
Improving WalkSAT for Random 3-SAT Problems

Huimin Fu
(School of Information Science and Technology, Southwest JiaoTong University

 Chengdu 610031, China

fuhm6688@qq.com)

Yang Xu and Shuwei Chen *

(System Credibility Automatic Verification Engineering Lab of Sichuan Province

School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China

xuyang@swjtu.edu.cn and swchen@home.swjtu.edu.cn)

Jun Liu
(School of Computing, Ulster University, Northern Ireland, UK

j.liu@ulster.ac.uk)

Abstract: Stochastic local search (SLS) algorithms are well known for their ability to

efficiently find models of random instances of the Boolean satisfiability (SAT) problems. One

of the most famous SLS algorithms for SAT is called WalkSAT, which has wide influence and

performs well on most of random 3-SAT instances. However, the performance of WalkSAT

lags far behind on random 3-SAT instances equal to or greater than the phase transition ratio.

Motivated by this limitation, in the present work, firstly an allocation strategy is introduced and

utilized in WalkSAT to determine the initial assignment, leading to a new algorithm called

WalkSATvav. The experimental results show that WalkSATvav significantly outperforms the

state-of-the-art SLS solvers on random 3-SAT instances at the phase transition for SAT

Competition 2017. However, WalkSATvav cannot rival its competitors on random 3-SAT

instances greater than the phase transition ratio. Accordingly, WalkSATvav is further improved

for such instances by utilizing a combination of an improved genetic algorithm and an

improved ant colony algorithm, which complement each other in guiding the search direction.

The resulting algorithm, called WalkSATga, is far better than WalkSAT and significantly

outperforms some previous known SLS solvers on random 3-SAT instances greater than the

phase transition ratio from SAT Competition 2017. Finally, a new SAT solver called

WalkSATlg, which combines WalkSATvav and WalkSATga, is proposed, which is

competitive with the winner of random satisfiable category of SAT competition 2017 on

random 3-SAT problem.

Keywords: 3-SAT; genetic algorithm; ant colony algorithm; WalkSAT; allocation strategy

Categories: D.1.6

1 Introduction

In computational complexity theory, the Cook-Levin theorem named after Cook

[Cook, 1971] and Levin [Levin, 1984] states that Boolean satisfiability problem

* Corresponding author. Shuwei Chen, National-Local Joint Engineering Laboratory of System

Credibility Automatic Verification, Southwest Jiaotong University, Chengdu, China. E-mail:

swchen@home.swjtu.edu.cn

 Journal of Universal Computer Science, vol. 26, no. 2 (2020), 220-243
 submitted: 12/2/19, accepted: 27/2/20, appeared: 28/2/20 CC BY-ND 4.0

(SAT) is NP-complete. Thus, it is of great significance to find efficient SAT

algorithms and apply them to engineering practice, which can improve productivity

and promote social development [Marques-Silva, 2008; Xu, 2013].

SAT is the problem of deciding if there is an assignment for the variables in a

propositional formula that makes the formula true [Chao, 1986; Faizullin, 2013,

Zhang, 2015]. 3-SAT is a special case of SAT problem to target the Boolean formula

of a particular form. There are many approaches to solve the SAT problem, which are

mainly divided into two categories: one is complete, the other is stochastic local

search (SLS) algorithms. Although the SLS algorithms are typically incomplete in the

sense that they cannot prove an instance to be unsatisfiable, they often find solutions

rather effectively [Cai, 2013a]. Moreover, some SLS algorithms are more effective

than the state-of-the-art complete solvers on random 3-SAT problem.

SLS algorithms start by randomly generating a truth assignment of the variables

of formula. Then it explores the search space to minimize the number of falsified

clauses. To do this, it iteratively adopts some heuristics to select a variable to be

flipped until it seeks out a solution or timeout. Genetic algorithm [Li, 2016; Canisius,

2016] and ant colony algorithm [Gao, 2007; Youness, 2015; Fu, 2018b] with global

search are typically incomplete algorithms for solving SAT problem. Compared with

the SLS algorithms, the incomplete algorithms with global search have a high time

complexity, thus they are not widely utilized for solving SAT problem.

A family of SAT instances includes uniform random k-SAT [Achlioptas, 2009]

and hard random SAT [Balyo, 2016]. In the last two decades, most SLS algorithms

focus on solving uniform random k-SAT instances, refer to e.g., [Selman, 1994; Hoos,

2002; Kroc, 2010; Luo, 2012; Balint, 2012; Luo, 2013; Cai, 2017; Biere, 2017].

Moreover, substantial progress has been made in solving uniform random k-SAT with

various clause-to-variable ratios.

Note that the hard instances of NP-hard problems are often associated with a

phase transition. With SAT, there is a phase transition between satisfiability and

unsatisfiability as the ratio of the number of clauses to variables in a problem is varied.

The phase transition for SAT is therefore of considerable practical and theoretical

importance. Solving hard random SAT remains a great challenge for all SLS

algorithms including Dimetheus [Gableske, 2016], YalSAT [Biere, 2017] and

Score2SAT [Cai, 2017]. Although uniform random k-SAT at the phase transition has

been cited as the hardest track of SAT problems [Cai, 2013b; Luo, 2014], hard

random SAT is even harder for SLS solvers. The main motivation for hard random

SAT generated is to evaluate and improve SAT solvers (especially for SLS solvers)

[Balyo, 2016]. It is worth noting that the hard random SAT problem is focused on 3-

SAT instances greater than the phase transition ratio. Especially, most (nearly 65%

of) instances on the benchmark of the random SAT track in SAT Competition 2018

are hard random SAT. Moreover, this direction has been a mainstream of SLS

algorithms for SAT, which is witnessed by SAT competitions, where the instances of

random track of recent SAT Competitions are composed of uniform random k-SAT

instances and hard random SAT instances. However, the performance of existing SLS

algorithms on hard random SAT instances is still rather unsatisfactory.

Among SLS algorithms for SAT problems, WalkSAT [Selman, 1994] stands out

as one of the most influential algorithms. Moreover, extensive experiments have

shown that the technique of WalkSAT is very suitable for random 3-SAT problem

221Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

[Liang, 1998]. Therefore, many scholars develop SLS algorithms based on WalkSAT

for random SAT problem [Kroc, 2010; Luo, 2015]. For example, some researchers

optimize WalkSAT algorithm to solve random k-SAT instances with k>3 [Luo, 2012;

Luo, 2013]. However, the performance of WalkSAT lags far behind on random 3-

SAT instances greater than the phase transition ratio, and the performance of

WalkSAT at the phase transition still needs to be improved.

This present work aims to improve WalkSAT for random 3-SAT instances. One

improvement is based on the allocation strategy, which was first introduced and

utilized in [Fu, 2018a] to improve a greedy local search algorithm GSAT [Selman,

1992], resulting in an efficient local algorithm called AS, whose performance far

exceeds GSAT for solving 3-SAT from STALAB library. The main advantage of

allocation strategy is to handle the cycling problem. A combination of GSAT and

genetic algorithm (as a global search algorithm), named GAGR [Fu, 2017], was

proposed for solving 3-SAT instances with some competitive performance. Although

WalkSAT is competitive with the state-of-the-art solvers for solving random 3-SAT

problem, it is a SLS algorithm and easy to fall into the cycling problem. In addition, it

is also easy to get stuck in the local optimum. This motivates us to optimize

WalkSAT using the global search. Thus, some global search algorithms, e.g., genetic

algorithm and ant colony algorithm, are considered to be incorporated into WalkSAT

to further improve its performance on random 3-SAT instances equal to and greater

than the phase transition ratio.

The remainder of our paper is organized as follows. Section 2 provides some

preliminary definitions and notations, followed by a brief review of the allocation

strategy for 3-SAT, the WalkSAT algorithm, genetic algorithm and ant colony

algorithm. Section 3 summarizes main contributions of the present work. Section 4

proposes an improved WalkSAT algorithm using the allocation strategy, called

WalkSATvav, along with its experimental results and analysis. Section 5 presents a

new algorithm called WalkSATga, which utilizes a combination of an improved

genetic algorithm and an improved ant colony algorithm into WalkSATvav, along

with its experimental results and analysis. In Section 6, a combined algorithm called

WalkSATlg is proposed by combining WalkSATvav and WalkSATga, and its

performance is demonstrated by summarizing and analyzing the experimental results

on random 3-SAT instances for SAT Competition 2017. Section 7 discusses the main

differences between WalkSATvav and AS as well as the major differences between

WalkSATga and GAGR. Finally, Section 8 concludes the paper with some future

directions discussed.

2 Related Works

2.1 Some Basic Definitions and Notations

The symbol xi, i Å {1, 2, «, n} represents a Boolean variable. Let Xn= {x1, x2, «, xn}

symbolizes a collection of Boolean variables, where the number of variables is

denoted as n. Boolean variable xi or the negation of Boolean variable ¬xi represents

literal li, i Å {1, 2, «, n}. A clause ic is a disjunction of some literals, i.e.,

ci=l1»l2»«»lk. A conjunctive normal form (CNF) F can be described as conjunction

of some clauses, i.e., F=c1ºc2º«ºcm, where the number of clauses in F is denoted as

222 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

m. If each clause contains k literals in a CNF formula, then the formula is a k-SAT

problem. In this paper, we are only concerned with the 3-SAT problem. In a formula

F we use r=m/n to denote clause-to-variable ratio of F, and is the total number of

the literal
ix appearing in F, and is the total number of the literal

ix� appearing

in F.

The value of Boolean variable is either true or false. In this paper, 0 denotes false,

and 1 denotes true. A mapping �: Xn : {0, 1}is called a complete assignment. Given

a CNF formula F, the SAT problem is to decide whether all clauses are satisfied by a

complete assignment in F. The break of a variable x is the number currently satisfied

clauses that would become unsatisfied by flipping variable x. The score of a variable x

is the increment of currently satisfied clauses by flipping variable x.

2.2 Allocation Strategy for Random 3-SAT Instances

The idea of allocation strategy [Fu, 2018a] is to determine a complete assignment as

the initial solution for solving 3-SAT problem. It can guide the optimal assignment

and accelerate to find the optimal solution.

Definition 1. Given a CNF formula F, the Variable allocation degree Vad(xi) of a

variable i nx X� is defined as:

1, 0
2 1) ()

,

i

i i

x

i

x x

pad n
Vad x

p n otherwise

� °
� ®

°̄

where pad is a positive parameter greater than 1.

Note that for a variable xi it is called the positive Vad of xi if Vad(xi)�1; and it is

called the negative Vad of xi if Vad(xi)<1. In solving the 3-SAT problem, different

settings of the parameter pad have a direct impact on the performance of the

algorithm.

Definition 2. Given a CNF formula F, and a random function � �ixF that only

produces 0 or 1, the Variable allocation value ()iVav x of a variable i nx X� is

defined as:

� �

1 , ()

2 2) () 0 , ()

,

i

i i

i

Vad x pad

Vav x Vad x nad

x otherwiseF

!
°

� �®
°
¯

where � �ixF is a random number that can produce 0 and 1 and nad is a positive

parameter less than 1.

In fact, Vav of all variables is a complete assignment as the initial solution for

solving a 3-SAT problem.

Remark: A variable xi satisfies the allocation strategy if and only if Vav(xi)>pad

or Vav(xi)<nad.

2.3 WalkSAT Algorithm

WalkSAT is one of the most influential SLS algorithms for SAT. Its framework has

been widely used, and it is still competitive with the state-of-the-art solvers for

solving random 3-SAT instances. However, according to the experimental results of

223Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

SAT Competition 20171, the success rate of all solvers participating in the SAT

Competition 2017 is still relatively small for solving the 3-SAT instances with

r=4.267.

First, WalkSAT algorithm chooses a clause C randomly from the unsatisfied

clauses. If there exist variables whose breaks are 0, one of such variables is flipped

randomly; and if no such variable exists, then with a certain probability p (the noise

parameter), WalkSAT algorithm selects a variable randomly from the clause C;

otherwise, WalkSAT selects a variable with the minimum break to be flipped, and

further breaks ties randomly.

2.4 Genetic Algorithm Overview

Genetic algorithms (GA) for solving 3-SAT problems mainly include three aspects

[Fu, 2017]: problem transformation, chromosome encoding and genetic manipulation

design. The core of problem transformation is how to define the fitness function f.

Thus, SAT problems are transformed into an optimization problem of the

corresponding fitness function. Using the binary string to represent a complete

assignment is the most intuitive chromosome coding approach, which takes full

advantage of the characteristics of SAT problems and is easy to calculate the fitness

function and design a variety of genetic operations. For the SAT problems with n

variables, the chromosome is represented by n as a binary string, which is directly

corresponding to the assignment of the variables.

There are three kinds of genetic manipulation [any reference about GA]:

selection operation, crossover operation and mutation operation. The selection

operation is utilized to select groups of contemporary individuals and prepare for

breeding the next generation. Crossover operation is used to the process of simulating

biological reproduction by exchanging parts of two individual chromosomes and

generate two new individuals. Since chromosomes are encoded by binary code,

crossover operation can be accomplished by truncating and stitching binary strings.

Mutation operation is adopted to simulate the mutation of a chromosome gene in the

biological evolution and flip each chromosome at a certain probability, L�H�� �:���

�:���

As GA searches for different positions of the solution space, it significantly

reduces possibility of getting into the local optimum. GA repeat these operations until

the termination condition is met. The termination condition is to obtain a satisfiable

solution or achieve the maximum operations. The pseudo code of GA for SAT

problems is given in Algorithm 1.

GA has the following advantages: (1) the ability with a global search and

independent of the problem domain; (2) search from group with potential parallelism

and multi-value comparison as well as robustness; (3) the search using evaluation

function enlighten and simple process; (4) using probability mechanism to iterate; (5)

extensible and easy to combine with other algorithms. The disadvantage of GA is that

it is not enough to make use of the feedback information in the system [Li, 2003]. In

this paper, the improved GA for solving 3-SAT problems is based on the restart and

greedy strategy [Fu, 2017].

1 https://baldur.iti.kit.edu/sat-competition-2017/results/random.csv.

224 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

Algorithm 1: GA(F)

Input: CNF-formula F

Output: A satisfying assignment 1 of F��RU�³QR�VROXWLRQ�IRXQG´

begin

1 t 80 ;// t represents evolutionary generations

2 initialize (P(t)); //Initial population

3 evaluate (P(t)); // Fitness evaluation

4 keep_best (P(t));// Preserving the most chromosomes

5 while (not terminate condition) do

6 begin

7 P(t) 8 secletion (P(t));// selection operation

8 P(t) 8crossover (P(t));// crossover operation

9 P(t) 8mutation (P(t));// mutation operation
10 t8t+1;

11 evaluate (P(t));

12 if(fitness of P(t)>best fitness)

13 Replace (best);// Replacing best with the best chromosome of P(t)

14 end

15 end

2.5 Ant Colony Algorithm Overview

Through long-term research, bionic scientists found that although ants have no vision, they

can find a path by releasing pheromones on the path. The ant will release information

about the path length on the path that is passed. The more information the path has, the

more probability the path is selected. In this way, the role of pheromone makes the

behavior of entire ant colony highly self-organizing. The ants exchange path information

and eventually find the optimal path based on ant colony behavior. The fitness formula of

each ant is the same as the fitness formula of each chromosome in GA.

The early success of ant colony algorithms (ACA) is to solve the famous TSP

problem, and ant colony algorithms have excellent performance in solving various NP-

hard problems [Wang, 2012]. ACA has the following advantages: (1) its principle is an

enhanced learning system, which eventually converges to the optimal path through the

continuous updating of pheromones; (2) it has a common property of SLS approaches, but

the artificial ants are not a simple simulation of real ants, which is integrated into human

intelligence; (3) it is a distributed optimization method, and not only suitable for the

present serial computer, but also suitable for the future parallel computer; (4) it is a global

optimization method, which not only can be used to solve the single objective

optimization problem, but also can be used to solve the multi-objective optimization

problem.

Disadvantage of ACA is lack of initial pheromone and low efficiency [Li, 2003].

In this paper, an improved ant colony algorithm is used to solve the 3-SAT problem,

which is presented in Section 5.

225Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

3 Main Contributions

As the first contribution, the present work is to use the allocation strategy to generate

a complete assignment as the initial solution for WalkSAT. Note that allocation

strategy is based on Vad and Vav. Vad of a variable x is determined by the ratio of the

numbers of positive literal x and negative literal ¬x in a SAT instance, and Vav of a

variable x is obtained according to Vad of x. The allocation strategy for SAT is

utilized in the present work to improve WalkSAT, resulting a new algorithm called

WalkSATvav. To demonstrate the effectiveness of WalkSATvav, we compare it with

many state-of-the-art solvers on random 3-SAT instances at the phase transition.

WalkSATvav outperforms YalSAT [Biere, 2017] (the winner of SAT Competition

2017), Score2SAT [Cai, 2017] (won the bronze of the random track of SAT

Competition 2017), CSCCSat [Luo, 2016] (won the silver of the random track of SAT

Competition 2016), and DCCAlm [Luo, 2016] (won the bronze of the random track of

SAT Competition 2016). However, WalkSATvav cannot compete with these solvers

on solving random 3-SAT instances greater than the phase transition ratio. In our

view, this is partially due to the fact that the WalkSATvav is a SLS algorithm that is

easy to reach the local optimal solution instead of finding the global optimal solution.

The second contribution of this work is to improve the WalkSATvav for SAT by

remedying its shortcoming as mentioned above. Accordingly, we combine the GA

with the allocation strategy and utilize an improved ACA as well as in the WalkSAT,

leading to a new algorithm called WalkSATga. In WalkSATga, there are two

different priorities in the global search. GA and ACA complement each other and

play an important role in guiding the search direction to find the solution. GA is

adopted to generate the pheromone distribution, and ACA is used to generate the

suboptimal solution. Then the suboptimal solution obtained is utilized as the initial

assignment of WalkSAT to guide the future search, which plays an important role in

the whole solution process. To demonstrate the effectiveness of WalkSATga, we

compare it with many state-of-the-art solvers on random 3-SAT instances greater than

the phase transition ratio. The experimental results show that WalkSATga has almost

the same success rate as YalSAT, and far beyond CSCCSat and WalkSAT for random

3-SAT instances greater than the phase transition ratio.

The third contribution of this work is to combine WalkSATga with WalkSATvav,

leading to a new algorithm called WalkSATlg, which, as illustrated through extensive

experiments, outperforms YalSAT Score2SAT, CSCCSat, DCCAlm and WalkSAT on

all random 3-SAT instances from SAT Competition 2017.

4 WalkSATvav Algorithm for Random 3-SAT Instances at the

Phase Transition

4.1 Rationality of Allocation Strategy

Different parameter settings could show different performances of the algorithms.

Based on the 3-SAT instances with r=4.3 in the SATLAB library2, we found that if

the parameters pad and nad are tuned appropriately, the assignments of 90% of

2https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

226 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

variables based on the allocation strategy are the same as that of the corresponding

variables of the optimal solution [Fu, 2018a]. The idea of allocation strategy is to

generate a complete assignment as the initial solution for solving 3-SAT problem in

order to guide the trend of optimal assignment in advance, therefore reduce search

space and accelerate finding the optimal solution. In fact, it has an essential impact on

the WalkSATvav algorithms.

Since the allocation strategy is an important component of WalkSATvav, we are

interested in this question: how often the allocation strategy is executed to initialize

the assignment for variables? We have carried out an experiment for WalkSATvav on

random 3-SAT instances from SAT Competition 20173 to figure out how frequently

the allocation strategy is performed in generating an initial assignment. There include

all 120 hard random instances with r=4.3, 5.204<r<5.206, and r=5.5 (40 instances

each ratio), as well as all 60 uniform random 3-SAT instances (20 instances with

r<4.267, 40 instances with r=4.267).

The allocation strategy execution ratio (AS ratio) is calculated as frequency_AS/n

(see below) and the experimental results are summarized in Table 1.

x #frequency_AS: denotes the frequency of executing the allocation strategy for

variables which is the total number of variables that satisfy the following

formula with the setting of pad=1.8 and nad=0.56.

4 1) i

i i

x

x x

p
pad

p n
� !

� or
i

i i

x

x x

p
nad

p n
�

�

x # n: the total number of variables that require the initial assignment.

Clause-to-variable

ratio
r=4.3 r=5.5 ������r������ r<4.267 r=4.267

Average AS ratio 0.3737 0.346 0.3075 0.3371 0.3285

Table 1: Average AS ratio of the variables executing the allocation strategy for each ratio

from SAT Competition 2017.

As is demonstrated in Table 1, the allocation strategy is performed in about 30% of

variables for 3-SAT instances with r�4.3, and closes to 40% for 3-SAT instances with

r=4.3. Therefore, the allocation strategy plays a substantial role in the WalkSATvav

algorithm.

4.2 WalkSATvav Algorithm

WalkSATvav differs from WalkSAT only in generating an initial assignment. The

pseudo code of WalkSATvav algorithm is outlined in Algorithm 2 below. More

specifically, WalkSATvav generates a complete assignment 1 by the allocation strategy as

the initial solution. After initialization, WalkSATvav executes a loop until it finds a

satisfying assignment or reaches the time limit.

3 https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/

227Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

4.3 Evaluation of WalkSATvav Algorithm

In this subsection, we first introduce the benchmarks, the competitors, and the

experimental setup utilized in our experiments. Then, we report the experiments

conducted on the random 3-SAT benchmarks to evaluate the efficiency of WalkSATvav.

Algorithm 2: WalkSATvav (F)

 Input: CNF-formula F, MaxTries, MaxSteps

 Output: A satisfying assignment 1 of F��RU�³QR�VROXWLRQ�IRXQG´

begin

 1 1 8a generated truth assignment for F by the allocation strategy;

2 for i = 1 to MaxTries do

3 for j = 1 to MaxSteps do

4 if 1 satisfies F then Return 1;

5 C 8an unsatisfied clause chosen at random;

6 With probability p

7 v 8a random variable in C;

8 With probability 1 í p

9 v 8�a variable in C with minimum break;

10 1: = 1 with v flipped;

11 end for

12 end for

13 Return ³QR�VROXWLRQ�IRXQG´�

14 end

4.3.1 Benchmarks and experiment preliminaries

We evaluate WalkSATvav on all random 3-SAT instances at the phase transition

from SAT Competition 2016 and 2017 (r=4.267, 5000 �Q��12800, 80 instances, two

instances each size).

WalkSATvav is implemented in C language and compiled by Dev-C++. For the

two parameters pad and nad in WalkSATvav, we test all groups of pad=1.5, 1.6, «, 3

(the performance of WalkSATvav degrades significantly when pad exceeds 3) and

nad=0.3, «, 0.6. The preliminary results show that, on solving random 3-SAT

instances, pad=1.8 and nad=0.56 are the best setting. In order to find a more optimal

parameters setting for WalkSATvav, we test the parameters near pad=1.8 and

nad=0.56 in a higher degree of accuracy, but did not observe any noticeable

improvement. This means that WalkSATvav is not so sensitive to its parameters.

We compare WalkSATvav with five SLS solvers including YalSAT and

Score2SAT 4 (the winder and the bronzer of the random track of SAT Competition

2017 respectively), CSCCSat and DCCAlm 5 (the silver and the bronzes respectively

at the random track of SAT Competition 2016), as well as WalkSAT which is the

most influential SLS algorithms for solving 3-SAT instances. Especially, Score2SAT

significantly outperformed other competitors on random 3-SAT instances, and

CSCCSat and DCCAlm significantly outperformed other competitors on random 3-

SAT instances at the phase transition of SAT Competition 2016.

4 https://baldur.iti.kit.edu/sat-competition-2017/solvers/
5 https://baldur.iti.kit.edu/sat-competition-2016/solvers/

228 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

In the subsequent sections, all experiments run on a machine with a 3.4 GHZ

Intel Core i3-3240 CPU and 8 GB RAM under Windows. Each solver is performed

for 10 runs for each instance with a cutoff time of 5000 seconds. We report the

number of averaged successful runs �³num´���L�H���WKH�QXPEHU�RI�WRWDO�VXFFHVVIXO�UXQV�

GLYLGHG�E\�����DQG�³DOO´�UHSUHVHQWV�WKH�WRWDO�QXPEHU�RI�DYHUDJH successful runs, i.e. ,

WKH� VXP� RI� ³num´�� DV� ZHOO� DV the success rate �³VXF� UDWH´��� L�H�� �� WKH� QXPEHU� RI�

successful runs divided by the number of total runs.

4.3.2 Comparing WalkSATvav with the state-of-the art SLS solvers on random 3-

SAT instances at the phase transition

For the 80 instances from random track of SAT Competition 2016 and 2017, Table 2

and Table 3 only show some instances which can be solved by these algorithms

mentioned in this paper. However, other instances that are not shown in Table 2 or

Table 3 cannot be solved by the algorithms mentioned in this paper.

Table 2 summarizes the performance of WalkSATvav on the random 3-SAT at

the phase transition from SAT Competition 2017. The experimental results show that

WalkSATvav significantly outperforms the above five SLS solvers on these instances.

In particular, WalkSATvav solves 2 instances more than WalkSAT, 5 instances more

than YalSAT on the 3-SAT instances with r=4.267. A well-known hardest

distribution of SAT instances is at the phase transition [Xu, 2012]. Thus, although one

instance of solving success is increased, it is enough to show the better performance

Instance

Class
YalSAT

num
Score2SAT

num
CSCCSat

num
DCCAlm

num
WalkSAT

 num
WalkSATvav

num

v5400 1 1 1 1 1 1

v6400 0 0 0 0 0 1

v7400 1 1 1 1 1 1

v7600 0 0 0 1 1 1

v8000 1 0 1 0 1 1

v8200 1 1 1 1 1 1

v9400 0 0 0 0 1 1

v9600 1 1 1 1 1 1

v10200 0 0 0 0 1 1

v11000 1 1 1 1 1 1

v11200 1 1 1 1 1 1

v11600 0 1 1 1 0 1

All 7 7 8 8 10 12

suc rate 17.5% 17.5% 20% 20% 25% 30%

Table 2: Experimental results on the 3-SAT benchmark based on 10 runs for each

instance, with a cutoff time of 5000s. Instances are at the phase transition from SAT

Competition 2017.

229Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

Instance
Class

YalSAT
num

Score2SAT
num

CSCCSat
num

DCCAlm
num

WalkSAT
num

WalkSATvav
num

v5800 0 0 0 0 1 1

v9000 1 1 1 1 1 1

All 1 1 1 1 2 2

suc rate 2.5% 2.5% 2.5% 2.5% 5% 5%

Table 3: Experimental results on the 3-SAT benchmark based on 10 runs for each

instance, with a cutoff time of 5000s. Instances are at the phase transition from SAT

Competition 2016.

Figure 1: Comparing averaged CPU time distributions for SAT solvers in the random

track of SAT Competition 2017 on random 3-SAT instances at the phase transition,

where the cutoff time is 5000 s.

of WalkSATvav. Moreover, the good performance of WalkSATvav on the SAT

Competition 2017 is clearly illustrated by Figure 1, which summarizes the run time

distributions of the solvers on this benchmark.

5 Improving WalkSATvav Algorithm on Random 3-SAT

Section 4 above shows the good performance of WalkSATvav on random 3-SAT at the

phase transition. However, the performance of WalkSATvav degrades on the 3-SAT

instances greater than the phase transition ratio, e.g., WalkSATvav is worse than other

state-of-the-art SLS solvers such as YalSAT and Score2SAT, which are the top three

solvers in the satisfiable random category of SAT Competition 2017.

230 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

Although the allocation strategy shows its effectiveness in the local search

algorithms for solving random 3-SAT instances at the phase transition, it is still in its

infancy. We consider the allocation strategy on random 3-SAT instances is too greedy

for variable allocation value. The initial assignment largely determines the direction

of the search. If an initial assignment is generated according to the allocation strategy,

the restart strategy will occur when the number of flipping exceeds the search step

limit in WalkSATvav, i.e., WalkSATvav would restart to obtain a new initial

assignment based on the allocation strategy, and then to find an optimal solution.

Since the allocation strategy is too greedy, WalkSATvav may result in a new initial

assignment by restarting. However, the differences between the new initial

assignment and the previous initial assignment may be small and even equal. Thus,

WalkSATvav may perform the same search process as the previous one after

restarting strategy activates. Especially, WalkSATvav could fall into a cycle, and

waste a lot of time in a certain extent. Thus, this lack of differentiation is a serious

disadvantage for WalkSATvav in our opinion.

To overcome this drawback, we combine the improved GA (the GA using the

allocation strategy) with the improved ACA (detailed in Section 5.1 below) that has

global search capabilities in order to improve WalkSATvav further. According to the

advantages and disadvantages of both GA and ACA, we make full use of their

advantages in this work so that they can complement each other. The improved GA is

used to generate the pheromone distribution for the subsequent improved ACA, which

is then used to generate the suboptimal solution as the initial assignment of WalkSAT

to guide the future search, which plays an important role in the whole search process.

It is worth noting that in the improvement process, the allocation strategy is utilized to

the GA instead of WalkSAT.

5.1 Improved ACA

Considering an example of a formula: assume that the number of variables is n and

the number of clauses is m. Suppose the variable set is Xn={x1, x2, «, xn} and the

clause set is Cm={c1, c2,«, cm}. Construct a structure diagram as shown in Figure 2.

There are two types of values for each variable xi, i Å {1, 2, «, n}, i.e. 0 or 1, and the

structure diagram has 2*n edges 1 0

1 1{(,) , (,) | {1,2, , }}i i i ix x x x i n� � � . (xi, xi+1)1

indicates that the assignment of the variable ix takes 1, and (xi, xi+1)2 means that the

assignment of the variable ix takes 0. An ant needs to travel n edges to get a set of

assignments [Fu, 2018b].

Figure 2: n variables structure diagram.

231Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

5.1.1 Edge selection rules

In the search process, the ants calculate the transition probability based on the amount

of information of each path. Then the ant goes from vertex xi to vertex xi+1, i Å {1,

2, «, n}. There are two paths: 0 and 1, and the probability of xi taking 0 or 1 is the

following two formulas respectively:

� � � �
� � � � � � � �

1 1

1

1 1 0 0

*
5-1) ()

* *

i i

i i i i

a

x x

i a a

x x x x

P x

E

E E

W K

W K W K

�
;

� � � �
� � � � � � � �

0 0

0

1 1 0 0

*
5-2) ()

* *

i i

i i i i

a

x x

i a a

x x x x

P x

E

E E

W K

W K W K

�
.

When the ACA runs, it calculates the probability value according to Eqs. 5-1) and 5-2),

and then chooses an edge according to the roulette rules. In Eqs. 5-1) and 5-2), . is a

heuristic factor of pheromone, and � is the expected heuristic factor, and . and � reflect the

relative importance of the information accumulated in the process of the ant colony

algorithm and the heuristic information in the ant selection path, respectively. Here 1

ixW is

the pheromone value of ix , and 0

ixW is the pheromone value of ix� , and 1

ixK is the

heuristic information value of ix , and 0

ixK is the heuristic information value of ix� .

5.1.2 Pheromone update rules

As discussed in Section 3, we know that the disadvantage of GA is that it is not

enough to make use of the feedback information, and the disadvantage of ACA is the

lack of initial pheromone and low efficiency. Thus, we perform the improved GA, and

then activate the ACA to select an individual with the maximum fitness value in THE

restricted populations by the improved GA, i.e., a set of assignments with the maximal

fitness value become the initial information of ACA.

Suppose that the suboptimal individual obtained by the improved GA is X, we regard

it as an ant X. If X has traversed n edges from x1 to xn, X starts to initialize information

according to the following two equations 5-3) and 5-4). Then ACA selects an ant Xm with

the maximal fitness value, after each ant gets a set of assignments. Finally, the ant Xm

updates the information according to the following two equations 5-5) and 5-6):

� � � �
� �

1

11

0

1

() , (,)
5 3)

, (,)i

i i

x

i i

m f X f X x x

f X m x x
W �

�

 �°
� ®

°̄ ;

� �
� � � �

1

10

0

1

, (,)
5 4)

() , (,)i

i i

x

i i

f X m x x

m f X f X x x
W �

�

°
� ®

�°̄ ;

� �1 1

11

1 0

1

*(1) , (,)
5 5)

*(1) , (,)

i

i

i

x m i i

x

x i i

p Q f X x x

p x x

W
W

W
�

�

 � �°
� ®

�°̄ ;

232 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

� �0 0

10

0 1

1

*(1) , (,)
5 6)

*(1) , (,)

i

i

i

x m i i

x

x i i

p Q f X x x

p x x

W
W

W
�

�

 � �°
� ®

�°̄
;

where p is the pheromone residue factor, p Å [0, 1]. If 1

ixW or 0

ixW exceeds the maximal

pheromone
maxt , then 1

maxix tW or 0

maxix tW ; if 1

ixW or 0

ixW is less than the minimal

pheromone
mint , then 1

minix tW or 0

minix tW . After each pheromone updates, ACA sets

the pheromone between the maximal pheromone value maxt and the minimal pheromone

value mint . Q is a constant related to the pheromone quantity released by ants.

5.1.3 Heuristic update rules

The heuristic information reflects the degree of inspiration of adjacent two variables, and

the values of heuristic information obtained by the GA are not changed in the whole

operation of ACA. The heuristic information of a variable xi�Xn is given as follows, where

 and are described in Section 2.

1 05 7) = ,i i

i i

i i i i

x x

x x

x x x x

p n

p n p n
K K�

� �
.

5.1.4 Improved ACA

All formulas from Eqs. 5-3) to Eqs. 5-7) are proposed based on the characteristics of

random 3-SAT problem greater than the phase transition ratio. A new variable

assignment heuristic strategy (varassign) named IAS is introduced in the ACA. The

pseudo-code of IAS is given in Algorithm 3 below. The improved ACA applies

crossover operation and mutation operation like the GA, where maxGenerations

represents the maximum limit of evolutionary generation.

233Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

Algorithm 3: varassign-heuristic IAS

Input: CNF-formula F, maxAnts= / 2n , maxGenerations, , , ,p QD E

Output: A satisfying assignment V of F��RU�³8OWLPDWHO\�WKH�EHVW�DVVLJQPHQW 1 ´

begin

1 1 : = a better truth assignment generated by GA;

2 Initialize heuristic information;

3 Initialize pheromone by 1;

4 for step : = 1 to maxGenerations do

5 Calculates the transition probability;

6 for step : = 1 to maxAnts do

7 P: = Get a new truth assignment 1 by roulette rules according to

transition probability;

8 if 1 satisfies F then return 1;

9 end for

10 P18Crossover operation on P;

11 P28Mutate operation on P1;

12 for step : = 1 to maxAnts do

13 if 1ÅP2 satisfies F then return 1;

14 end for

15 Update pheromone;

16 end for

17 Find the ant 1 with the greatest fitness;

18 return ³Ultimately the best assignment 1´�

19 end

5.2 WalkSATga Algorithm

We employ the improved GA and the improved ACA as detailed above into

WalkSATvav, resulting in a new algorithm called WalkSATga, which integrates the

global search algorithm with some local search strategies. The pseudo-code of

WalkSATga algorithm is outlined in Algorithm 4 below.

WalkSATga utilizes two global search schemes including the improved GA and the

improved ACA. It is different from the WalkSATvav algorithm which is only based

on the local search. Firstly, WalkSATga algorithm utilizes the improved GA to obtain

an optimal assignment which serves as an initial pheromone of IAS, and then IAS is

executed to get a suboptimal assignment which serves as an initial assignment of

WalkSAT. This initial assignment determines the search direction of WalkSAT. The

simply flow chart of WalkSATga is given in Figure 3 below.

234 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

Algorithm 4: WalkSATga(F)

Input: CNF-formula F , MaxTries, MaxSteps

Output: A satisfying assignmentV of F��RU�³QR�VROXWLRQ�IRXQG´

 begin

1 for i = 1 to MaxTries do

2 1: = a better truth assignment generated by GA;

3 if 1 satisfies F then Return 1;

4 V : = a suboptimal truth assignment generated by varassign-heuristic IAS;

5 if 1 satisfies F then Return 1;

6 for j = 1 to MaxSteps do

7 C 8an unsatisfied clause chosen at random;

8 With probability p

9 v 8a random variable in C;

10 With probability 1 í p

11 v 8�a variable in C with the minimum break;

12 Flip v in 1;

13 if 1 satisfies F then Return 1;

14 end for

15 end for

16 Return ³QR VROXWLRQ�IRXQG´�

17 end

Figure 3: Flow chart of WalkSATga

Since GA and ACA are not suitable for solving large SAT problem, we call

WalkSATga for solving small SAT problem; otherwise, we call WalkSAT for solving

SAT problem.

WalkSATga algorithm has two important advantages: it makes full use of the

advantages of GA and ACA, and also employ the advantages of both local search and

global search.

5.3 Evaluations of WalkSATga Algorithm

5.3.1 Benchmarks and experiment preliminaries

To evaluate WalkSATga, we set up the following three benchmarks:

1. 3-SAT r=4.3: 40 hard random 3-SAT instances with r=4.3 from SAT

Competition 2017 (400 �n �540, 5 instance each size).

2. 3-SAT r=5.5: all random 3-SAT instances with r=5.5 from SAT Competition

2017 (400 �n �540, 5 instance each size, 40 instances in all).

3. 3-SAT r=4.3: 500 random generated instances with r=4.3 (200�n�600 variables,

100 instances each size).

Improved GA IAS WalkSAT

235Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

WalkSATga is implemented in C and compiled by Dev-C++. For the five

parameters in WalkSATga, we test all groups of maxGenerations=2, ��«� 40 (the

performance of WalkSATga degrades significantly when maxGenerations exceeds

40), .=��������«���, � ���������«���, p=����������«�����, and Q=1, 2, 5, 10, 15, 20,«��

100 for solving random 3-SAT instances with r= 4.3 from SATLAB library. The

experimental results show that the parameters ., p and Q have a very small impact on

the algorithm, i.e., when they were set differently, there is no big changes on the

success rate of the algorithm, but maxGenerations and � have a great impact on the

algorithm, thus, they are the main parameters to be set, and other three parameters (.,

p and Q) can be fixed. The group of parameters maxGenerations=20, .=2, �=1, p=0.6

and Q=5 is the best for 3-SAT instances with r=4.3. In order to find a more optimal

setting, we tried different setting for ., p and Q with maxGenerations=20 and � 1 in

a higher degree of accuracy but did not observe any noticeable improvement. This

means WalkSATga is not so sensitive to those parameters ., p and Q.

We compared WalkSATga with five SLS solvers including YalSAT, Score2SAT,

CSCCSat, WalkSAT and WalkSATvav. Especially, YalSAT outperforms other

competitors on random 3-SAT instances with r=4.3 and r=5.5 for SAT Competition

2017. For the first two benchmarks, each solver performs 10 runs on each instance.

For the generated random instances, each solver is performed for one run on each

instance. The cut off time of each run is set to 5000 CPU seconds.

5.3.1 Comparing WalkSATga with well-known SLS solvers on random 3-SAT

instances greater than the phase transition ratio

Tables 4, 5 and 6 summarize the performance of WalkSATga on the random 3-SAT

instances greater than the phase transition ratio compared with other well-knowns

SLS solvers. The results showed that WalkSATga performs far beyond CSCCSat and

:DON6$7� RQ� WKHVH� LQVWDQFHV�� &RPSDUHG�ZLWK�:DON6$7� DQG� &6&&6DW�� WKH� ³AOO´�

increases by 30 respectively. WalkSATvav outperforms WalkSAT for the instances

with r=4.3 and r=5.5. Thus, WalkSATvav works toward the improvement of

Instance

class

YalSAT

num

Score2SAT

num

CSCCSat

num

 WalkSAT

num

WalkSATvav

num

WalkSATga

num

v400 5 5 5 5 4 5

v420 5 5 3 3 1 5

v440 5 5 1 1 3 5

v460 5 5 1 1 3 5

v480 5 5 0 0 3 5

v500 5 5 0 0 2 5

v520 5 5 0 0 3 5

v540 5 5 0 0 2 5

All 40 40 10 10 21 40

suc rate 100% 100% 25% 25% 52.5% 100%

Table 4: Experimental results on the 3-SAT benchmark with r=4.3 from SAT

Competition 2017, based on 10 runs for each instance.

236 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

Instance
class

YalSAT
num

Score2SAT
num

CSCCSat
num

WalkSAT
num

WalkSATvav
num

WalkSATga
num

v400 1 1 1 1 1 1

v420 2 2 1 1 2 1

v440 0 0 0 0 0 0

v460 1 1 0 0 1 1

v480 1 1 0 0 1 1

v500 2 2 0 0 2 2

v520 1 1 0 0 1 1

v540 1 1 0 0 1 0

All 9 9 2 2 9 7

suc rate 22.5% 22.5% 5% 5% 22.5% 17.5%

Table 5: Experimental results on random 3-SAT based on 100 runs for each instance, with

a cutoff time of 5000 s. Instances with r=5.5 are from SAT Competition 2017.

Instance

class

YalSAT

num

Score2SAT

num

CSCCSat

num

WalkSAT

num

WalkSATvav

num

WalkSATga

num

v200 100 100 100 100 100 100

v300 100 100 73 72 80 100

v400 100 100 25 23 32 100

v500 100 100 20 0 22 100

v600 100 100 0 0 16 100

Table 6: Experimental results on the 3-SAT benchmark with r=4.3 from generated

instances, based on one run for each instance, with a cutoff time of 5000 s.

WalkSAT for these instances. However, the performance of WalkSATga is far better

than that of WalkSAT and WalkSATvav, which indicates that WalkSATga has

improved the success rate of WalkSAT on the instances with r=4.3. The experimental

results show that the proposed heuristics have played a great role in the improvement

of WalkSAT. Moreover, WalkSATga is highly competitive with that of YalSAT and

Score2SAT.

It was noted in Section 3 that the total number of variables satisfying the

allocation strategy is different based on different parameters, which have a great

impact on the proposed algorithms for solving the SAT problems. Thus, compared to

solving random 3-SAT instances with r=4.3, the success rate for solving random 3-

SAT instances with r=5.5 is lower. If parameter settings are tuned based on random 3-

SAT instances with r= 5.5, the success rate of the solution for the random 3-SAT

instances with r=5.5 can be further improved.

6 WalkSATlg Solver and Results on Random 3-SAT instances for

SAT Competition 2017

As we can clearly see from Section 4 and Section 5 that WalkSATvav and

WalkSATga have their own advantages, this section presents a new SAT solver called

WalkSATlg, which is a combination of WalkSATvav and WalkSATga, along with

237Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

experimental study to evaluate WalkSATlg on random 3-SAT instances at and near

the phase transition.

6.1 Experimental Result on Random 3-SAT instances

The SAT Competition in 2017 is a competitive event for SAT solvers. All random 3-

SAT instances (180 instances) from SAT Competition 2017 are generated randomly.

In this subsection, we carry out experiments to evaluate the performance of

WalkSATlg on random 3-SAT instances with various ratio.

6.1.1 Benchmarks and experiment preliminaries

To evaluate WalkSATlg, we set up four benchmarks:

1. 3-SAT ������� r ������: all 20 random 3-SAT instances with �������r ������

from SAT Competition 2017 (n=1000000, one instance each ratio).

2. 3-SAT r=4.267: all 40 random 3-SAT instances with r=4.267 from SAT

Competition 2017 (n=5000, 5200, ..., 12800, one instance each size).

3. 3-SAT r=4.3: all 40 random 3-SAT instances with r=4.3 from SAT

Competition 2017 (n=400, 420, ..., 540, 5 instances each size).

4. 3-SAT r=5.5: all 40 random 3-SAT instances with r=5.5 from SAT

Competition 2017 (n=400, 420, ..., 540, 5 instances each size).

The instances with 5.2050r05.206 for SAT Competition 2017 are too hard for all

incomplete solvers so that they are not included in our experiments.

WalkSATlg is implemented in C and compiled by Dev-C++. All the parameters

are set in the same way as those in Section 4 and Section 5. Firstly, we compare

WalkSATlg with five SLS solvers including YalSAT, Score2SAT, CSCCSat,

DCCAlm and WalkSAT. Particularly, Score2SAT significantly outperformed other

competitors on random 3-SAT instances of SAT Competition 2017. Secondly, we

compare AS [Fu et al. 2018a], WalkSATvav, GAGR [Fu et al. 2017] and WalkSATga.

Each solver performs ten runs on each instance with a cutoff time of 5000 seconds.

6.1.2 Experimental results on random 3-SAT for SAT competition 2017

Table 7 shows experimental results on the random 3-SAT instances. From Table 7, it

is apparent that WalkSATlg dramatically outperforms other solvers. Although

WalkSATlg and its competitors solves the same number of instances with r<4.267

expect for YalSAT, WalkSATlg solves most of instances. Overall, WalkSATlg solves

39 instances more than WalkSAT, 41 instances more than CSCCSat, 7 instances more

than YalSAT, 5 instances more than Score2SAT, and 4 instances more than DCCAlm,

respectively.

It is very competitive for all kinds of algorithms on solving the random 3-SAT

instances. Although the YalSAT solver received a gold medal and the Score2SAT

won the bronze medal on random track of SAT Competition 2017, it can be seen from

Table 7 that Score2SAT performs better than YalSAT on random 3-SAT instances.

DCCAlm won the bronze award and CSCCSat won the silver award on random track

of SAT Competition 2016. However, the performance of the DCCAlm on random 3-

238 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

SAT instances is better than CSCCSat. Score2SAT had the best performance on

random 3-SAT instances for SAT competition 2017, and DCCAlm had the best

performance on random 3-SAT instances for SAT competition 2016. However, it is

worth noting that WalkSATlg significantly outperforms DCCAlm and Score2SAT.

Therefore, WalkSATlg shows the state-of-the-art performance on random 3-SAT

instances.

Instance

class

YalSAT

num

Score2SAT

num

CSCCSat

num

DCCAlm

num

WalkSAT

num

WalkSATlg

num

r<4.267 16 18 18 18 18 18

r=4.267 7 7 8 8 10 12

r=4.3 40 40 10 40 10 40

r=5.5 9 9 2 9 2 9

All 72 74 38 75 40 79

suc rate 51.4% 52.9% 27.1% 53.6% 28.6% 56.4%

Table 7: Experimental results on random 3-SAT instances based on 10 runs for each

instance, with a cut off time of 5000 seconds for SAT Competition 2017.

Instance
class

AS
num

WalkSATvav
num

GAGR
num

WalkSATga
num

r<4.267 0 18 0 18

r=4.267 0 12 0 10

r=4.3 14 21 0 40

r=5.5 0 9 0 9

All 14 60 0 77

suc rate 10% 42.8% 0% 55%

Table 8: Experimental results on random 3-SAT instances based on 10 runs for each

instance, with a cutoff time of 5000 seconds for SAT Competition 2017.

According to Table 7 and Table 8, WalkSATlg gives the best performance on random

3-SAT instances. WalkSATlg solves 79 instances; WalkSATga solvers 77 instances,

WalkSATvav solves 60 instances; AS solves 14 instances; GAGR solves 0 instances.

7 Comparative Discussions

In this section, we present a discussion compared with some related work to further show

and clarify the originality and novelty of the proposed algorithms. More specifically, we

discuss the major differences between AS [Fu et al. 2018a] and WalkSATvav, as well as

the main differences between GAGR [Fu et al. 2017] and WalkSATga.

7.1 Main Differences between WalkSATvav and AS

Although WalkSATvav is related to the AS [Fu et al. 2018a], there exist major differences

between WalkSATvav and AS, which are summarized as below:

1) Variable selection mechanism: the WalkSATvav algorithm prefers to select the

variable with the minimum break to be flipped, i.e., the variable selection of WalkSATvav

239Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

is based on the WalkSAT algorithm, while the AS algorithm uses the general score

property to choose the variable to be flipped, i.e., the variable selection of AS is based on

GSAT algorithm.

2) Empirical performance on random 3-SAT benchmarks: as can be clearly seen

from the experiments illustrated in Table 8 in Section 6, the WalkSATvav algorithm

performs much better than the AS algorithm on random 3-SAT benchmarks.

7.2 Main Differences between WalkSATga and GAGR

The main differences between GAGR [Fu et al. 2017] and WalkSATga are summarized

below:

1) Basic framework: the WalkSATga algorithm is based on the WalkSAT algorithm

which has been applied successfully to solving random 3-SAT, while the GAGR

algorithm is developed following the GSAT algorithm and the GA algorithm which is a

global search algorithm which is not suitable for solving large SAT instances.

2) Initial assignment strategy: the WalkSATga algorithm utilizes a combination of

GAGR and the allocation strategy, as well as the heuristic IAS to generate a complete

assignment as the initial solution, while the GAGR algorithm does not use the heuristic

IAS and the allocation strategy, and simply generates an initial assignment based on the

GA algorithm.

3) Variable selection mechanism: the WalkSATga algorithm prefers to select the

variable with the minimum break to be flipped, i.e., the variable selection of WalkSATga

is based on the WalkSAT algorithm, while the GAGR algorithm uses the general score

property to choose the variable to be flipped, i.e., the variable selection of GAGR is based

on the GSAT algorithm.

4) Empirical performance on random 3-SAT benchmarks: according to the

experimental results presented in Table 8 in Section 6, it can be clearly observed that

WalkSATga significantly outperforms GAGR on random 3-SAT benchmarks. Since the

GAGR algorithm is not suitable for solving large 3-SAT instances, the WalkSATga

utilizes WalkSAT framework to solve the large 3-SAT benchmarks.

8 Conclusions

The present work focused on improving the performance of a well-known SLS SAT

solver WalkSAT on solving random 3-SAT instances equal to and greater than the

phase transition ratio. Three effective algorithms have been proposed respectively for

this purpose, namely WalkSATvav, WalkSATga, and WalkSATlg. WalkSATvav

applied the idea of the allocation strategy on random 3-SAT instances at the phase

transition. WalkSATga further enhanced WalkSATvav to target on random 3-SAT

instances greater than the phase transition ratio by combining an improved GA and an

improved ACA, while WalkSATlg was an integration of WalkSATga and

WalkSATvav to target for all random 3-SAT instances.

The key ideas centralized in the present work was summarized as follows: the

allocation strategy was utilized to generate an initial assignment for solving 3-SAT

instances, and to guide the trend of optimal assignment in advance, and to accelerate

finding the optimal solution. Then the allocation strategy is further adopted by the GA

and the ACA, resulting in a new heuristic namely IAS. According to IAS heuristic,

240 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

there are two different priorities in the global search while the improved GA and the

improved ACA are combined to complement each other and overcome their

shortcomings.

The experimental studies on random 3-SAT instances at the phase transition

indicated that WalkSATvav outperformed the state-of-the-art SLS solvers YalSAT,

Score2SAT, CSCCSat, DCCAlm and WalkSAT, where YalSAT and Score2SAT were

the gold winner and the bronzer on the random track of SAT Competition 2017

respectively, and CSCCSat and DCCAlm won the silver and the bronzer respectively

on the random track of SAT Competition 2016. In addition, the experimental studies

on random 3-SAT instances greater than the phase transition ratio indicated that the

performance of WalkSATga is far better than that of CSCCSat, WalkSAT and

WalkSATvav, and WalkSATga is highly competitive with that of YalSAT and

Score2SAT. Finally, WalkSATlg significantly outperformed the existing SLA

algorithms according to the experiments on random 3-SAT instances at and near the

phase transition from SAT Competition 2017.

As for the future work, we would like to design ehanced functions on pheromone

update and heuristic update. We will then further improve the state-of-the-art SLS

algorithms using enhanced functions on random 3-SAT instances. Moreover, we're

going to generate extensive random 3-SAT instances with r=5.5 by a random

generator, and then the parameters of WalkSATlg are trained to find a set of

parameters adapting to such instances. Furthermore, we would like to apply the

allocation strategy, the improved GA, as well as the improved ACA to other

combinatorial search problems.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant

No.61673320) and the Fundamental Research Funds for the Central Universities

(Grant No.2682017ZT12, 2682016 CX119).

References

[Achlioptas, 2009] Achlioptas, D. : Random satisfiability. In Handbook of Satisfiability, 245±

270, 2009.

[Balint, 2012] Balint, A., & Schöning, U.: Choosing probability distributions for stochastic

local search and the role of make versus break. In Pro. 15th Int. Conf. on Theory and

Applications of Satisfiability Testing, Trento, Italy, 17±20, June, 2012.

[Balyo, 2016] Balyo, T. : Using algorithm configuration tools to generate hard random

satisfiable benchmarks. In Pro. 19th Int. Conf. on Theory and Applications of Satisfiability

Testing, Bordeaux, France, 60±62, July, 2016.

[Biere, 2017] Biere, A.: CADICAL, LINGELING, PLINGELING, TREENGELING and

YALSAT. In Pro. 20th Int. Conf. on Theory and Applications of Satisfiability Testing,

Melbourne, Australi, 14, August, 2017.

[Cai, 2017] Cai, S., & Luo, C. Score2SAT Solver Description. In Pro. 20th Int. Conf. on Theory

and Applications of Satisfiability Testing, Melbourne, Australi, 34, August, 2017.

241Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

[Cai, 2013a] Cai, S., & Su, K.: Local search for boolean satisfiability with configuration

checking and subscore. Artificial Intelligence, 204, 75-98, 2013.

[Cai, 2013b] Cai, S., Su, K., & Luo, C.: Improving WalkSAT for random k-satisfiability

problem with k> 3. In Pro. 27th AAAI Conference on Artificial Intelligence, 145-151, 2013.

[Canisius, 2016] Canisius, G., Wilson, K., Zhang, Y., Chenhui, Y., & Xin, H.: A genetic-based

local search method for SAT problem. In Pro. On Information Technology, Networking,

Electronic & Automation Control Conference, IEEE, Chongqing, 20-22, May, 2016.

[Chao, 1986] Chao, M. T., & Franco, J.: Probabilistic analysis of two heuristics for the 3-

satisfiability problem. SIAM Journal on Computing, 15(4), 1106-1118, 2986.

[Cook, 1971] Cook, S. A.: The complexity of theorem-proving procedures. In Pro. of the third

annual ACM symposium on Theory of computing, USA, 151-158, May, 1971.

[De Jong, 1989] De Jong, K. A., & Spears, W. M.: Using genetic algorithms to solve NP-

complete problems. In Pro. Int. Conf. on Genetic algorithms, USA, 124-132, 1989.

[Faizullin, 2013] Faizullin, R. T., Dulkeyt, V. I., & Ogorodnikov, Y. Y. E.: Hybrid method for

the approximate solution of the 3-satisfiability problem associated with the factorization

problem. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 19(2), 285-294, 2013.

[Fu, 2018a] Fu H. M., Xu Y., He X. X. and Ning X. R.: GSAT Algorithm Based on Task

Allocation and Scheduling for 3-SAT Problem. Chinese Journal of Computer engineering&

Science, 40(08): 1366-1374, 2018.

[Fu, 2018b] Fu H. M., Xu Y., Ning X. R. and Zhang W. Y.: The empirical study of improved

genetic algorithm combined with ant colony algorithm based on 3-SAT problem, 2017

International Conference on Fuzzy Theory and Its Applications (iFUZZY), Britain,733-739,

2018.

[Fu, 2017] Fu H. M., Xu Y., Wu G. F. & Ning X. R.: An Improved Genetic Algorithm for

Solving 3-SAT Problems Based on Effective Restart and Greedy Strategy. In Pro. 12th Int.

Conf. on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, 1-6, Nov., 2017.

[Gableske,2016] Gableske, O.: Sat solving with message passing. Ph.D. dissertation, Ulm
University, Germany, 2016.

[Gao, 2007] Gao S., Jiang X. Z. & Tang K. Z.: Hybrid Algorithm Combining Ant Colony

Optimization Algorithm with Genetic Algorithm. In Proc. Int. Conf. on Chinese Control,

Harbin, 701-704, Aug., 2006.

[Hoos,2002] Hoos, H. H.: An adaptive noise mechanism for WalkSAT. In Proc. 8th Int. Conf.

on Artificial intelligence, Canada, 655±660, July, 2002.

[Kroc, 2010] Kroc, L., Sabharwal, A., & Selman, B.: An empirical study of optimal noise and

runtime distributions in local search. In Pro. 13th Int. Conf. on Theory and Applications of

Satisfiability Testing, Edinburgh, Scotland, 34, July, 2010.

[Levin, 1984] Levin, L.: A survey of Russian approaches to perebor (brute-force searches)

algorithms. Annals of the History of Computing. 6 (4): 384±400. (Translated by TrakhtenbroÈ

B. A.)

[Li, 2003] Li, D. J., Qiang, C. Z., & Zhi, Y. Z.: On the Combination of Genetic Algorithm and

Ant Algorithm. Journal of Computer Research and Development, 40(7): 273-275, 2003.

242 Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

[Ling, 2005] Ling, Y. B., Wu, X. J., & Jiang, Y. F.: Genetic algorithm for solving SAT

problems based on learning clause weights. Chinese Journal of computers -Chinese Edition,

2005(09), 1476-1482.

[Li, 2016] Li, B., & Zhang, Y. A.: A hybrid genetic algorithm to solve 3-SAT problem. In Proc.

12th Int. Conf. on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-

FSKD) , Changsha, 476-480, Aug., 2016.

[Liang, 1998] Liang, D. M., Wu, U., & Ma, S. H.. An efficient local search algorithm for

structured SAT problems. Chiness Journal of Computers, 1998(S1): 92-97, 1998.

[Luo, 2013] Luo, C., Cai, S., Wu, W., & Su, K.: Focused random walk with configuration

checking and break minimum for satisfiability. In Pro. on Principles and Practice of Constraint

Programming. Berlin Heidelberg, 481-496, 2013.

[Luo, 2012] Luo, C., Su, K., & Cai, S.: Improving local search for random 3-SAT using

quantitative configuration checking. In Pro. 20th European Conf. on Artificial Intelligence,

France, 570-575, Aug., 2012.

[Luo, 2014] Luo, C., Cai, S., Wu, W., & Su, K.: Double Configuration Checking in Stochastic

Local Search for Satisfiability. In Pro. 28th AAAI Conference on Artificial Intelligence, Canna,

27-31, July, 2014.

[Luo, 2016] Luo, C, Cai, S., Wu, W. & Su K.: CSCCSat. In Pro. 19th Int. Conf. on Theory and

Applications of Satisfiability Testing, France, 10, July, 2016.

[Luo, 2015] Luo, C., Cai, S., Su, K., & Wu, W.: Clause states based configuration checking in

local search for satisfiability. IEEE transactions on cybernetics, 45(5), 1028-1041, 2015.

[Marques-Silva, 2008] Marques-Silva, J.: Practical applications of Boolean satisfiability. In

Proc. 9th Int. Workshop on Discrete Event Systems, Sweden, 74-80, Aug., 2008.

[Selman, 1994] Selman, B., Kautz, H. A., & Cohen, B.: Noise strategies for improving local

search. In Pro. 20th Int. Cont. on Artificial intelligence, USA, 337-343, 1994.

[Selman, 1992] Selman B, Levesque H J, Mitchell D G.: A New Method for Solving Hard

Satisfiability Problems. In Pro. 10th Int. Conf. on Artificial intelligence, California, 440-446,

July, 1992.

[Wang, 2012] Wang, F., Zhou, Y. R., & Ye, L.: Ant Colony Algorithm Combined with Survey

Propagation for Satisfiability Problem. Computer Science, 39(4), 227-231, 2012.

[Xu, 2012] Xu, L., Hoos, H. H., and Leyton-Brown, K.: Predicting satisfiability at the phase

transition. In Proc. In Pro. 26th AAAI Conference on Artificial Intelligence, 584±590, 2012.

[Xu, 2013] Xu, L., Yu, J. P.: Improved Bounded Model Checking on Verification of Valid

ACTL Properties. Computer Science,40(S1):99-102, 2013.

[Youness, 2015] Youness, H., Ibraheim, A., Moness, M., & Osama, M.: An efficient

implementation of ant colony optimization on GPU for the satisfiability problem. In Pro. 23rd

Euromicro Int. Conf. on Parallel, Distributed, and Network-Based Processing, Finland, 230-235,

April, 2015.

[Zhang, 2015] Zhang Y. A. & LI B. F.: The Empirical Study of the Schema Theory of Genetic

Algorithm Based on 3-satisfiability Problem. In Pro. Joint International Mechanical, Electronic

and Information Technology Conference, 448-453, 2015.

243Fu H., Xu Y., Chen S., Liu J.: Improving WalkSAT ...

