

B1 CreateOrDeleteObject + Incremental reasoning is supported by API.

B2 SetValue ++ Supported.

B3 UndoDecision + Can be implemented with scope functionality (push/pop).

B4 Recommendations 0 Not supported.

F1 CompleteFiltering + Can be achieved by invoking a consistency check for every
possible domain value.

F2 FastFiltering 0 Not supported.

F3 LocalFiltering 0 Not supported.

S1 ExistsSolution ++ Supported.

S2 ValidSolution ++ Supported.

S3 OptimalSolution ++ Definition of optimization criteria and solving for optimal
solutions supported.

S4 NextSolution + Supported (by asserting the negation of the current solu-
tion).

S5 IncrementalSolving ++ Supported.

E1 Explanation + Can be implemented with assertions and unsat cores.

E2 CorrectiveExplanation 0 Not supported.

I1 LanguageAPI + Implemented in C++ with additional language bindings
(.NET, Java, Python...).

I2 NotificationAPI 0 Not available.

I3 SpecLanguage ++ Various import formats supported (SMTLIB, Datalog, Di-
macs, ...).

I4 TestSupport + Only for implementation language (C++).

I5 DebugSupport + Only for implementation language (C++).

I6 LicenseCompatibility ++ MIT License.

I7 MinimumDependencies + Source code available on GitHub with standard C++ build
process (Make).

Table 6: Requirements evaluation table for Z3.

369Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

6 Conclusion

Real-world configuration problems are often interactive in nature, i.e. they in-
clude the user as an essential factor in the configuration process. To solve config-
uration problems, knowledge-based reasoning systems such as constraint-based
or logic-based solvers are often employed. In this paper, we have made two con-
tributions: First, we have proposed a set of requirements that a reasoner should
fulfil to support interactive configuration. Second, we have presented the results
of a small survey covering a selected set of non-commercial stand-alone solvers.

The focus of most reasoners is on modelling and efficient solving. Only few
solvers contain special features for interactivity. Even in the case of solvers based
on constraint propagation, the main purpose of propagation is to assist the
solver during search. Only very few systems provide notification mechanisms
or an explanation engine. None of the solvers we are aware of support default
reasoning out of the box.

Our findings show that interactive aspects of configuration are not well
supported by most stand-alone solvers although it may be possible to find
workarounds (which need profound tool know-how or are difficult to maintain or
are less efficient). Our findings also show that the landscape of available systems
is highly diverse and that each solver has its own strengths and weaknesses when
it comes to satisfying the requirements proposed in this work.

We are aware that our work may be biased by our experiences and focus.
Future work should take a more systematic approach to collect more opinions
(e.g. a comprehensive user survey). Furthermore, this study should be extended
to cover more requirements (like aspects of guided selling or prediction of default
values) and more KRR systems. We invite the configuration and KRR commu-
nities to propose implementations of knowledge-based reasoners that are suited
to support interactive configuration.

Acknowledgements

The authors are thankful to Charles Prud’homme, Max Ostrowski, Philipp Ober-
meier, Philipp Wanko, and Torsten Schaub for their comments on a previous
version of this article.

370 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

References

[Alviano et al., 2017] Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N.,
Perri, S., Ricca, F., Veltri, P., and Zangari, J. (2017). The ASP system DLV2.
In LPNMR, volume 10377 of LNCS, pages 215–221. Springer.

[Amilhastre et al., 2002] Amilhastre, J., Fargier, H., and Marquis, P. (2002). Consis-
tency restoration and explanations in dynamic CSPs — application to configuration.
Artif. Intell., 135(1-2):199–234.

[Apt and Wallace, 2007] Apt, K. R. and Wallace, M. (2007). Constraint logic program-
ming using Eclipse. Cambridge University Press.

[Bak et al., 2016] Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., and Wasowski, A.
(2016). Clafer: unifying class and feature modeling. Software and Systems Modeling,
15(3):811–845.

[Baral, 2003] Baral, C. (2003). Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge University Press.

[Barrett et al., 2010] Barrett, C., Stump, A., and Tinelli, C. (2010). The SMT-LIB
Standard: Version 2.0. In Gupta, A. and Kroening, D., editors, Proceedings of the
8th International Workshop on Satisfiability Modulo Theories.

[Berkelaar, 2019] Berkelaar, M. (2019). Package ‘lpSolve’. https://cran.r-project.
org/web/packages/lpSolve/lpSolve.pdf.

[Bessiere, 2006] Bessiere, C. (2006). Constraint propagation. In Handbook of Con-
straint Programming, pages 29–83. Elsevier.

[Brewka et al., 2015] Brewka, G., Delgrande, J. P., Romero, J., and Schaub, T. (2015).
asprin: Customizing answer set preferences without a headache. In AAAI, pages
1467–1474. AAAI Press.

[Calimeri et al., 2020] Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R.,
Krennwallner, T., Leone, N., Maratea, M., Ricca, F., and Schaub, T. (2020). ASP-
Core-2 input language format. TPLP, 20(2):294–309.

[Czarnecki et al., 2005] Czarnecki, K., Helsen, S., and Eisenecker, U. W. (2005). For-
malizing cardinality-based feature models and their specialization. Software Process:
Improvement and Practice, 10(1):7–29.

[De Moura and Bjørner, 2008] De Moura, L. and Bjørner, N. (2008). Z3: An efficient
SMT solver. In International conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337–340. Springer.

[De Smet and open source contributors, 2006] De Smet, G. and open source contribu-
tors (2006). Optaplanner user guide. https://www.optaplanner.org.

[Dodaro et al., 2019] Dodaro, C., Gasteiger, P., Reale, K., Ricca, F., and Schekotihin,
K. (2019). Debugging non-ground ASP programs: Technique and graphical tools.
TPLP, 19(2):290–316.

[Eiter et al., 2009] Eiter, T., Erdem, E., Erdogan, H., and Fink, M. (2009). Finding
similar or diverse solutions in answer set programming. In ICLP, volume 5649 of
Lecture Notes in Computer Science, pages 342–356. Springer.

[Falkner et al., 2019] Falkner, A., Haselböck, A., Krames, G., Schenner, G., and Taupe,
R. (2019). Constraint solver requirements for interactive configuration. In Hotz, L.,
Aldanondo, M., and Krebs, T., editors, 21th Configuration Workshop (ConfWS),
number 2467 in CEUR Workshop Proceedings, pages 66–73, Aachen.

[Falkner et al., 2016] Falkner, A. A., Friedrich, G., Haselböck, A., Schenner, G., and
Schreiner, H. (2016). Twenty-five years of successful application of constraint tech-
nologies at Siemens. AI Magazine, 37(4):67–80.

[Falkner et al., 2015] Falkner, A. A., Ryabokon, A., Schenner, G., and Schekotihin, K.
(2015). OOASP: connecting object-oriented and logic programming. In LPNMR,
volume 9345 of Lecture Notes in Computer Science, pages 332–345. Springer.

[Fandinno and Schulz, 2019] Fandinno, J. and Schulz, C. (2019). Answering the "why"
in answer set programming - A survey of explanation approaches. TPLP, 19(2):114–
203.

371Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

[Felfernig et al., 2014] Felfernig, A., Hotz, L., Bagley, C., and Tiihonen, J. (2014).
Knowledge-based Configuration: From Research to Business Cases. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1st edition.

[Felfernig et al., 2012] Felfernig, A., Schubert, M., and Zehentner, C. (2012). An effi-
cient diagnosis algorithm for inconsistent constraint sets. AI EDAM, 26(1):53–62.

[Ferrucci, 1994] Ferrucci, D. A. (1994). Interactive configuration: a logic programming-
based approach. PhD thesis, Rensselaer Polytechnic Institute Troy, NY, USA.

[Fleischanderl et al., 1998] Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner,
H., and Stumptner, M. (1998). Configuring large systems using generative constraint
satisfaction. IEEE Intelligent Systems, 13(4):59–68.

[Gebser et al., 2015a] Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., and
Schaub, T. (2015a). Abstract gringo. TPLP, 15(4-5):449–463.

[Gebser et al., 2019a] Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Os-
trowski, M., Romero, J., Schaub, T., Thiele, S., and Wanko, P. (2019a). Potassco
guide version 2.2.0. https://github.com/potassco/guide/releases/tag/v2.2.0.

[Gebser et al., 2012] Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2012).
Answer Set Solving in Practice. Morgan and Claypool Publishers.

[Gebser et al., 2019b] Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T.
(2019b). Multi-shot ASP solving with clingo. TPLP, 19(1):27–82.

[Gebser et al., 2015b] Gebser, M., Obermeier, P., and Schaub, T. (2015b). Interactive
answer set programming - preliminary report. CoRR, abs/1511.01261.

[Gelfond and Kahl, 2014] Gelfond, M. and Kahl, Y. (2014). Knowledge Representa-
tion, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming
Approach. Cambridge University Press, New York, NY, USA.

[Hebrard et al., 2005] Hebrard, E., Hnich, B., O’Sullivan, B., and Walsh, T. (2005).
Finding diverse and similar solutions in constraint programming. In AAAI, pages
372–377. AAAI Press / The MIT Press.

[Hertum et al., 2017] Hertum, P. V., Dasseville, I., Janssens, G., and Denecker, M.
(2017). The KB paradigm and its application to interactive configuration. TPLP,
17(1):91–117.

[Heule et al., 2018] Heule, M. J., Järvisalo, M. J., Suda, M., et al. (2018). Proceedings
of SAT competition 2018. http://hdl.handle.net/10138/237063.

[Hotz et al., 2014] Hotz, L., Krebs, T., and Wolter, K. (2014). Combining software
product lines and structure-based configuration – methods and experiences. In Work-
shop on Software Variability Management for Product Derivation – Towards Tool
Support.

[Janota, 2010] Janota, M. (2010). SAT solving in interactive configuration. PhD the-
sis, University College Dublin.

[Junker, 2004] Junker, U. (2004). QUICKXPLAIN: preferred explanations and relax-
ations for over-constrained problems. In AAAI, pages 167–172. AAAI Press / The
MIT Press.

[Junker, 2006] Junker, U. (2006). Configuration. In Handbook of Constraint Program-
ming, pages 837–873. Elsevier.

[Jussien and Lhomme, 2002] Jussien, N. and Lhomme, O. (2002). Unifying search
algorithms for CSP. Rapport technique, École des Mines de Nantes.

[Kuchcinski and Szymanek, 2013] Kuchcinski, K. and Szymanek, R. (2013). JaCoP –
java constraint programming solver. In CPSolvers: Modeling, Applications, Integra-
tion, and Standardization, co-located with the 19th CP.

[Lifschitz, 2019] Lifschitz, V. (2019). Answer Set Programming. Springer.
[Madsen, 2003] Madsen, J. N. (2003). Methods for Interactive Constraint Satisfaction.

Master’s thesis, Department of Computer Science, University of Copenhagen.
[Meseguer et al., 2006] Meseguer, P., Rossi, F., and Schiex, T. (2006). Constraint

propagation. In Handbook of Constraint Programming, pages 281–328. Elsevier.

372 Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

[Møller et al., 2001] Møller, J., Andersen, H. R., and Hulgaard, H. (2001). Product
configuration over the internet. In Proceedings of the 6th INFORMS Conference on
Information Systems and Technology.

[Murashkin et al., 2013] Murashkin, A., Antkiewicz, M., Rayside, D., and Czarnecki,
K. (2013). Visualization and exploration of optimal variants in product line engi-
neering. In SPLC, pages 111–115. ACM.

[Nethercote et al., 2007] Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck,
G. J., and Tack, G. (2007). MiniZinc: Towards a standard CP modelling language.
In CP, volume 4741 of LNCS, pages 529–543. Springer.

[Nørgaard et al., 2009] Nørgaard, A. H., Boysen, M. R., Jensen, R. M., and Tiede-
mann, P. (2009). Combining binary decision diagrams and backtracking search for
scalable backtrack-free interactive product configuration. In [Stumptner and Albert,
2009], pages 31–38.

[O’Callaghan et al., 2005] O’Callaghan, B., O’Sullivan, B., and Freuder, E. C. (2005).
Generating corrective explanations for interactive constraint satisfaction. In CP,
volume 3709 of Lecture Notes in Computer Science, pages 445–459. Springer.

[Orsvärn and Axling, 1999] Orsvärn, K. and Axling, T. (1999). The Tacton view of
configuration tasks and engines. In Workshop on Configuration, Sixteenth National
Conference on Artificial Intelligence (AAAI-99), pages 127–130.

[Pleuss et al., 2011] Pleuss, A., Rabiser, R., and Botterweck, G. (2011). Visualization
techniques for application in interactive product configuration. In SPLC Workshops,
page 22. ACM.

[Prud’homme et al., 2017] Prud’homme, C., Fages, J.-G., and Lorca, X. (2017). Choco
documentation. http://www.choco-solver.org.

[Queva et al., 2009] Queva, M., Probst, C., and Vikkelsøe, P. (2009). Industrial re-
quirements for interactive product configurators. In [Stumptner and Albert, 2009],
pages 39–46.

[Rajaratnam, 2019] Rajaratnam, D. (2019). Clorm: An ORM API for clingo. https:
//clorm.readthedocs.io/en/stable/.

[Russell and Norvig, 2010] Russell, S. J. and Norvig, P. (2010). Artificial Intelligence
– A Modern Approach. Pearson Education, 3rd international edition.

[Schenner and Taupe, 2016] Schenner, G. and Taupe, R. (2016). Encoding object-
oriented models in MiniZinc. In Fifteenth International Workshop on Constraint
Modelling and Reformulation.

[Schenner and Taupe, 2017] Schenner, G. and Taupe, R. (2017). Techniques for solv-
ing large-scale product configuration problems with ASP. In Zhang, L. L. and Haag,
A., editors, Proceedings of the 19th International Configuration Workshop, pages 12–
19, La Défense, France.

[Schiendorfer et al., 2018] Schiendorfer, A., Knapp, A., Anders, G., and Reif, W.
(2018). MiniBrass: Soft constraints for MiniZinc. Constraints, 23(4):403–450.

[Schneeweiss and Hofstedt, 2011] Schneeweiss, D. and Hofstedt, P. (2011). FdConfig:
A constraint-based interactive product configurator. In INAP/WLP, volume 7773 of
Lecture Notes in Computer Science, pages 239–255. Springer.

[Stuckey et al., 2014] Stuckey, P. J., Feydy, T., Schutt, A., Tack, G., and Fischer, J.
(2014). The MiniZinc challenge 2008-2013. AI Magazine, 35(2):55–60.

[Stumptner and Albert, 2009] Stumptner, M. and Albert, P., editors (2009). Proceed-
ings of the IJCAI–09 Workshop on Configuration (ConfWS–09).

[Veksler and Strichman, 2010] Veksler, M. and Strichman, O. (2010). A proof-
producing CSP solver. In AAAI. AAAI Press.

[Zhou et al., 2015] Zhou, N., Kjellerstrand, H., and Fruhman, J. (2015). Constraint
Solving and Planning with Picat. Springer Briefs in Intelligent Systems. Springer.

373Falkner A., Haselboeck A., Krames G., Schenner G., Schreiner H., Taupe R. ...

