
Interval Methods for Fixed and Periodic Points:

Development and Visualization

José Eduardo de Almeida Ayres

(IMPA, Rio de Janeiro, Brazil

jeaayres@impa.br)

Luiz Henrique de Figueiredo

(IMPA, Rio de Janeiro, Brazil

lhf@impa.br)

Abstract: We describe the development of rigorous numerical methods based on
interval analysis for finding all fixed points of a map and all attracting periodic points of
a complex polynomial. We also discuss their performance with instructive visualizations.

Key Words: fixed points, interval analysis, computer-assisted proofs

Category: G.1.5, G.1.2

1 Introduction

Finding the fixed points of a function is important in many contexts. For instance,

solving nonlinear equations is frequently cast as finding fixed points. Newton’s

method is the main example of this formulation. Fixed points and periodic points

are also important in discrete dynamical systems, especially in complex dynamics,

where periodic orbits play a key role [Branner 1989; Keen 1989].

In this paper, we describe the development of rigorous numerical methods

for finding all fixed points of a map. The methods are based on interval analysis

[Moore 1966, 1979; Moore et al. 2009; Tucker 2011]. There is a large literature

on interval methods for solving nonlinear equations [Baker Kearfott 1996], but

surprisingly very little that is specific to fixed points. We know only these papers:

[Caprani and Madsen 1975, 1978; Rall 1982, 1987; Rihm 2001]. Although the

two problems are mathematically equivalent, there are algorithmic opportunities

to be exploited for computing fixed points. Our main contribution is a hybrid

algorithm that switches to plain fixed-point iteration once it establishes the

existence of an attracting fixed point using Banach’s criterion before finding a

small certified enclosure for the fixed point. After recalling the main definitions

and facts about fixed points in §2, we briefly describe interval analysis in §3. Then

in §4 we describe a series of interval algorithms for finding all fixed points of a

map, culminating with our hybrid algorithm and its specialization for finding all

attracting periodic points of a complex polynomial described in §5. Finally, in §6

we present results illustrating the performance of these algorithms, including

novel, instructive visualizations of the progress of the algorithms.

 Journal of Universal Computer Science, vol. 26, no. 10 (2020), 1312-1330
 submitted: 27/7/20, accepted: 27/10/20, appeared: 28/10/20 CC BY-ND 4.0

2 Fixed points

Let f : Ω ⊆ Rd → Rd be a continuous function defined on a box Ω (that is,

a product of compact intervals). A fixed point of f is a point x∗ ∈ Ω such

that f(x∗) = x∗. A fixed point x∗ is attracting if ‖f(x) − x∗‖ < ‖x − x∗‖

for all points x 6= x∗ in a neighborhood of x∗. A fixed point x∗ is repelling if

‖f(x) − x∗‖ > ‖x − x∗‖ for all points x 6= x∗ in a neighborhood of x∗. For

differentiable functions f , a fixed point x∗ is attracting iff ‖f ′(x∗)‖ < 1 and

repelling iff ‖f ′(x∗)‖ > 1. When ‖f ′(x∗)‖ = 1, the fixed point x∗ is indifferent or

neutral. Here, ‖f ′(x∗)‖ is the norm of the Jacobian matrix of f at x∗.

We shall use only the classical results on fixed points, which we discuss below.

A wealth of results on fixed points can be found in the books [Agarwal et al.

2001] and [Berinde 2007], among many others.

The most popular numerical method for finding a fixed point of f is fixed-point

iteration (also known as Picard iteration):

xn+1 = f(xn), x0 ∈ Ω

When this sequence converges, its limit is a fixed point of f , because f is contin-

uous. Convergence typically depends on choosing the initial point x0 sufficiently

close to a fixed point of f , which may not be easy to find. Fixed-point iteration is

mostly suitable for finding attracting fixed points. Repelling fixed points cannot

be found using fixed-point iteration, unless it starts at the fixed point itself. In

this sense, repelling fixed points cannot be directly observed. Indifferent fixed

points can sometimes be found using fixed-point iteration, but not from all

nearby initial points. We shall see that interval methods can find all fixed points:

attracting, repelling, and indifferent.

Brouwer’s fixed-point theorem guarantees the existence (but not uniqueness)

of fixed points when f : K → K is a map on a convex compact set K ⊆ Rd, such

as a box. It is the staple existence theorem, due to its fairly general hypotheses

and immediate generalizations (“convex” can be replaced by “homeomorphic

to a ball”). Brouwer’s fixed-point theorem is stated as an existence result, but

there are constructive formulations based on Sperner’s lemma that can be used

algorithmically [Scarf 1967; Todd 1976].

Banach’s fixed-point theorem guarantees the existence and uniqueness of

fixed points when f : K → K is a contraction map on a compact set K ⊆ Rd. In

this case, f has a unique fixed point x∗ ∈ K and fixed-point iteration converges

to x∗ for every initial point x0 ∈ K. This important theorem (stated in its full

generality for complete metric spaces) is crucially used in many proofs and in

many numerical methods. Although apparently a global result, it is typically used

locally, near a fixed point, because f need not be a global contraction. Indeed,

Newton’s method for finding zeros of a function is an instance of fixed-point

1313de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

iteration that converges provided the initial point is sufficiently near a fixed point

(that is, a zero of the function). However, the global convergence properties of

Newton’s method are complicated, even for finding zeros of polynomials [von

Haeseler and Peitgen 1988; Hubbard et al. 2001].

We shall see presently that the hypotheses of these classical theorems can

be checked rigorously in a computer using interval analysis. A key point in this

verification is finding an explicit box X ⊆ Ω such that f(X) ⊆ X. This guarantees

the existence of fixed points of f in X by Brouwer’s fixed-point theorem.

3 Interval analysis

Interval analysis is the main tool for rigorous numerical computation [Tucker

2011]. It is based on interval arithmetic, an extension of ordinary arithmetic

operations and standard elementary functions to intervals [Moore 1966, 1979;

Moore et al. 2009]. The basic fact in interval analysis is that for each function

f : Ω ⊆ Rd → R expressed by a formula or an algorithm, there is a computable

function F automatically built from the expression of f , called the natural interval

extension of f , such that F (X) is an interval that estimates the whole range of

values taken by f on a box X ⊆ Ω:

F (X) ⊇ f(X) = {f(x) : x ∈ X}

Finding the exact range f(X) is a hard problem in general [Traylor and Kreinovich

1995]. Therefore, the inclusion F (X) ⊇ f(X) is usually proper and interval es-

timates are usually overestimates. Nevertheless, the estimates F (X) get bet-

ter as X shrinks to a point in the sense that F ({x}) = {f(x)} for every

x ∈ Ω. More precisely, we have at least linear convergence for interval estimates:

diam(F (X)) ≤ c diam(X) for some c > 0 that depends only on f . Thus, as we

shall see in §4, interval methods are typically divide-and-conquer methods that

recursively explore the domain of f , getting better information about f as they

refine the subdivision, and discarding boxes that cannot contain a solution. For

instance, when finding the zeros of f in Ω, we can discard a box X whenever

0 /∈ F (X). This is a computational proof that f has no zeros in X. However,

because of overestimation, we cannot conclude that f has a zero in X when

0 ∈ F (X). In this case, we subdivide X and recursively test the pieces.

We extend interval estimates to functions f : Ω ⊆ Rd → Rm by combining

interval estimates for each component of f . More precisely, if f = (f1, . . . , fm)

and Fi is an interval extension of fi : Ω ⊆ Rd → R, then, for each box X ⊆ Ω,

the box F (X) = F1(X)× · · · × Fm(X) ⊇ f(X) estimates the range of f on X.

Automatic differentiation [Moore 1966; Rall 1986; Moore et al. 2009; Tucker

2011] is the perfect companion for interval arithmetic and works in a similar

fashion. It automatically converts an expression for f into an algorithm that

1314 de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

simultaneously computes the value of f and of all its partial derivatives. When

fed intervals instead of numbers, this algorithm computes interval estimates for

the value of f and of all its partial derivatives. This allows us to reason reliably

about both the range of values of f and its regions of monotonicity.

Interval arithmetic and automatic differentiation allow us to check the

hypotheses of the fixed-point theorems rigorously in a computer. The existence

of fixed points in a box X guaranteed by Brouwer’s theorem follows whenever

F (X) ⊆ X because then f(X) ⊆ F (X) implies f(X) ⊆ X. The existence of a

unique fixed point in a box X guaranteed by Banach’s theorem follows whenever

F (X) ⊆ X and ‖F ′(X)‖ < 1 because these imply that f is a contraction in X,

thanks to the mean value inequality. Here, F ′ is an interval extension of the

Jacobian matrix of f , which can be computed with automatic differentiation.

4 Finding fixed points

We shall now describe a series of four incrementally refined interval algorithms

for finding all fixed points of f in Ω. The series culminates with our hybrid

algorithm, Algorithm 4.

0. The starting point is Algorithm 0, the standard divide-and-conquer interval

method that performs adaptive subdivision of Ω to find all zeros of a function

g : Ω ⊆ Rd → Rd [Moore 1966].

Algorithm 0

procedure Explore(X)

if 0 6∈ G(X) then

discard X

else if diam(X) < ε then

accept X

else

SubExplore(X)

end

end

procedure SubExplore(X)

divide X into smaller subboxes

X1, . . . , Xm

for j = 1, . . . ,m do

Explore(Xj)

end

end

Given an interval extension G for g, we recursively explore Ω, discarding every

box X that cannot possibly contain zeros of g, as proved by 0 6∈ G(X). Otherwise,

X may contain zeros of g. If X is small enough for our purposes, we accept X

as containing a zero of g. Then the midpoint of X is an approximation for a

zero of g within the given tolerance ε. Otherwise, we subdivide X into smaller

subboxes and explore them as above to isolate the zeros of g. In low dimension

(that is, d ≤ 3), we typically split X at its center into 2d subboxes, leading

to quadtrees and octrees [Samet 1984]. In higher dimension, to avoid creating

1315de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

a huge number of subboxes, we typically split X at its center across its longest

side into two subboxes, leading to a bintree [Samet and Tamminen 1985]. This

strategy is also frequently used in low dimension for boxes with high aspect ratio.

More sophisticated subdivision strategies exist [Baker Kearfott 1996, §4.3]. As

mentioned in §3, the basis for this method is that interval estimates get better as

the boxes reduce in size, converging to the actual function value when the boxes

shrink to a point.

To find the fixed points of f in Ω, we use this method with g(x) = f(x)− x

and its interval extension G(X) = F (X)−X. Then the zeros of g in Ω are exactly

the fixed points of f in Ω. The union of the accepted boxes contains all fixed

points of f in Ω.

1. Algorithm 0 can be cast in the context of fixed points by noting that all fixed

points of f in X must lie in X ∩F (X). Thus, we can discard X if X ∩F (X) = ∅,

because then f has no fixed points in X. Algorithm 1 uses this formulation. The

test X ∩ F (X) = ∅ is equivalent to the test 0 6∈ G(X) used in Algorithm 0, but

it reads better in the context of fixed points. Brouwer’s theorem implies that

Algorithm 1 (and its subsequent refinements) can certify the existence of fixed

points in X whenever F (X) ⊆ X (code omitted). In this case, X contains at least

one fixed point, but may contain more: Brouwer’s theorem guarantees existence

but not uniqueness. Algorithm 1 subdivides large boxes hoping to isolate fixed

points within the tolerance ε.

Algorithm 1

procedure Explore(X)

if X ∩ F (X) = ∅ then [Brouwer certifies existence if F (X) ⊆ X]

discard X

else if diam(X) < ε then

accept X

else

SubExplore(X)

end

end

2. The formulation of Algorithm 1 in terms of X ∩F (X) immediately motivates

Algorithm 2, which recursively explores X ′ = X ∩ F (X), instead of X. No such

reduction is available for Algorithm 0, which solves generic nonlinear equations.

This tiny change brings a qualitative improvement: Algorithm 1 is spatially

adaptive because its search is guided by the location of the fixed points of f .

Algorithm 2 is also analytically adaptive because its search is also guided by the

nature of the fixed points of f . Indeed, near an attracting fixed point x∗ ∈ X, we

typically have F (X) ⊂ X, strictly, and so X ′ = F (X) ⊂ X, strictly. The stronger

1316 de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

the attraction of x∗, the smaller X ′ is, and the faster Algorithm 2 converges to x∗.

Conversely, near a repelling fixed point, we typically have F (X) ⊇ X, and so

X ′ = X signals that we need to subdivide X.

Algorithm 2

procedure Explore(X)

X ′ ← X ∩ F (X)

if X ′ = ∅ then

discard X

else if diam(X ′) < ε then

accept X ′

else

SubExplore(X ′)

end

end

Algorithm 3

procedure Explore(X)

X ′ ← X ∩ F (X)

if X ′ = ∅ then

discard X

else if diam(X ′) < ε then

accept X ′

else if diam(X ′) < λ diam(X) then

Explore(X ′)

else

SubExplore(X ′)

end

end

Algorithm 2 can be seen as an interval iteration in the sense of [Rall 1982, 1987]:

Xn+1 = Xn ∩ F (Xn), X0 = Ω

When Xn = ∅ for some n, the sequence diverges and there are no fixed points of f

in Ω. Otherwise, (Xn) is a sequence of nested nonempty boxes and so converges

to the box X∗ =
⋂

∞

n=0 Xn 6= ∅, by Cantor’s intersection theorem. Moreover,

X∗ contains all fixed points of f in Ω. In the outward-rounded floating-point

arithmetic used in interval arithmetic, the sequence converges in finite time,

because there are finitely many intervals with floating-point numbers as extremes.

Algorithm 2 goes beyond convergence in pure interval iteration in the sense of

[Rall 1982, 1987] by subdividing large boxes to isolate fixed points.

3. Recursively exploring X ′ = X ∩ F (X) instead of X in Algorithm 2 is not

always a clear advantage. It may happen that X ′ is not much smaller than X,

because we are near a weakly attracting fixed point (or near a repelling fixed

point, when X ′ = X). Algorithm 3 compares the diameters of X and X ′ to

ensure that good linear convergence is preserved in these cases, while still taking

advantage of strongly attracting fixed points, when X ′ is much smaller than X.

We use λ = 1
2
for comparing diameters, which corresponds to the reduction in

quadtree subdivision. More sophisticated tests exist [Hansen and Walster 2003,

§11.7]. Algorithm 3 outputs a certified enclosure for each fixed point of f in Ω,

attracting, repelling, and indifferent. This is as far as one can go using just the

continuity of f .

1317de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

4. When f is differentiable, we use Algorithm 4, which is our final method: it

outputs a small certified enclosure for each attracting fixed point of f in Ω. Algo-

rithm 4 incorporates Banach’s criterion for attracting fixed points, as mentioned

in §3. As soon as we establish the existence of a unique attracting fixed point in

a box, we switch to plain fixed-point Picard iteration, because it is faster than

interval iteration. Upon convergence to an approximate fixed point x̂, we find a

small box X around x̂ such that F (X) ⊆ X using interval inflation. (We used

η = 10−15 and h = 0.25 in our experiments.) Finally, we refine this box using

pure interval iteration to output a certified enclosure for the fixed point x∗.

Interval inflation was proposed by [Caprani and Madsen 1978], outside the

context of adaptive subdivision interval methods. They argued that enlarging

a box X around an approximate fixed point often increases the chances that

F (X) ⊆ X. In more general forms, this strategy is known as ε-inflation [Mayer

1995; Rump 1998]; it also helps to avoid clusters of boxes around a single solution

[Baker Kearfott 1996, §4.2], a nuisance in subdivision methods. Clustering may

affect methods like Algorithm 3 that cannot prove uniqueness of solution in a

box, but not Algorithm 4.

Algorithm 4

procedure Explore(X)

X ′ ← X ∩ F (X)

if X ′ = ∅ then

discard X

else if diam(X ′) < ε then

accept X ′

else if F (X) ⊆ X and ‖F ′(X)‖ < 1 then

ExploreAttracting(X ′) [Banach]

else if diam(X ′) < λ diam(X) then

Explore(X ′)

else

SubExplore(X ′)

end

end

procedure ExploreAttracting(X)

x̂← mid(X)

repeat [Picard]

x̂← f(x̂)

until convergence

X ← [x̂− η, x̂+ η]

repeat [inflation]

X ← X + diam(X)[−h, h]

until F (X) ⊆ X

repeat [interval iteration]

X ← F (X)

until convergence

accept X

end

5 Finding attracting periodic points

A periodic point of f : Ω ⊆ Rd → Rd is a point x∗ ∈ Ω such that fn(x∗) = x∗,

where fn = f ◦ · · · ◦ f (n times) is the n-th iterate of f . The period of a periodic

point x∗ is the smallest positive integer n such that fn(x∗) = x∗. Periodic points

of period n are thus fixed points of fn. Conversely, the fixed points of fn are

the periodic points of f with period dividing n. Clearly, the periodic points of

1318 de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

period 1 are exactly the fixed points of f . The orbit of a point x0 ∈ Ω is the

set of the images of x0 under the iterates of f , that is, {x0, f(x0), f
2(x0), . . . }.

Periodic points are exactly those that have finite orbits; the size of the orbit is

the period. A periodic orbit is the orbit of a periodic point.

Periodic orbits are important in discrete dynamical systems, because they

represent stationary states. Attracting periodic orbits are especially important

because they represent the fate of nearby points. Periodic orbits play a key role in

the dynamics of complex rational maps [Branner 1989; Keen 1989]. Typically, the

basins of attraction of attracting periodic orbits divide the Riemann sphere into

regions sharing a common boundary, the Julia set. The Julia set is the closure of

the repelling periodic points. When f is a polynomial, the set of points having

bounded orbits is called the filled Julia set; its boundary is the Julia set. In

particular, all periodic points are in the filled Julia set.

We shall adapt Algorithm 4 to find all attracting periodic points of a complex

polynomial f : C → C. The periodic points of period n are found among the

fixed points of fn, that is, the roots of fn(z) = z. This is a polynomial equation

and so can in principle be solved numerically using one of several standard

methods. However, if f has degree d, then the equation fn(z) = z has degree dn

and we do not want to find that many zeros only to choose the few that are

attracting periodic points. Moreover, most standard methods need polynomial

equations expressed in monomial form, and we would rather not expand fn(z)

into monomial form.

Algorithm 5 is an adaptation of Algorithm 4 to find the fixed points of fn,

trying to discard its repelling fixed points and to detect its attracting fixed points,

as soon as possible. Since the repelling fixed points are on the Julia set, we can

discard boxes that are away from the Julia set, that is, outside a disk centered at

the origin and containing the Julia set. Such a disk is called an escape disk because

all orbits starting outside it escape to infinity. The radius of an escape disk can

be explicitly computed from the coefficients of f(z) = anz
n+an−1z

n−1+ · · ·+a0
[McClure 2019, §4.1]:

R = max

(

2|an|, 2
|an−1|+ · · ·+ |a0|

|an|

)

This formula generalizes the well-known formula R = max(2, |c|) for f(z) = z2+c.

Algorithm 5 computes interval estimates for fn(X) and (fn)′(X) iteratively,

using the chain rule. As soon as an intermediate estimate F k(X) is outside the

escape disk, we have proved that all orbits starting at X will escape to infinity.

In this case, X cannot contain any attracting periodic points of f , because those

are in the filled Julia set. This test is not strictly needed, but it helps to reduce

the density of the quadtree. Without it, the large overestimation in the interval

estimates for fn(X) due to the wrapping effect [Moore 1979] leads to needless

1319de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

subdivisions. We can definitely discard a box X when |(fn)′(X)| ≥ 1, because

then any periodic points of period n in X will be repelling or indifferent.

Algorithm 5

procedure Explore(X)

W,W ′ ← X, 1

for k = 1 to n do

W,W ′ ← F (W), F ′(W)W ′

if W is outside the escape disk then

discard X

end

end

X ′ ← X ∩W

if X ′ = ∅ or ‖W ′‖ ≥ 1 then

discard X

else if diam(X ′) < ε then

accept X ′

else if W ⊆ X and ‖W ′‖ < 1 then

ExploreAttracting(X ′)

else if diam(X ′) < λ diam(X) then

Explore(X ′)

else

SubExplore(X ′)

end

end

6 Numerical experiments

We now present the results of some numerical experiments that illustrate the

performance of the algorithms discussed above. We find periodic points of f(z) =

z2 + c for several c ∈ C and several periods (see Table 1). The fourth column

gives µ = |(fn)′(x∗)|, which measures the nature of the periodic point x∗: super

attracting when µ = 0, strongly attracting when µ < 1 and is close to 0, and

weakly attracting when µ < 1 but is close to 1. The domain is Ω = [−2.01, 1.99]×

[−1.99, 2.01] ⊆ R2 ∼= C. The tolerance used for termination is ε = 10−12.

Pictures of the subdivision behavior of the algorithms can only show the early

steps, due to limited spatial resolution. The interesting behavior happens in very

small boxes. Therefore, we focus on how the algorithms find a single periodic

point. The graphs shown below describe the main steps taken by an algorithm

until it accepts a box containing a certified enclosure for a periodic point. The

horizontal axis shows the sequence of steps. The vertical axis shows the decimal

1320 de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

Figure period x∗ µ c

2a 3 0 0 −0.122561166876654 + 0.744861766619744 i
2b 1 −0.15 − 0.11 i 0.38 −0.16 − 0.15 i
2c 2 0.17 0.80 −1.2
3a 8 −1.10 0 −1.3815474844320614695
3b 4 −1.29 0.18 1.3
3c 8 −1.35 0.91 −1.393
4a 5 −0.79 0 −0.504340175446244 + 0.562765761452981 i
4b 1 −0.15 − 0.11 i 0.38 −0.16 − 0.15 i
4c 8 −0.19 0.91 −1.393
5a 8 −1.10 0 −1.381547484432061
5b 3 −0.07 + 0.011 i 0.35 −0.10 + 0.72 i
5c 2 −1.17 0.80 −1.2
6 1 −0.15 − 0.11 i 0.38 −0.16 − 0.15 i
7 3 −0.0099 + 0.0052 i 0.058 −0.12 + 0.74 i
8 4 0.38 0.18 −1.3

Table 1: Data for our numerical experiments.

Convergence
Interval iteration
Inflation
Picard
Brouwer
Banach
Explore
SubExplore

Figure 1: The meaning of the color bars in the graphs.

logarithm of the diameter of the current enclosure for the point; it indicates the

number of correct decimal places in the current approximation. The bars are

colored according to the legend in Figure 1. The certification of existence of fixed

points via Brouwer’s theorem is marked with a small brown box, when possible.

6.1 Individual performance

1. Figure 2a shows the steps taken by Algorithm 1 for finding a super attracting

periodic point of period 3 for c ≈ −0.12 + 0.74 i. Note the constant decrease in

diameter, due solely to subdivision; Algorithm 1 cannot exploit the nature of this

point. Nevertheless, Algorithm 1 proves early on that there is a fixed point in a

certain box using Brouwer’s theorem. This certification persists until convergence.

Figure 2b shows the steps taken by Algorithm 1 for finding a strongly attracting

fixed point for c = −0.16− 0.15 i. Again, Algorithm 1 cannot exploit the nature

of this point. Moreover, certification via Brouwer’s theorem only happens for a

1321de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
16

14

12

10

8

6

4

2

0

2

(a) super attracting point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
16

14

12

10

8

6

4

2

0

2

(b) strongly attracting point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
16

14

12

10

8

6

4

2

0

2

(c) weakly attracting point

Figure 2: Performance of Algorithm 1.

few boxes. Figure 2c shows the steps taken by Algorithm 1 for finding a weakly

attracting fixed point for c = −1.2. As a consequence, Algorithm 1 cannot

certify any boxes via Brouwer’s theorem. Figure 2 is typical of the behavior of

Algorithm 1 for finding an attracting point. It subdivides steadily at a fixed rate

but it cannot exploit the nature of the point to go any faster.

2. Figure 3a shows the steps taken by Algorithm 2 for finding a super attracting

periodic point of period 8 for c ≈ −1.38. Note the sharp decrease in diameter

after step 10, when it also started certifying boxes using Brouwer’s theorem. This

reflects the nature of this point, because X ′ is much smaller than X. Figure 3b

shows the steps taken by Algorithm 2 for finding a strongly attracting periodic

point of period 4 for c = −0.16− 0.15 i. The nature of this point is reflected in

the decrease in diameter after step 8, when it also started certifying boxes using

Brouwer’s theorem. The change of slope reflects the magnitude of µ. Figure 3c

shows the steps taken by Algorithm 2 for finding a weakly attracting periodic

point of period 8 for c = −1.393. As a consequence, Algorithm 2 cannot certify

any boxes via Brouwer’s theorem, but there is still a decrease in diameter after

step 13. Again, the change of slope reflects the magnitude of µ. Figure 3 is typical

1322 de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14
16

14

12

10

8

6

4

2

0

2

(a) super attracting point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
16

14

12

10

8

6

4

2

0

2

(b) strongly attracting point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
16

14

12

10

8

6

4

2

0

2

(c) weakly attracting point

Figure 3: Performance of Algorithm 2.

of the behavior of Algorithm 2 for finding an attracting point. It subdivides

steadily at a rate that changes near the point to reflect the magnitude of µ.

3. Figure 4a shows the steps taken by Algorithm 3 for finding a super attract-

ing periodic point of period 5 for c ≈ −0.50 + 0.56 i. Note that the switch to

exploring X ′ after step 7 and the sharp decrease in diameter after step 9, when it

also started certifying boxes using Brouwer’s theorem. This reflects the nature of

this point. Figure 4b shows the steps taken by Algorithm 3 for finding a strongly

attracting fixed point for c = −0.16− 0.15 i. The nature of this point is reflected

in the alternation of exploring and subdividing X ′, because µ is close to 0.5.

Figure 4c shows the steps taken by Algorithm 3 for finding a weakly attracting

periodic point of period 8 for c = −1.393. As a consequence, it needs to subdi-

vide X ′ more often. Figure 4 is typical of the behavior of Algorithm 3 for finding

an attracting point. It alternates between exploring and subdividing X ′. The

number of consecutive explore steps reflects the magnitude of µ.

4. Figure 5a shows the steps taken by Algorithm 4 for finding a super attracting

periodic point of period 8 for c ≈ −1.38. Note that it certified existence and

1323de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

1 2 3 4 5 6 7 8 9 10 11 12 13
16

14

12

10

8

6

4

2

0

2

(a) super attracting point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
16

14

12

10

8

6

4

2

0

2

(b) strongly attracting point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
16

14

12

10

8

6

4

2

0

2

(c) weakly attracting point

Figure 4: Performance of Algorithm 3.

uniqueness using Banach’s theorem at step 11 and so switched to Picard iteration

at step 12. Inflation and refinement took just a couple of steps. This reflects the

nature of this point. Figure 5b shows the steps taken by Algorithm 4 for finding

a strongly attracting periodic point of period 3 for c = −0.10+0.72 i. It switched

to Picard iteration at step 9. Inflation and refinement took a few steps. This

reflects the nature of this point. Figure 5c shows the steps taken by Algorithm 4

for finding a weakly attracting periodic point of period 2 for c = −1.2. As a

consequence, inflation took several steps. Refinement did not succeed, but the

output box was close to the tolerance. This reflects the nature of this point and

the magnitude of µ = 0.8. Figure 5 is typical of the behavior of Algorithm 4 for

finding an attracting point. It subdivides until Banach’s certification holds and

then quickly finds a certified small box around the point using inflation. The

number of steps in inflation and refinement depends on the nature of the point.

In the hybrid approach of Algorithm 4, plain fixed-point iteration replaces many

subdivisions steps in previous algorithms.

1324 de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
16

14

12

10

8

6

4

2

0

2

(a) super attracting point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
16

14

12

10

8

6

4

2

0

2

(b) strongly attracting point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
16

14

12

10

8

6

4

2

0

2

(c) weakly attracting point

Figure 5: Performance of Algorithm 4.

6.2 Comparative performance

Figure 6 compares the performances of Algorithm 1 and Algorithm 2 for finding

a strongly attracting fixed point for c = −0.16− 0.15 i. The main difference is

the rate of diameter decrease, shown by the slope of the graph. As expected, near

a strongly attracting point, X ′ is much smaller than X.

Figure 7 compares the performances of Algorithm 2 and Algorithm 3 for

finding a strongly attracting periodic point of period 3 for c = −0.12 + 0.74 i.

Although Algorithm 3 takes slightly longer to find this point, it is overall faster.

Algorithm 2 visits 1553 boxes to maximum depth 15 whereas Algorithm 3 visits

1389 boxes to maximum depth 18.

Figure 8 compares the performances of Algorithm 3 and Algorithm 4 for

finding a strongly attracting periodic point of period 4 for c = −1.3. Algorithm 3

steadily approximates the point, and certifies existence using Brouwer’s theorem

from step 7 onward. Algorithm 4 fares much better. It certifies both existence

and uniqueness using Banach’s theorem at the same step as Algorithm 3 certifies

existence only. From then on, it quickly finds a small certified enclosure for the

point.

1325de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
16

14

12

10

8

6

4

2

0

2

(a) Algorithm 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
16

14

12

10

8

6

4

2

0

2

(b) Algorithm 2

Figure 6: Performance of Algorithm 1 vs. Algorithm 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16

14

12

10

8

6

4

2

0

2

(a) Algorithm 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
16

14

12

10

8

6

4

2

0

2

(b) Algorithm 3

Figure 7: Performance of Algorithm 2 vs. Algorithm 3.

Figure 9 compares the domain subdivisions performed by Algorithm 1 and

Algorithm 2 for finding all fixed points for c = −0.16 − 0.15 i. The maximum

depth is 5, low on purpose for illustration. There is a strongly attracting fixed

point on the left of the domain and a repelling fixed point on the right. This is

reflected in the decomposition of Algorithm 2, which approaches the fixed points

much faster than Algorithm 1 does, even at that low depth. The nature of the

repelling fixed point is captured by the cluster of accepted boxes around it; such

a cluster appears at all depths.

1326 de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
16

14

12

10

8

6

4

2

0

2

(a) Algorithm 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16

14

12

10

8

6

4

2

0

2

(b) Algorithm 4

Figure 8: Performance of Algorithm 3 vs. Algorithm 4.

Figure 10 compares the domain subdivisions performed by Algorithm 4 and

Algorithm 5 for finding all periodic points of period 6 for c = −0.60− 0.66 i. The

maximum depth is 17. The subdivision performed by Algorithm 4 is everywhere

dense, because of the repelling points on the Julia set, resulting in a large number

of boxes accepted at that depth (1073 boxes corresponding to repelling points).

The subdivision performed by Algorithm 5 is dense only near the Julia set,

as expected, because it avoids boxes outside the escape disk. Both algorithms

certified existence and uniqueness using Banach’s theorem of all six attracting

periodic points, shown in light blue. However, Algorithm 4 explored 234189 boxes

while Algorithm 5 explored 20085 boxes, a gain of an order of magnitude (also

reflected in the total execution times, which includes graphics output).

6.3 Execution times

We wrote prototype implementations of our algorithms in the scripting language

Lua. Our programs were meant to support the qualitative analysis given above and

were instrumented for that purpose. The programs were not meant to support

quantitative analysis of execution time. Nevertheless, as a rough indication,

Table 2 gives the execution times for the computations illustrated in the figures.

Note that the experiments do not always solve the same instance or even the

same problem: they were chosen to display different convergence behaviors. In

particular, Algorithm 4 finds only attracting fixed points, whereas the previous

algorithms find all fixed points. Algorithm 5 is specialized to complex polynomials

and exploits the nature of complex dynamics.

1327de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

Figure 9: Decompositions of Algorithm 1 (left) and Algorithm 2 (right).

Figure 10: Decompositions of Algorithm 4 (left) and Algorithm 5 (right).

Figure a b c

2 0.15567 0.01762 0.02860
3 19.46442 0.23579 18.64248
4 2.20107 2.20107 19.02098
5 19.42642 0.14639 0.01707
6 0.01762 0.01049
7 0.13420 0.11114
8 0.21073 0.23416

Table 2: Execution times in seconds for our numerical experiments.

1328 de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

7 Conclusion

We proposed a hybrid interval algorithm that finds all attracting fixed points of

a map. The algorithm is a novel combination of classical mathematical results

and standard interval techniques. We also specialized this algorithm to find all

attracting periodic points of a complex polynomial exploiting well-known facts

of complex dynamics.

While the correctness of interval methods is assured, their efficiency depend

on the quality of the interval estimates. Natural interval extensions provide

first-order interval estimates. High-order estimates exist, but they are naturally

more expensive to compute [Cornelius and Lohner 1984]. A natural direction for

further work is to study the effect of high-order estimates on the overall efficiency

of the algorithms presented here. Of special interest are second-order estimates,

such as mean-value forms [Caprani and Madsen 1980] and affine arithmetic

[de Figueiredo and Stolfi 2004], which may provide a good cost-benefit balance.

Affine arithmetic will also probably help mitigate the wrapping effect.

Acknowledgements

The first author was partially supported by CNPq and FAPERJ doctoral schol-

arships. The second author is partially supported by a CNPq research grant.

This research was done in the Visgraf Computer Graphics laboratory at IMPA.

Visgraf is supported by the funding agencies FINEP, CNPq, and FAPERJ, and

also by gifts from IBM Brasil, Microsoft, NVIDIA, and other companies.

References

[Agarwal et al. 2001] Agarwal, R. P., Meehan, M., and O’Regan, D. (2001). Fixed point
theory and applications. Cambridge University Press.

[Baker Kearfott 1996] Baker Kearfott, R. (1996). Rigorous global search: Continuous
problems. Kluwer.

[Berinde 2007] Berinde, V. (2007). Iterative approximation of fixed points, volume 1912
of Lecture Notes in Mathematics. Springer.

[Branner 1989] Branner, B. (1989). The Mandelbrot set. In [Devaney and Keen 1989],
pages 75–105.

[Caprani and Madsen 1975] Caprani, O. and Madsen, K. (1975). Contraction mappings
in interval analysis. BIT, 15(4):362–366.

[Caprani and Madsen 1978] Caprani, O. and Madsen, K. (1978). Iterative methods for
interval inclusion of fixed points. BIT, 18(1):42–51.

[Caprani and Madsen 1980] Caprani, O. and Madsen, K. (1980). Mean value forms in
interval analysis. Computing, 25(2):147–154.

[Cornelius and Lohner 1984] Cornelius, H. and Lohner, R. (1984). Computing the
range of values of real functions with accuracy higher than second order. Computing,
33(3-4):331–347.

[de Figueiredo and Stolfi 2004] de Figueiredo, L. H. and Stolfi, J. (2004). Affine arith-
metic: concepts and applications. Numerical Algorithms, 37(1):147–158.

1329de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

[Devaney and Keen 1989] Devaney, R. L. and Keen, L., editors (1989). Chaos and
fractals: The mathematics behind the computer graphics. Proc. Symposia in Applied
Mathematics 39. AMS.

[Hansen and Walster 2003] Hansen, E. and Walster, G. W. (2003). Global optimization
using interval analysis. CRC Press.

[Hubbard et al. 2001] Hubbard, J., Schleicher, D., and Sutherland, S. (2001). How to
find all roots of complex polynomials by Newton’s method. Inventiones Mathematicae,
146(1):1–33.

[Keen 1989] Keen, L. (1989). Julia sets. In [Devaney and Keen 1989], pages 57–74.
[Mayer 1995] Mayer, G. (1995). Epsilon-inflation in verification algorithms. Journal of
Computational and Applied Mathematics, 60(1-2):147–169.

[McClure 2019] McClure, M. (2019). Basic complex dynamics: A computational ap-
proach.

[Moore 1966] Moore, R. E. (1966). Interval analysis. Prentice-Hall.
[Moore 1979] Moore, R. E. (1979). Methods and applications of interval analysis.
SIAM.

[Moore et al. 2009] Moore, R. E., Baker Kearfott, R., and Cloud, M. J. (2009). Intro-
duction to interval analysis. SIAM.

[Rall 1982] Rall, L. B. (1982). A theory of interval iteration. Proceedings of the
American Mathematical Society, 86(4):625–631.

[Rall 1986] Rall, L. B. (1986). The arithmetic of differentiation. Mathematics Magazine,
59(5):275–282.

[Rall 1987] Rall, L. B. (1987). Interval methods for fixed-point problems. Numerical
Functional Analysis and Optimization, 9(1-2):35–59.

[Rihm 2001] Rihm, R. (2001). Acceleration of iteration methods for interval fixed point
problems. Linear Algebra and its Applications, 324(1-3):189–207.

[Rump 1998] Rump, S. M. (1998). A note on epsilon-inflation. Reliable Computing,
4(4):371–375.

[Samet 1984] Samet, H. (1984). The quadtree and related hierarchical data structures.
Computing Surveys, 16(2):187–260.

[Samet and Tamminen 1985] Samet, H. and Tamminen, M. (1985). Bintrees, CSG
trees, and time. Computer Graphics, 19(3):121–130. (Proceedings of SIGGRAPH
’85.).

[Scarf 1967] Scarf, H. (1967). The approximation of fixed points of a continuous
mapping. SIAM Journal on Applied Mathematics, 15(5):1328–1343.

[Todd 1976] Todd, M. J. (1976). The computation of fixed points and applications,
volume 124 of Lecture Notes in Economics and Mathematical Systems. Springer.

[Traylor and Kreinovich 1995] Traylor, B. and Kreinovich, V. (1995). A bright side of
NP-hardness of interval computations: interval heuristics applied to NP-problems.
Reliable Computing, 1(3):343–359.

[Tucker 2011] Tucker, W. (2011). Validated numerics: A short introduction to rigorous
computations. Princeton University Press.

[von Haeseler and Peitgen 1988] von Haeseler, F. and Peitgen, H.-O. (1988). Newton’s
method and complex dynamical systems. Acta Applicandae Mathematicae, 13(1-2):3–
58.

1330 de Almeida Ayres J.E., de Figueiredo L.H.: Interval Method ...

